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Abstract: Observations of ocean pollutants are usually spatiotemporally dispersive, while it is of
great importance to obtain continuous distribution of ocean pollutants in a certain area. In this paper,
a dynamically constrained interpolated methodology (DCIM) is proposed to interpolate surface
nitrogen concentration (SNC) in the Bohai Sea. The DCIM takes the pollutant transport advection
diffusion equation as a dynamic constraint to interpolate SNCs and optimizes the interpolation results
with adjoint method. Feasibility and validity of the DCIM are testified by ideal twin experiments.
In ideal experiments, mean absolute gross errors between interpolated observations and final
interpolated SNCs are all no more than 0.03 mg/L, demonstrating that the DCIM can provide
convincing results. In practical experiment, SNCs are interpolated and the final interpolated surface
nitrogen distribution is acquired. Correlation coefficient between interpolated and observed SNCs
is 0.77. In addition, distribution of the final interpolated SNCs shows a good agreement with the
observed ones.

Keywords: surface nitrogen concentration (SNC); dynamically constrained interpolated methodology
(DCIM); adjoint method

1. Introduction

The Bohai Sea is the largest and the only semiclosed inland sea in China, surrounded by land on
its three sides. It connects to the north of the Yellow Sea through the Bohai Strait. The weak water
exchange causes a poor self-purification ability of the Bohai Sea, making it difficult to be restored in
a short time if the marine ecosystem is severely damaged. According to statistics, the sewage water of
over 40 rivers flows into the Bohai Sea and the volume is nearly 890 × 108 m3 [1], which inevitably
aggravates the environmental problems, such as ocean eutrophication (the accumulation of nutrients:
nitrogen, phosphorus, etc.). Moreover, the severe deterioration in marine environment has badly
affected the development of fishery and the Bohai Sea is gradually losing its function as a fishing
ground [2]. To maintain sustainable development, relevant researches about marine pollutants have
been conducted. The mathematical models are considered as the most direct and effective way for
quantification [3], and with help of a mathematical model knowing more about the temporal and
spatial distributions of pollutants in the Bohai Sea plays an important role in environment restoration.

Activities in coastal oceans can help to speed up economic construction, but meantime it will
cause serious pollution to marine ecosystems. A number of numerical studies have been carried
out to simulate pollutant dispersion [4–7]. A two-dimensional water quality model was developed
and applied to analyze and optimize the ecological programs, and it can simulate key model
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variables (NH4
+-N, PO4

3−-P, chemical oxygen demand, and water level) [8]. Lee et al. [9] established
an advection-dispersion model for pollutant transport simulation to analyze the influence of tidal
currents on the concentration distribution. Gupta et al. [10] utilized numerical modeling to determine
the sewage assimilative ability and found that the water quality was badly deteriorated due to
the multiple sewage discharge. Periáñez [11] developed a particle-tracking model constituted by
an off-line running hydrodynamic module to simulate the dispersion of pollutants. A three-dimensional
numerical model of gravity flows was introduced in the research of Huang et al. [12], which was used
to investigate the distribution features of various pollutants discharged at different positions in a wide
river. Li et al. [13] simulated the temporal and spatial distribution of pollutants of the Bohai Sea in
twin experiments with the adjoint assimilation method.

Interpolation methods, such as the Kriging, Cressman, spline, and polynomial interpolations,
are widely used in the numerical model to obtain an integrated field based on sparse observations.
Bargaoui and Chebbi [14] applied Kriging methods to evaluate the spatial and temporal variability of
rainfall. Jeffrey et al. [15] adopted a thin plate smoothing spline and the ordinary Kriging to get daily
climate variables and rainfall, respectively. A modified Cressman method was proposed in the study
of Liu et al. [16], where the influence radius was modified to produce relatively accurate distributions.
Wang et al. [17] applied the Cressman interpolation method to calculate the monthly mean distribution
of total nitrogen to study the initial filed of pollution in the Bohai Sea. Guo et al. [18] introduced
the surface spline interpolation to a two-dimensional tidal model and illustrated the feasibility and
practicability of the method.

The adjoint assimilation method has been applied in oceanography for decades [19–22].
Zhang et al. [23] used the adjoint method in a two-dimensional tidal model to study the characteristics
of bottom friction parameterizations. A three-dimensional cohesive sediment transport model with
the adjoint assimilation method was established in Wang et al. [24] to get better simulation results
of parameters. Furthermore, Mao et al. [25] developed the dynamically constrained interpolation
methodology (DCIM), where the dynamic constraints were combined with the statistical information
of observations to interpolate the suspended sediment concentrations. In this paper, DCIM will be
applied to interpolate the surface nitrogen concentration in the Bohai Sea. The rest of the paper is
organized as follows. Section 2 describes the dynamic constraint model, observation information, and
details of the DCIM. Section 3 gives the results of numerical experiments. Section 4 concludes the
whole work.

