	T di	T (') 1	T '/ 1	Altitude	Soil	X7
Site ID	Location name	Latitude	Longitude	(m)	classification	vegetation type
N1	North Slope	42°02'14.5896''N	128°03'24.2748''E	1967	Andosols	Alpine tundra
N2	North Slope	42°02'20.3964''N	128°03'31.3776"E	1934	Andosols	Alpine tundra
N3	North Slope	42°02'39.2424''N	128°03'33.5304''E	1869	Andosols	Alpine tundra
N4	North Slope	42°03'38.9700''N	128°03'38.448"E	1753	Cambisols	Alpine tundra
N5	North Slope	42°11'6.8460''N	128°11'12.1416"E	1127	Alfisols	Cold temperate and temperate mountain coniferous forests
NW1	North-West Slope	42°26'31.4484''N	128°5'14.1108"E	712	Alfisols	Temperate deciduous broad-leaved forest
NW2	North-West Slope	42°23'58.56"N	128°02'8.9448"E	751	Alfisols	Temperate deciduous broad-leaved forest
NW3	North-West Slope	42°21'18.6588''N	127°57'43.5816"E	873	Alfisols	Temperate deciduous broad-leaved forest
NW4	North-West Slope	42°19'54.1321''N	127°51'34.1170''E	1057	Alfisols	Temperate deciduous broad-leaved forest
NW5	North-West Slope	42°16'21.4464"N	127°47'5.3700''E	1088	Alfisols	Mixed forest of temperate coniferous and deciduous broadleaf
NW6	North-West Slope	42°10'50.6784''N	127°46'27.7320''E	928	Alfisols	Temperate deciduous broad-leaved forest
NW7	North-West Slope	42°05'28.5612''N	127°42'41.9652''E	898	Alfisols	Temperate deciduous broad-leaved forest
NW8	North-West Slope	42°02'54.4092''N	127°40'26.0796''E	888	Alfisols	Temperate deciduous broad-leaved forest
S1	South Slope	41°58'17.6628''N	128°03'51.0840''E	2374	Cambisols	Alpine tundra
S2	South Slope	41°56'8.9304"N	128°4'31.5012"E	1983	Cambisols	Alpine tundra
S3	South Slope	41°54'5.9940''N	128°05'15.9468''E	1749	Alfisols	Cold temperate and temperate mountain coniferous forests
S4	South Slope	41°51'1.6308"N	128°05'56.9436"E	1467	Andosols	Cold temperate and temperate mountain coniferous forests
S5	South Slope	41°47'29.6268''N	128°06'7.9164"'E	1374	Alfisols	Cold temperate and temperate mountain coniferous forests

Table S1. Description and characteristics of the sampling sites.

Table S1. The classification of potential ecological risk.

	Er^{i}			RI	
Classification	Hakanson	This research	Classification	Hakanson	This research
Slight	<40	<40	Slight	<150	<40
Moderate	40-80	40-80	Moderate	150-300	40-80
Considerable	80-160	80-160	Considerable	300-600	80-160
High	160-320	160-320	Very high	≥600	≥160
Very high	≥320	≥320			

