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Abstract: The nature of pollutants involved in smog episodes can vary significantly in various cities
and contexts and will impact local populations differently due to actual exposure and pre-existing
sensitivities for cardiovascular or respiratory diseases. While regulated standards and guidance
remain important, it is relevant for cities to have local warning systems related to air pollution.
The present paper proposes indicators and thresholds for an air pollution warning system in the
metropolitan areas of Montreal and Quebec City (Canada). It takes into account past and current local
health impacts to launch its public health warnings for short-term episodes. This warning system
considers fine particulate matter (PM2.5) as well as the combined oxidant capacity of ozone and
nitrogen dioxide (Ox) as environmental exposures. The methodology used to determine indicators
and thresholds consists in identifying extreme excess mortality episodes in the data and then choosing
the indicators and thresholds to optimize the detection of these episodes. The thresholds found for
the summer were 31 µg/m3 for PM2.5 and 43 ppb for Ox in Montreal, and 32 µg/m3 and 23 ppb in
Quebec City. In winter, thresholds found were 25 µg/m3 and 26 ppb in Montreal, and 33 µg/m3 and
21 ppb in Quebec City. These results are in line with different guidelines existing concerning air
quality, but more adapted to the cities examined. In addition, a sensitivity analysis is conducted
which suggests that Ox is more determinant than PM2.5 in detecting excess mortality episodes.

Keywords: warning system; air pollution; respiratory diseases; cardiovascular diseases; mortality;
threshold

1. Introduction

Air pollution is a major public health issue with number of epidemiological studies reporting
impact of diverse air pollutant on both mortality and morbidity [1]. In particular, respiratory and
cardiovascular diseases are particularly impacted by air pollution [2,3]. The most studied pollutants
are fine particulate matters (PM2.5) [4,5], ozone (O3) [6], and nitrogen dioxide (NO2) [7].

PM2.5 is an important cause of respiratory and cardiovascular diseases, by penetrating into the
respiratory system [8]. Emissions of PM2.5 are mainly caused by fossil fuel combustion, but can also
originate from wildfire smoke [9,10]. O3 originates from chemical reactions in the atmosphere which
are catalyzed by solar radiation, and is thus more prominent during summer. It may exacerbate
respiratory diseases such as asthma [11,12]. NO2 is generated by combustion with a prominent source
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being motorized vehicles, especially in a place like the province of Quebec where electric power
generation comes mainly from hydraulic sources, including home heating.

Adverse effects of air pollution led many public health authorities to implement early-warning
systems [13]. Such systems have been implemented in many developed countries such as the UK,
United States, and France. Intensive research is also currently conducted in China to improve the
performances of early-warning systems [14,15]. In Quebec, air quality indicators and threshold
guidelines are already used both at the Canadian [16,17] and the provincial [18] level.

Current early-warning systems usually involve the monitoring of an air quality index (AQI) and
the use of a predefined threshold or scale (i.e., several thresholds) to inform the population of potential
risks [13]. The focus of research on early warning systems usually concerns the improvement of AQI
modelling and forecasting [19], which is nowadays accurate. However, much less attention is given to
the choice of thresholds, which are mainly based on overall reviews of risk assessment [20] and are
thus largely related to risk management. The main weakness of early-warning systems is thus that the
thresholds do not necessarily accurately reflect the impact of AQIs or air pollutants on public health.
Consequently, the thresholds and resulting guidelines are very similar from country to country and
poorly reflect the local population characteristics or the actual mix of pollutants.

Recent reviews of air pollution and health impacts show wide worldwide variation of PM2.5

concentrations, with high variability in effect estimates across cities, up to an order of magnitude [21].
They also show, in the Canadian context, adverse effects of outdoor air pollution at concentrations
that were below existing North American standards for children. Moreover, heterogeneous effects
of air pollutants were found according to city, sex, socioeconomic status, and seasonality [22].
There seems to be specific impacts on the elderly but few studies have specifically addressed this
context [23]. In addition, the health impact of each of these pollutants may vary according to the
season, by interacting with temperature [24]. This diversity of the effects stresses the need to adapt
local air pollution thresholds and guidelines to the population’s distinctive characteristics, including
health status.