2. Materials and Methods

2.1. The Dynamical Model

Considering the convection and diffusion processes, the governing equation of marine pollutant
transport model is presented as follows [17,26,27]

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

+ w
∂C
∂z

=
∂
∂x

(AH
∂C
∂x

) +
∂
∂y

(AH
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∂y

) +
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∂z

(KH
∂C
∂z

) − rC (1)

where C denotes the concentration of pollutants; t and x, y, z are the symbols of time and space,
respectively; u and v represent the horizontal velocities (in x and y directions, respectively) and w
represents the vertical velocity (in z direction); AH and KH denote the horizontal and vertical diffusion
coefficients (AH = 100 m2/s, KH = 0.00001 m2/s), respectively; r is the pollutant attenuation coefficient,
and r = 0, which means that the pollutant is treated as conservative substance [17]. For the finite
difference scheme readers can be referred to the Appendix A.

The open boundary of the model is set at 122.5◦ E, where a no-gradient condition and constant
condition are used at the outflow boundary and the inflow boundary, respectively.
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2.2. Observations and Model Setting

The marine environmental monitoring data in the Bohai Sea and the north Yellow Sea, provided
by the North China Sea Environmental Monitoring Center, State Oceanic Administration, includes the
data of February, May, August and October of each year. Nitrate, phosphate, pH, etc. are monitored in
order to investigate the spatiotemporal distribution of different pollutant elements and then diagnose
marine pollution matter [16]. The distribution of observation points is shown in Figure 1 and the date
of observations is given in Table 1.
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Figure 1. Topography of the Bohai Sea (depth in meters) and distribution of observation points in May
2009. The size of each point indicates surface nitrogen concentration.

Table 1. Observation information: location and date.

Longitude (◦N) Latitude (◦E) Date Longitude (◦N) Latitude (◦E) Date

119.7051 39.928 2 119.7881 37.7864 13
119.375 39.6778 5 121.5944 40.7764 13
120.9278 37.8292 6 119.5333 38.225 14
120.6319 37.8819 6 119.1611 38.1861 14
119.4708 39.7542 7 120.3417 37.75 14
120.4236 40.1083 7 119.5486 37.5667 14
120.0889 40.0833 7 119.425 37.7708 14
118.3333 38.2 7 120.2639 37.7958 14
120.3444 40.1542 7 120.2861 37.6458 14
118.1298 39.1307 7 121.3306 40.6792 14
118.6347 39.0768 8 121.5417 40.5597 14
120.8069 40.6083 8 118 39.1333 14
121.0847 40.5819 8 117.8389 39.1111 14
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Table 1. Cont.

Longitude (◦N) Latitude (◦E) Date Longitude (◦N) Latitude (◦E) Date

118.7874 38.9652 9 118.9597 38.3111 15
120.4944 40.2278 10 118.9453 38.6217 15
120.6208 40.3028 10 118.5483 38.3489 15
122.1403 40.5444 10 118.55 38.5625 15
122.0569 40.6542 10 117.8083 39.0292 15
120.7972 40.4861 11 118.0069 39.0111 15
119.3625 39.5333 11 117.8042 38.9514 15
118.2861 38.964 11 122.0819 40.2417 16
118.4303 38.9472 11 118.5 38.8403 16
121.7986 40.6583 11 118.3167 38.7083 16
121.8042 40.7792 11 117.6167 38.7625 16
121.0403 40.7194 12 121.775 40.175 16
121.1083 40.8139 12 118.8028 38.1528 18
121.2417 40.8528 12 118.9008 38.1483 18
121.4056 40.85 12 122.1319 40.3389 19
119.9969 37.9994 13 121.9111 40.4681 19
120.7222 38.1333 13 122.1875 40.4292 19
120.325 38.3667 13 118.0139 38.5181 20
119.9139 37.6056 13 119.4889 38.8472 21
119.0792 39.0986 21 121.1472 38.7181 24
119.5403 39.8089 21 121.2833 39.0181 24
118.8833 38.9069 21 121.0917 38.8181 24
121.6167 40.0111 21 119.2583 37.1903 24
121.7528 39.9347 21 121.2208 40.2445 25
118.1833 38.2 21 120.0722 39.0667 26
121.9069 40.0944 21 120.8833 38.9194 26
118.2194 38.3889 21 121.082 39.1305 26
119.4956 37.1531 21 117.9861 38.6597 26
117.6833 38.5014 21 117.9972 38.8361 26
119.3978 37.4111 21 117.6333 38.6278 26
117.8222 38.3444 21 118.6117 38.1444 26
118.0139 38.2708 21 119.0403 37.3792 27
119.6042 37.2806 21 119.0825 37.5319 27
119.3264 39.6639 22 119.0167 37.5208 27
119.4667 39.318 22 119.2153 37.8986 27
121.2458 39.6292 22 119.1889 37.5361 27
121.4319 39.8208 22 120.9667 37.9917 28
121.2583 39.4833 22 120.3028 38.6792 28
119.1726 39.3123 23 120.7167 38.4361 28
118.9805 39.1583 23 121.0306 38.25 28
121.2556 39.3111 23 120.9 38.6167 28
121.5556 39.2944 23 121.0972 38.5083 28
121.4778 39.1847 23 119.0111 38.0222 28
121.6333 39.0931 23 120.1222 37.4778 30
120.6458 39.682 24 119.8611 37.2486 30
120.2458 39.925 24 119.8481 37.3861 30