		TT	Value					
Parameter	Description	Unit	Children	Adult				
С	Concentration of metal	mg∙kg-1						
EF	Exposure frequency	d∙year-1	350	350				
ED	Exposure duration	year	6	30				
BW	Body weight	kg	15	70				
AT	Averaging time	d	ED × 365	ED × 365				
IngR	Soil ingestion rate	mg∙d-1	200	100				
InhR	Soil inhalation rate	m³·d⁻¹	7.6	20				
PEF	Particulate emission factor	m ³ ·kg ⁻¹	1.36×10^{9}	1.36 × 10 ⁹				
SA	Skin surface area	cm ² ·d ⁻¹	5700	2800				
SAF	Skin adherence factor	mg·cm⁻²	0.2	0.07				
ABSd	Dermal absorption factor	unitless	0.001	0.001				
			As(0.0003), Co(0.02), Cd(0.001), Cr(0.003),					
RfD_{ing}	Ingestion reference dose	mg·kg ⁻¹ ·d ⁻¹	Mn(0.046) ,Ni(0.02), Pb(0.0035), Zn(0.3),					
			Cu(0.04)					
	Inhalation reference		As(5×10 ⁻⁵), Co(5.71×10 ⁻⁶), Cd(5.7×10 ⁻⁶),					
RfD_{inh}		mg·kg ⁻¹ ·d ⁻¹	Cr(2.86×10 ⁻⁵), Mn(1.43×10 ⁻⁵), Ni(0.0206),					
	uose		Pb(3.52×10-3), Zn(0.3), Cu(0.0402)					
			As(0.0003), Co(0.016), Cd(1×10-5), Cr(6×10-					
RfD_{dermal}	Dermal reference dose	mg·kg ⁻¹ ·d ⁻¹	⁵), Mn(0.14), Ni(0.0054), Pb(5.25×10 ⁻⁴),					
			Zn(0.06), Cu(0.012)					
SF_{ing}	Ingestion slope factor	kg·d⁻¹·mg⁻¹	As(1.5), Cd(6.3), Cr(0.5), Ni(0.84)					
SF_{inh}	Inhalation slope factor	kg·d⁻¹·mg⁻¹	As(15.1), Cd(6.3), Cr(42), Ni(0.84)					
SF_{dermal}	Dermal slope factor	kg·d⁻¹·mg⁻¹	As(3.66)					

Table S2. Parameter values used in health assessment.

Matal			V	olcanic soil			Volcanic ash						
Metal		Fernando	X 7	TA <i>T</i>	Wudali	Santiago	Popocat		Popocat	Caulta		Mt.	nd values
tration	Tianchi	de	National	Tionchan	anchi	Island,	épetl	Tianchi	epetl	Cordon	Puna,	Etna	of soil
tration	volcano,	Noronha,	Derl	Tiansnan	volcano,	Cape	volcano,	volcano,	volcano,	Chile,	Argenti	volcano,	elements
s (mg	China	Brazilian	Park,	China [2]	China	Verde	Mexico	China	Mexico	Chile	na [9]	Italy	in China
Kg ⁻¹)		[1]	Italy [2]	China [3]	[4]	[5]	[6]		[7]	[8]		[10]	[11]
Al	6966.77	-	54410.88	18237.35	-	-	-	5464.88	69400	2442.38	-	168000	59500
Fe	14939.2	-	29584	50678.57	-	-	-	15973.3	35700	4663.5	-	77900	27400
Κ	18663.4	-	41931.5	16958.66	-	-	-	27470.4	8300	165.63	-	33400	19400
Ca	2201.0	-	38767	4472.2	-	-	-	1892.42	44400	1890.63	-	10800	12600
Na	17496.9	-	10023.88	14912.01	-	-	-	34967.8	30700	709.25	-	59800	15400
Mg	3498.0	-	10396	8779.43	-	-	-	497.12	23300	660.13	-	53100	6800
Mn	451.79	-	883.75	1239.13	-	-	-	518.62	685	48.75	594.57	1420	636
Ti	4230.36	-	1489.5	50.84	-	-	-	2161.26	3100	-	-	-	4100
Cu	5.78	24.01	186.63	36.18	17.59	51.78	9-140	0.9505	26.66	22	7.7	106	17.1
Pb	9.43	<ld< td=""><td>91.73</td><td>16.86</td><td>10.55</td><td>5.94</td><td>45-77</td><td>16.16</td><td>9.16</td><td>4.75</td><td>31.21</td><td><2</td><td>28.8</td></ld<>	91.73	16.86	10.55	5.94	45-77	16.16	9.16	4.75	31.21	<2	28.8
Zn	162.16	97.48	112.75	84.03	44.12	83.6	58-98	366.97	74	10.375	59.39	160	80.4
Cr	22.63	237.7	5.57	69.14	31.69	135.18	52-159	0.8236	62	-	11.3	24.9	46.7
Ni	7.28	45.81	24.54	34.3	18.54	137.46	50-152	0.1498	46.91	0.9125	6.4	-	21.4
Ва	221.71	522.15	823.75	183.41	-	-	-	24.32	338	-	274.73	-	529
Ga	30.72	-	-	17.09	-	-	-	171.53	16.33	-	20.28	-	16.6
Li	27.77	-	-	39.64	-	-	-	40.66	17.33	-	70.2	-	29.7
Co	4.59	13.02	-	17.78	-	45.93	-	1.95	17.16	2.875	15.3	-	11.9
Cd	<ld< td=""><td><ld< td=""><td>0.49</td><td>0.28</td><td>-</td><td>0.21</td><td>4-6</td><td><ld< td=""><td>0.57</td><td>-</td><td>-</td><td><1</td><td>0.099</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0.49</td><td>0.28</td><td>-</td><td>0.21</td><td>4-6</td><td><ld< td=""><td>0.57</td><td>-</td><td>-</td><td><1</td><td>0.099</td></ld<></td></ld<>	0.49	0.28	-	0.21	4-6	<ld< td=""><td>0.57</td><td>-</td><td>-</td><td><1</td><td>0.099</td></ld<>	0.57	-	-	<1	0.099
As	8.04	<ld< td=""><td>16.93</td><td>21.87</td><td>5.96</td><td>0.05</td><td>0.31-2.2</td><td>3.0982</td><td>-</td><td>1.15</td><td>5.2</td><td>132</td><td>8</td></ld<>	16.93	21.87	5.96	0.05	0.31-2.2	3.0982	-	1.15	5.2	132	8
Sn	2.93	-	-	-	-	-	-	6.76	-	-	3.37	-	2.7
Sr	19.97	-	-	30.94	-	-	-	3.72	515.25	-	143.76	-	187