Following this need, the present study proposes an air pollution-health warning system (APHWS)
in the two largest cities of the province of Quebec: Montreal and Quebec City. This APHWS seeks
to adapt indicators and thresholds to each city population, by not being based on general guidelines
but on a data-based evaluation of the air pollution levels that lead to increased risks on health, and in
particular mortality. Note that few studies sought to propose air pollution guidelines based on health,
such as Cairncross et al. [25], which weighs the pollutants in the AQI based on estimated relative risks
(RR) on health. Islam et al. [26] set a threshold for PM10 in the context of a global evaluation of climate
warning thresholds for the Greater London. However, these ideas are based on the interpretation of
a dose–lag–response relationship and not on the direct estimation of thresholds.

In the present study, we consider a methodology that allows estimating thresholds and indicators on
historical data of air pollution and health endpoints. In particular, the methodology relates past records
of important excess mortality events to high air pollution levels. This allows an accurate assessment of
thresholds above which air pollution is considered an important threat for the population’s health.
The considered method is adapted from a previously proposed one in the context of heat-health warning
systems (HHWS) [27]. In the heat context, such a method allowed an efficient prediction of excess
mortality events [28] and the resulting HHWS effectively helped in reducing heat-related mortality
during summer [29]. Thus, we expect similar benefits from its adaptation to the air pollution context.

2. Materials and Methods

2.1. Data

The data used in this study are those of the two main metropolitan areas of the province of
Quebec: Quebec City and Montreal. As exposure indicators, daily maximum values of fine particulate
matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) are collected by the National Air Pollution
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Surveillance (NAPS) program of Environment and Climate Change Canada (ECCC). These three
pollutants are chosen because they usually stand out in the impact of air pollution on health [1,17].
The time series used corresponds to the spatial mean of the measurement stations inside the two cities’
metropolitan areas.

The proposed APHWS seeks to prevent extreme excess mortality events, which are rare by nature.
It thus seems unlikely that these events occur while the three considered pollutants simultaneously
show elevated values. This is notably due to the so-called curse of dimensionality [30]. Therefore,
instead of directly using O3 and NO2, we compute their combined oxidant capacity (Ox) as Ox =

(2.075×O3 + 1.07×NO2)/3.145 [31]. Indeed, it has been shown that considering Ox is equivalent to
considering both O3 and NO2 [32,33].

A preliminary analysis of air-pollution-related mortality also includes temperature and relative
humidity. They are collected from the DayMet database maintained by the National Aeronautics
and Space Administration (NASA). DayMet provides reanalyzed values for several meteorological
variables on a spatial grid with a resolution of 1 km. Grid points inside the ecumene of the metropolitan
areas are averaged to obtain a single series for each city. Note that DayMet does not directly provide
relative humidity but vapor pressure. The former is thus calculated from the latter using standard
formulas [34].

The health impact of the APHWS is based on mortality series for which at least one of the causes
(main or secondary) inherits from either cardiovascular (codes I10–I13, I15, I20–I25, I50 of the ICD10)
or respiratory diseases (codes J00–J99 of the ICD10). These systems are the most vulnerable to air
pollution and jointly considering them allows obtaining a large number of events [6]. These data were
provided by the Institut national de santé publique du Québec (INSPQ).

Exposure and health data are jointly available from 1998 to 2014. However, the years 1998 and
1999 are omitted from the dataset to avoid issues related to the ICD change (from 9 to 10) in 2000,
which results in a non-negligible breakpoint in the respiratory mortality series [35]. This leaves a total
of 15 years of data. Since the association between air pollution and mortality vary with temperature,
the APHWS is thus separated into two seasonal components: Summer (May to September) and winter
(October to April). Thus, the final series lengths are ns = 2295 days and nw = 3184 days, respectively.
Table 1 shows the mean daily values of each variable considered in the present study for Montreal and
Quebec City and for both summer and winter.

Table 1. Mean daily values of each variable considered in the present study. PM2.5 = fine particle
matters; Ox = combined oxidant capacity of ozone and nitrogen dioxide.

Variable
Montreal Quebec City

Summer Winter Summer Winter

Mortality count 33.6 39.5 3.1 3.9
Max PM2.5 (µg/m3) 18.4 19.9 17.3 19.7

Max Ox (ppb) 28.1 22.0 24.9 23.9
Temperature (◦C) 17.9 −1.0 14.4 −4.3

Relative humidity (%) 67.0 69.0 65.1 66.6

2.2. Statistical Methodology

The considered statistical methodology was initially developed for France’s HHWS [36] and
thereafter generalized and adapted to the province of Quebec [27]. The goal of this methodology is to

determine two couples of indicators Z( j)
t and thresholds s( j) on air pollutants (where j stands for PM2.5

or Ox) such that when both Z( j)
t > s( j), day t is considered as an alarm. They are determined through

the four following steps, which are then described with more details below:

1. Choose maximum lags for air pollution indicators;
2. Compute an excess mortality (EM) series from the mortality data;



Int. J. Environ. Res. Public Health 2019, 16, 2095 4 of 14

3. Determine extreme EM episodes as targets of the APHWS;
4. Choose the best indicators–thresholds combination.

Note that each of these steps is performed once for each seasonal APHWS and for each city.

2.2.1. Choose Maximum Lags for Air Pollution Indicators

In the present APHWS, we consider indicators Z( j)
t as weighted means of past daily pollutant

values, i.e.,:

Z( j)
t =

L∑
l=0

αlX
( j)
t−l (1)

where X( j)
t are daily values of air pollutant j (PM2.5 or Ox) and αl are weights to be optimized.

We constrain the weights such that
∑

l αl = 1 and α0 ≥ α1 ≥ . . . ≥ αL. The latter constraint accounts that
the APHWS will be running on forecast data (0 to 3 days) and therefore ensures that the importance of
each daily forecast in the indicator decreases with the horizon.

The purpose of the first step is to determine the value of the maximum lag L in Equation (1) through
a preliminary analysis. It can be chosen by fitting a distributed lag nonlinear model (DLNM) [37].
A DLNM accounts for both measured and unmeasured confounders (by opposition to more common
methods such as the cross-correlation function) and yields a lag–response relationship to visually
choose L. Here, quasi-Poisson DLNMs are fitted with penalized splines on the variable dimension [38]
and natural splines on the lag dimension. The latter includes lags from 0 to 5 days, with interior
knots at lags 1 and 2 to account for the very short-term acute effect of air pollution indicators on
mortality [4]. Smooth spline components of time are used to account for unmeasured confounder,
one for the day of season with four degree of freedoms and one for the long-term trend with one
degree of freedom per decade as in, e.g., Gasparrini et al. [39]. Weather confounding is also accounted
for, by including temperature and relative humidity both averaged over the three previous days.
Temperature is included in a natural spline with three degrees of freedom to model the U-shaped
relationship, and relative humidity is included in a linear fashion [32,40].

2.2.2. Compute an Excess Mortality Series

The excess mortality (EM) series represents excess death from a baseline of expected mortality.
It is computed as:

EMt =
Yt − Bt

Bt
× 100 (2)

where Yt is the observed mortality series and Bt is the mortality baseline, i.e., the expected mortality
without influence of the exposure of interest. Bt is estimated in a standard manner, i.e., through natural
cubic splines with eight degrees of freedom per year. It accounts for seasonal variations and the
long-term trend of mortality.

2.2.3. Determine Significant Excess Mortality Episodes

The role of this step is to choose the magnitude of EM (as defined in Equation (2)) to be detected
by the APHWS. This is translated by choosing a preliminary threshold sOM on EM and considering
that all days for which EM exceeds this threshold are extremes. This threshold can vary by location.
It ought to be a compromise between a sufficient number of EM extremes and important enough
extremes which are not due to statistical fluctuations.