Table S3. Tianchi volcano and global distribution of metals in volcanic soil and volcanic ash.

-not determined, <LD below the detection limit

	Al	Fe	К	Ca	Na	Mg	Mn	Ti	Cu	Pb	Zn	Cr	Ni	Ba	Ga	Li	Co	As	Sn	Sr
Al	1																			
Fe	0.010	1																		
Κ	-0.486**	0.542**																		
Ca	0.299	-0.015	-0.411*	1																
Na	-0.358	0.542**	0.894**	-0.339	1															
Mg	0.503**	-0.255	-0.759**	0.364	-0.890**	1														
Mn	0.093	0.548**	0.259	-0.006	0.405^{*}	-0.284	1													
Ti	0.489**	-0.170	-0.577**	0.342	-0.735**	0.862**	-0.199	1												
Cu	0.500**	-0.162	-0.662**	0.249	-0.711**	0.826**	-0.067	0.649**	1											
Pb	-0.661**	0.487**	0.805**	-0.292	0.702**	-0.641**	0.142	-0.625**	-0.492**	1										
Zn	-0.518**	0.609**	0.831**	-0.230	0.865**	-0.798**	0.340	-0.733**	-0.605**	0.804**	1									
Cr	0.434*	-0.338	-0.750**	0.348	-0.914**	0.967**	-0.344	0.891**	0.771**	-0.632**	-0.828**	1								
Ni	0.458^{*}	-0.211	-0.769**	0.375*	-0.894**	0.972**	-0.195	0.835**	0.843**	-0.624**	-0.765**	0.951**	1							
Ва	0.503**	-0.387*	-0.753**	0.276	-0.885**	0.909**	-0.280	0.872**	0.777**	-0.760**	-0.808**	0.908**	0.907**	1						
Ga	0.383*	-0.260	-0.493**	0.258	-0.581**	0.618**	-0.238	0.618**	0.511**	-0.545**	-0.584**	0.627**	0.578**	0.651**	1					
Li	-0.165	0.423*	0.598**	-0.237	0.516**	-0.292	0.048	-0.261	-0.109	0.493**	0.616**	-0.329	-0.267	-0.259	-0.270	1				
Co	0.480**	-0.278	-0.673**	0.274	-0.798**	0.874**	-0.107	0.899**	0.740**	-0.644**	-0.735**	0.896**	0.875**	0.885**	0.592**	-0.237	1			
As	0.334	0.496**	0.074	-0.070	0.066	0.148	0.448^{*}	0.261	0.209	-0.142	-0.050	0.079	0.179	0.178	0.221	-0.048	0.118	1		
Sn	-0.475**	0.453*	0.801**	-0.231	0.804**	-0.710**	0.109	-0.696**	-0.543**	0.892**	0.870**	-0.724**	-0.713**	-0.817**	-0.576**	0.661**	-0.682**	-0.244	1	
Sr	0.572**	-0.416*	-0.765**	0.395*	-0.869**	0.923**	-0.279	0.883**	0.760**	-0.751**	-0.843**	0.915**	0.873**	0.926**	0.618**	-0.346	0.878**	0.074	-0.768**	1

Table S4. Pearson's correlation coefficient between metals in volcanic soil and volcanic ash.