Since extreme EM days tend to occur in clusters [41], we consider any cluster as an EM episode.
Episodes are hereby defined as a cluster of EM extremes separated by less than three days from each
other, with the addition of the three days preceding and the three days following the cluster of extremes.
In practice, we consider that an EM episode is successfully detected if at least one of its days is detected.
It allows accounting for the temporal dependence between extreme days.
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Finally, an additional constraint is added to stipulate that the same day maximum PM2.5 exceeds
the value of 25 µg/m3. This ensures that the EM episode is related to high levels of air pollution and
not only to potentially confounding events, such as heat waves or cold spells. The preliminary value
of 25 µg/m3 is based on the regulatory criteria advised by the World Health Organisation [19] as
an acceptable prior.

2.2.4. Choose the Best Combination of Indicators–Thresholds

In this final step of the methodology, the optimal indicator weightings αl (in Equation (1)) and
threshold s are chosen. Different weighting and threshold combinations are tested and, for each of
them, resulting alarm days are compared to the actual EM episodes determined in step 3. For given
weights (constrained as explained in Section 2.2.1) and thresholds, alarm days t are determined such

that Z( j)
t > s( j) for each indicator. It includes all days which would have been set as alerts considering

chosen weights and thresholds.
The relevancy of weightings and threshold can be evaluated by comparing the obtained alarms

with the episodes extracted in step 3 (Section 2.2.3). Two criteria are considered: (1) Sensitivity, which is
the proportion of actual EM episodes (determined in the previous step) that are correctly detected
by the APHWS and (2) the number of false alarms (FA) which are false positive episodes. Note that,
even though a specificity score is usually used in binary classification [36], in the present case, the very
low number of extremes lead to specificity scores always very close to 1. Specificity is thus not very
informative and the number of FA is preferred to evaluate the accuracy of an APHWS. The chosen
weightings and thresholds should represent a trade-off between high sensitivity and low number of
false alarms. We nonetheless attribute a larger importance to sensitivity since the APHWS is intended
for public health authorities which decide to actually perform actions whenever the APHWS gives
them a signal.

3. Results

The focus of the present section is on the results of Montreal to show the process of choosing
thresholds and indicators for the APHWS. However, figures and tables showing results for Quebec
City can be found in the Supplementary Materials (Figures S1–S3 as well as Tables S1 and S2).

3.1. Results for Montreal’s APHWS

3.1.1. Choice of Lags

Figure 1 shows the lag–response relationships between the pollutants and mortality at the values
PM2.5 = 25 µg/m3 and Ox = 50 ppb. These levels correspond to previous guidelines on adverse effects
of these indicators on health. Note that the whole DLNM surface can be found in the Supplementary
Material (Figure S4) but brings little additional information since the dose–response relationship is
quasilinear. In summer for PM2.5, Figure 1a suggests a relative risk (RR) which significantly differs
from 1 on the same day only (lag 0), but also in a non-negligible way at lag 1. The RR then rapidly
decreases toward 1 when the lag increases. We chose L = 1 for the PM2.5 indicator in the summer
APHWS to avoid underestimating its impact on mortality [4]. Figure 1b shows that the lag–response
relationship with Ox is the largest at lag 1 and is very close to RR = 1 for lags larger than 1, with the
exception of lag 5 which could be a boundary effect of the model. In summer, the chosen maximum lag
for the Ox indicator is then also L = 1.

In winter, Figure 1c shows that the RR of PM2.5 is at his highest at lag 1 and then RR immediately
shrinks toward 1. Although the RR of Ox is close to 1 at all lags, we nonetheless chose an indicator
with lag 1 for the Ox indicator in winter since prior research showed that it could also have an impact
at lag 1 [32]. To summarize, all indicators considered in the following are two-day weighted means of
pollutants, i.e., considering lags 0 and 1.
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2013 which does not seem to correspond to a particular event.  

Figure 1. Lag–response relationship between mortality and (a,c) PM2.5 and (b,d) Ox in Montreal.
These curves correspond to the slice of the distributed lag nonlinear model (DLNM) surface at values
PM2.5 = 25 µg/m3 and Ox = 50 ppb. Gray bars indicate 95% confidence intervals. RR = relative risk.