*Significant at 0.05 level, **Significant at 0.01 level.

References

- 1. Fabricio Neta, A.B.; do Nascimento, C.W.A.; Biondi, C.M.; van Straaten, P.; Bittar, S.M.B. Natural concentrations and reference values for trace elements in soils of a tropical volcanic archipelago. *Environ. Geochem. Health* **2018**, *40*, 163–173, doi:10.1007/s10653-016-9890-5.
- 2. Memoli, V.; Eymar, E.; García-Delgado, C.; Esposito, F.; Santorufo, L.; Marco, A.D.; Barile, R.; Maisto, G. Total and fraction content of elements in volcanic soil: Natural or anthropogenic derivation. *Sci. Total Environ.* **2018**, *625*, 16–26, doi:10.1016/j.scitotenv.2017.12.223.
- 3. Jiang, Y.; Yin, Z.; Zhang, Y.; Wang, C.; Cao, J. Qualitative and quantitative analysis of metals and detection of colony in volcano mud. *China Surfactant Deterg. Cosmet.* 2016, 46, 729–732, doi:10.13218/j.cnki.csdc.2016.12.011.
- 4. Wang, X.; Fang, Z.; Wu, J.; Cao, Y. The analysis of heavy metal pollution investigation of Wudalianchi volcano mud. *Heilongjiang Sci.* 2016, 7, 37–39.

- 5. Cabral Pinto, M.M.S.; Ferreira da Silva, E.; Silva, M.M.V.G.; Melo-Gonçalves, P. Heavy metals of Santiago Island (Cape Verde) top soils: Estimated Background Value maps and environmental risk assessment. *J. Afr. Earth Sci.* 2015, *101*, 162–176, doi:10.1016/j.jafrearsci.2014.09.011.
- 6. Rodriguez-Espinosa, P.F.; Jonathan, M.P.; Morales-García, S.S.; Villegas, L.E.C.; Martínez-Tavera, E.; Muñoz-Sevilla, N.P.; Cardona, M.A. Metal enrichment of soils following the April 2012– 2013 eruptive activity of the Popocatépetl volcano, Puebla, Mexico. *Environ. Monit. Assess.* **2015**, *187*, 717, doi:10.1007/s10661-015-4938-z.
- 7. Shruti, V.C.; Rodríguez-Espinosa, P.F.; Martinez-Tavera, E.; Hernández-Gonzalez, D. Metal concentrations in recent ash fall of Popocatepetl volcano 2016, Central Mexico: Is human health at risk? *Ecotoxicol. Environ. Saf.* 2018, *162*, 324–333, doi:10.1016/j.ecoenv.2018.06.067.
- 8. Stewart, C.; Craig, H.M.; Gaw, S.; Wilson, T.; Villarosa, G.; Outes, V.; Cronin, S.; Oze, C. Fate and agricultural consequences of leachable elements added to the environment from the 2011 Cordón Caulle tephra fall. *J. Volcanol. Geotherm. Res.* 2016, 327, 554–570, doi:10.1016/j.jvolgeores.2016.09.017.
- 9. Ruggieri, F.; Saavedra, J.; Fernandez-Turiel, J.L.; Gimeno, D.; Garcia-Valles, M. Environmental geochemistry of ancient volcanic ashes. J. Hazard. Mater. 2010, 183, 353–365, doi:10.1016/j.jhazmat.2010.07.032.
- 10. Toscano, G.; Caristi, C.; Cimino, G.; Sorption of heavy metal from aqueous solution by volcanic ash. C. R. Chim. 2008, 11, 765–771, doi:10.1016/j.crci.2007.11.010.
- 11. CNEMC (The Chinese Environmental Monitoring Centre). The Background Values of Soil Elements in China; Chinese Environment Science Press: Beijing, China, 1990.