3.1.2. Excess Mortality Episodes

Step 2 of the procedure is to compute EM using Equation (2). Summary statistics of estimated
EM are shown in Table 2. It shows that the baseline estimates well the expected mortality since EM
series are centered at 0%. EM distribution is similar between summer and winter with slightly lower
variations in winter than in summer. This is especially true at extreme values since the maximum
observed EM in summer is 110.4% while the maximum in winter is 58.8%. These maxima correspond
respectively to the 8 July 2010 which occurred during a major heat wave [42], and to the 9 November
2013 which does not seem to correspond to a particular event.

Table 2. Descriptive statistics of the estimated excess mortality (EM) for the period 2000–2015 in
Montreal, expressed in percentage (%). Summer spans the months May–September and winter the
months October–April.

Minimum 1st Quartile Median Mean 3rd Quartile Maximum Standard Deviation

Summer −52.4 −13.4 −0.7 0.1 11.6 110.4 18.3
Winter −47.5 −11.2 −0.6 0.0 10.4 58.8 16.1

Step 3 consists of choosing the preliminary threshold sOM indicating the minimum EM above
which a day is considered as an EM extreme. Figure 2 indicates the number of episodes found in the
data according to different sOM values for summer and winter. Recall that an episode may contain
several exceeding days if they are closer than three days from each other. Figure 2a shows that,
in summer, for sOM < 50%, the number of episodes associated with important PM2.5 is much lower than
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the sole number of episodes (without constraint). However, above 50%, the majority of the episodes
are associated with an amount of PM2.5 larger than 25 µg/m3. The value sOM = 50% is thus chosen for
summer as the preliminary threshold to determine significant EM episodes.
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Figure 2. Number of EM episodes according to the chosen preliminary EM threshold sOM.

In winter, Figure 2b indicates that a large number of EM episodes are not linked to important
amount of air pollution. The blue curve showing the number of episodes with PM2.5 larger than
25 µg/m3 rapidly decreases until sOM = 40%. We therefore chose sOM = 40% for winter, which is
slightly lower than in summer, consistently with the summary statistics of EM shown in Table 2.

Figure 3 shows the episodes identified with the thresholds sOM = 50% in summer and sOM = 40%
in winter. Although summer is hereby shorter than winter, overall, more episodes are detected in the
former, i.e., eight episodes in summer and seven in winter. This may be due to the synergy between
temperature and pollution for which a growing body of evidence exists [24,43]. Indeed, among the
eight summer episodes, four of them (the 2nd, 3rd, 4th, and 8th) have been already detected in a heat
wave context [44] and correspond to the highest EM values. For instance, the deadly heat wave of
July 2010 is clearly identifiable as the 8th episode. Note also that the 4th episode corresponds to the
important forest fires of July 2002 [45]. Supplementary details about the identified episodes are given
in Tables S3 and S4 (Supplementary Materials).
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(exceeding sOM) and the number identifies episodes. Horizontal segments identify sOM. Red areas
identify summer and blue ones winter. Note that nonextreme days extending the episodes are not
identified here for clarity purposes.
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3.1.3. Final Indicators and Thresholds

The results for different indicator weightings αl and thresholds s with associated scores are shown
in Tables S5 and S6 for summer and winter respectively (Supplementary Materials) and the chosen
ones are shown in Table 3. The rationale for choosing final indicators and thresholds is based on
episodes: The chosen system should be a trade-off between an episode sensitivity close to one and
a low number of episodes.

In summer, the chosen system allocates the largest weight to same day PM2.5 and equal weights to
the two days of Ox. This is reversed in winter where the largest weight is the same day Ox, while the
two days of PM2.5 have equal weights. Note that this is consistent with the lag–response relationships
shown in Figure 1. The thresholds found for summer are sPM2.5 = 31 µg/m3 and sOx = 43 ppb and are
much lower for winter at the values sPM2.5 = 25 µg/m3 and sOx = 26 ppb.

The sensitivity and false alarms criteria show that the system has better performances in summer.
Indeed, in summer, seven out of the eight episodes (87.5%) are detected by the system. As shown in
Table S5 (Supplementary Materials), we preferred to miss one of the episodes to obtain a lower amount
of false alarms. This missed episode is the 5th one (in July 2004) and is borderline since it shows
a maximum EM of 51% while the preliminary threshold is at sOM = 50%. Note that it corresponds
to a particularly dry (relative humidity of 55%) and hot (Tmax = 30 ◦C) day. With the chosen system,
only 1.5 false episodes are launched each year.

In winter, a system detecting only five out of the seven episodes is chosen, since it allows to launch
half the number of false alarms than systems with better sensitivities (see Table S6 in Supplementary
Materials). The two missed episodes are the 2nd and 5th one of January 2006 and 2013. Note that
during the 5th episode, temperature is positive, which is unusual in January. The chosen system leads
to an average of eight false alarms clustered in 3.7 false episodes per year. This system is thus less
powerful than the summer one.

Table 3. Results for indicator weightings and thresholds for Montreal and Quebec. FA = false alarm.

City Season
PM2.5 (µg/m3) Ox (ppb) Sensitivity (%) FA per Year

α0 α1 s α0 α1 s Days Episodes Days Episodes

Montreal
Summer 0.9 0.1 31 0.5 0.5 43 22.4 87.5 3.1 1.5
Winter 0.5 0.5 25 0.8 0.2 26 15.4 71.4 8.0 3.7

Quebec City Summer 0.5 0.5 32 0.8 0.2 23 20.4 85.7 4.7 2.6
Winter 0.5 0.5 33 0.7 0.3 21 9.5 50 15.5 7.4

Table 3 also shows the final APHWS chosen in Quebec City. Indicators for both summer and
winter are similar to indicators for winter in Montreal, i.e., equal weights for PM2.5 and larger weight on
the same day for Ox. The thresholds found for PM2.5 are similar to the summer system at Montreal at
sPM2.5 = 32 µg/m3 for summer and sPM2.5 = 33 µg/m3 for winter, but the thresholds for Ox are much
lower at sOx = 23 and 21 ppb. The main difference is nonetheless in the performances, much lower in
Quebec City than in Montreal. The sensitivities are overall lower and the number of false alarms higher.

3.2. Sensitivity Analysis

The variables and lags used to construct indicators are chosen based on prior knowledge of the
relationship between atmospheric pollutants and mortality. However, it is of interest to evaluate the
sensitivity of the APHWS to each variable and to the choice of lags. In this regard, Figure 4 shows the
sensitivity versus the number of FA for different choices of variables and lags in Montreal. Variables
are either PM2.5 alone, Ox alone, or both, as considered in Section 3.1. Lags are either L = 1 as in
Section 3.1 or L = 2 to evaluate whether adding a day of lag would strengthen the APHWS. The closer
to the upper left corner the curve, the better the APHWS. Note that this is similar to the well-known
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receiver operating characteristic (ROC) curves and thus we will refer to Figure 4 as ROC curves in
the following.
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pollution-health warning system (APHWS). For a type of APHWS, each point corresponds to the result
of a particular weighting and threshold couple. The points reported here correspond to likely choices,
i.e., to the best trade-offs between sensitivity and false alarms. Filled symbols correspond to APHWS
with two-day indicators, and empty symbols to APHWS with three-day indicators. The red cross
corresponds to the system of Table 3.

Figure 4 shows that the APHWS is more sensitive to the presence of Ox than to the presence of
PM2.5. Indeed, an APHWS with only Ox shows a ROC curve close to the APHWS with both variables,
while an APHWS with only PM2.5 shows lower performances. This difference is more prominent in
summer than winter, suggesting an important impact of Ox in summer. This result also strengthens
the choice to consider Ox in the APHWS.

Regarding the lag, Figure 4 shows that an APHWS using indicators with L = 2 have overall ROC
curves slightly closer to the upper left corner than their L = 1 counterparts. The only exception is the
system with two indicators in winter, showing a ROC curve above its L = 2 counterpart. The difference
is not important for APHWS with high thresholds (low sensitivity and false alarms) but grows as the
sensitivity and number of false alarms increase. Therefore, the ROC curves suggest that considering
L = 2 could only marginally increase the APHWS’s strength. This legitimates the choice of L = 1 by
showing that increasing it would not really improve the APHWS

4. Discussion

Many organizations have established air quality guidelines at different scales, such as the World
Health Organization (WHO) at the global scale, Environment and Climate Change Canada (ECCC) for
the country, the Ministère du Développement Durable de l’Environnement et de la Lutte contre les
Changement Climatiques (MDDELCC) for the province of Quebec, and the Réseau de Surveillance de
la Qualité de l’Air (RSQA) for the sole city of Montreal (about half the metropolitan area). One has to
keep in mind that those guidelines are specific to the geographic level of management. For instance,
decision makers should consider the Montreal value for the population of Montreal city, and the
Province of Quebec values for the population in other locations of the province. Provincial values
are mandatory, Canadian Ambient Air Quality Standards are recommendations based of health risk
evaluation and technical feasibility of risk management, while the WHO guidelines are health-based
values that do not consider management issues. The guidelines issued by these organizations are
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shown in Table 4 for comparison with our results. Note that no guidelines exist for Ox, and the ones
reported are (rough) estimations from guidelines for O3 and NO2 using the formula in Section 2.1 and
should not be seen as standard.

The threshold values found for short-term exposures to PM2.5 (31 µg/m3 and 25 µg/m3) are in the
range of the different guidelines. The summer threshold is close to the one considered in the province
of Quebec while the winter one is closer to the WHO recommendation. However, the thresholds found
for Ox are much lower than the calculated guidelines. This may be explained by the different indicators
which are based on very short-term exposure, while we hereby consider two-days means of maximum
values. This could also be an indication that Ox have an impact at lower values than expected.

In the case of Quebec City, no guideline existed specifically for the city before the present study.
However, Table 4 shows that the PM2.5 thresholds for Quebec City are similar to the Montreal’s
ones and that the Ox thresholds are much lower than any values of the calculated guideline. Overall,
the APHWS is less performant in Quebec City with more false alarms and lower sensitivity. This is
due to the smaller population of Quebec City (800,000 versus around 4 million in Montreal, including
metropolitan areas) which results in a lower amount of cardiovascular or respiratory mortality (a mean
of three deaths per day). This makes setting an APHWS much more perilous since the response to an
extreme AP exposure may be hidden in the day-to-day variations. This could explain the low values of
sOx for which there may not be enough mortality to estimate its impact on the population.

Table 4. Sample of indicators and threshold guidelines from different organizations. * estimated values
of Ox based on the guideline values of O3 and NO2 using the formula of Section 2.1.

Geographic Scale

PM2.5 O3 NO2 Ox

Reference
Indicator Threshold

(µg/m3) Indicator Threshold
(ppb) Indicator Threshold

(ppb)
Threshold

(ppb)

World 24-h mean 25 8-h mean 50 1-h mean 106 69 * [19]
Canada 24-h mean 27 8-h mean 62 1-h mean 60 61 * [16]

Province of Quebec 1-h mean 30 1-h mean 80 1-h mean 213 125 * [18]
Montreal 3-h mean 35 - - - - - [46]

In summer, half of the determined episodes correspond to high temperature peaks (see Table S3)
which could result in an overestimation of the response to smog episodes. This is consistent with
the recent European study that showed a synergistic effect of hot temperature and air pollution on
mortality [24]. However, note that in an operational context, we prefer risking overestimation of
the mortality response rather than underestimation, especially since the APHWS is expected to be
used jointly with the heat-health warning system. Finally, note that these episodes still correspond
to important air pollution levels because of the preliminary threshold on PM2.5 (25 µg/m3). Thus,
they cannot reasonably be discarded from the analysis.

A number of limitations arise concerning the method considered for proposing the present APHWS.
Indeed, the final indicators and threshold significantly depend on choices made in the preliminary
steps of the method. For instance, extreme EM episodes linked to air pollution are determined using
two predetermined and subjectively chosen thresholds: sOM and the preliminary threshold on PM2.5

(25 µg/m3). This may not be as adapted to air pollution as it is for heat waves, because of the seemingly
linear mortality response to an air pollution exposure. This means that there are no values above
which the relationship is stronger [47], in contrast with temperature for which minimum mortality
intervals can be identified above which the risk is greatly increased [48]. In addition, although other
variables, such as temperature, humidity and the day of season, can act as potential confounders,
they are difficult to integrate to the methodology to choose thresholds and indicators.

Another limitation arises from the sole use of mortality as health issue as it is insufficient to
represent the whole impact of smog episodes. Air pollution also impacts hospital admissions for
instance [3]. However, hospital admissions do not allow for the detection of extreme impacts of
smog the same way mortality does, as illustrated in Figure S5 (Supplementary Materials). Note that
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the APHWS could nonetheless be strengthened by also considering other data sources, such as the
telephone service Info-Santé (811 in Quebec) or ambulance calls.

As a perspective, further methodological development is needed to estimate optimal indicators
and threshold, accounting for the limitations exposed above. It could also be of interest to consider
indicators similar to the WHO and ECCC guidelines, i.e., based on 1-h or 8-h maxima, rather than
daily maxima. Indeed, the impact of Ox in particular seems to be very short-term.

Of course, the proposed modifications in thresholds are not intended for use by the general public
that would get confused with several coexisting thresholds. Our intention is rather to provide the
decision-maker with a more precise assessment of potential harm during air pollution peak episodes
in a specific urban area. This could lead, for instance, to more vigorous pollutant reduction measures,
such as free public transit or speed limitations, to decrease peak levels of pollution for a limited time
period. Indeed, air pollution is by far the most important and expensive risk in Canada [49].

5. Conclusions

The present study offers a starting point to develop an air pollution-health warning system in
the cities of Montreal and Quebec City of the province of Quebec, Canada. Here, we propose initial
indicators and thresholds to be monitored. The analysis and methodology used to establish the APHWS
are inspired by the previous work concerning heat waves. It consists in first determining a level of
excess mortality to be detected by the APHWS and then choosing the best air pollutant indicators and
thresholds in order to launch relevant alarms. Depending on the city and season, thresholds found
range between 25 and 33 µg/m3 for PM2.5 and between 21 and 43 ppb for Ox. Thresholds on PM2.5 are
consistent with the guidelines of different organizations, but more focused on extreme events and thus
more accurate. However, thresholds on Ox are lower than expected which could indicate that further
research on its impact may be needed. The thresholds will be implemented in the real-time Surveillance
and Prevention of the impacts of Extreme Meteorological Events on public health (SUPREME) system
of the Institut National de Santé Publique du Québec [50] in order to alert public health stakeholders
and, eventually, hospital administrators.

This study also reminds us that using internationally set thresholds may underestimate the
specific dose–response relationship that exists in a specific context. The actual health impacts in a given
area takes into account the local nature of the pollutants, their dispersion, the sensitivity of the local
population given its demographics and health status, and their various behaviors that can augment or
reduce exposure. Such adapted thresholds could also speak more to local decision-makers as they
reflect the health impacts of their citizens. More studies examining the cost-benefits involved would be
of interest to implement such an approach more widely [51].

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/12/2095/s1,
Figure S1: Lag–response relationship between mortality in Quebec City and (a) PM2.5 and (b) O3. Figure S2:
Number of excess mortality (EM) episodes according to the chosen preliminary EM threshold sOM for Quebec
City. Figure S3: EM series with the identification of EM episodes for Quebec City. Figure S4: DLNM surfaces
obtained between mortality and PM2.5 as well as Ox for (a, b) summer and (c, d) winter. Figure S5: Excesses
of cardiovascular and respiratory (a) hospital admissions and (b) the sum of hospital admission and deaths
for summer in Montreal as an example. Table S1: Best weights and threshold candidates for the summer air
pollution-health warning system (APHWS) in Quebec City. Table S2: Best weights and threshold candidates for
the winter APHWS in Quebec City. Table S3: Episodes with EM > 50% and PM2.5 max > 25 µg/m3 for the summer
APHWS in Montreal. Table S4: Episodes with EM > 40% and PM2.5 max > 25 µg/m3 for the winter APHWS in
Montreal. Table S5: Best weights and threshold candidates for the summer APHWS in Montreal. Table S6: Best
weights and threshold candidates for the winter APHWS in Montreal.
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