119.85 39.85 24 119.7667 37.1792 30
119.3125 39.4139 24

The monitoring data in 2009 are analyzed in practical experiments in this paper. The computational
domain is the Bohai Sea (37◦ N–41◦ N, 117.5◦ E–122.5◦ E) with a 4′ × 4′ grid resolution. The computing
time is 30 days and the time step is set to be 6 h. The three-dimensional Regional Ocean Model System
(ROMS) provides the hydrodynamic flow field used in numerical experiments of present study [27].
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2.3. Dynamically Constrained Interpolation Methodology

According to the study of Yaremchuk and Sentchev [28], the dynamically unconstrained
interpolation method and the dynamically constrained interpolation method (DCIM) are two parts of
interpolation methods, and the DCIM is used in the model to obtain the interpolation of observations.
In addition, the adjoint method is used to optimize the interpolation results.

2.3.1. The Adjoint Methods

To optimize the interpolation results, the misfit between interpolation results and observations
should be gradually reduced, which is described by the cost function and defined as [17]

J =
1
2

∑
KC(Ci, j,k −Ci, j,k)

2
(2)

where Ci,j,k and Ci, j,k denote the interpolation results and the observation data at the point (i,j,k),
respectively; KC represents the weighting matrix whose element equals to 1 when the observations are
available; otherwise, KC = 0.

The governing equation of marine pollutant transport model (1) can be written as
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Based on the Lagrange multiple method, the Lagrange function can be written as

L = J +
∫

Ω
(C ∗ F)dΩ (4)

where C* represents the adjoint variable of C; Ω denotes the computational domain.
The adjoint model of the pollution transport model is calculated from Equation (5). The gradients

of the cost function with respect to model parameters can be calculated by Equation (6):

∂L
∂C

= 0 (5)

∂L
∂p

= 0 (6)

where p stands for the model parameters.
In this paper, the adjoint equation and the gradient can be written as Equations (7) and

(8), respectively.
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where the superscript 1 denotes the SNC at the first iteration step.
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2.3.2. The Process of DCIM

The DCIM contains the following steps, described as [25] follows.
Step 1. Propose a guess value of the parameters in the model.
Step 2. Acquire the interpolation of observations through forward model.
Step 3. Calculate the cost function and obtain the Lagrange multiple through adjoint model.
Step 4. Based on Equation (6), acquire the gradients of the cost function with respect to the

parameters of the model and adjust the parameters along the opposite direction of the gradient.
Step 5. Stop calculating when the preset ending condition is satisfied; otherwise, go to step 2 and

continue iterating.

3. Numerical Results

3.1. Verification of the DCIM

In this part, we testified the feasibility and validity of the DCIM by ideal experiments.
The observations used in ideal experiments were generated by integrating the given distribution of
nitrogen over time. In order to maintain the universality, the initial guess values were set to be half of
the max value of nitrogen concentration. Similar conclusions were drawn when other initial guess
values were taken. Statistic results of other initial guess values are given in Appendix B.

3.1.1. Application of the DCIM in Ideal Twin Experiments

As mentioned by Elbern et al. [29], the validity of the assimilated or interpolated results can only
be testified by the observations that were not assimilated or interpolated. Therefore, one-fifth of the
total observations were randomly selected as observations that were not interpolated but only used for
verification, and these observations were named as checking observations. The other observations
were named as interpolated observations, which were to be interpolated with the DCIM. By this
cross-validation, it can be distinguished that whether the interpolated observations were overfitted or
not. If the interpolated observations were overfitted, there would be large misfit between simulation
results and checking observations [30].

To eliminate the contingency induced by selection of checking observations, all idealized
observations were randomly divided into five subsets and every subset was taken as the checking
observations by turns. Therefore, there were five twin experiments, which were named as IE_11–IE_15,
respectively. The statistics of these twin experiments are listed in Table 2. The Cressman interpolation
method [31] was introduced to the ideal twin experiments IE_11-IE_15 so that the quality of results can
be assessed. The comparison is presented in Appendix C. In order to quantify the difference between
interpolated SNCs and observations, mean absolute gross error (MAGE) and mean normalized gross
error (MNGE) were calculated as follows

MAGE =
1
N

N∑
i=1

|Ii −Oi| (9)

MNGE =
1
N

N∑
i=1

[(|Ii −Oi|)/Oi] (10)

where N is the number of observations and I and O are the interpolated SNCs and observations,
respectively.

In the five twin experiments, the rate of decline in MAGEs between checking observations and
corresponding interpolated SNCs (K3) were 66.7%, 70.8%, 63.6%, 57.1%, and 71.4%, respectively;
and the errors were no more than 0.12 mg/L. What is more, the MNGEs between checking observations
and interpolated SNCs (K4) were all reduced by at least 50%. Besides, at the first iteration step,
the MNGEs between interpolated observations and corresponding interpolated SNCs (K2) were all
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larger than 120%, while after applying the DCIM, K2 were all less than 6%. Thus, it can be demonstrated
that the interpolated observations were not overfitted. Figure 2 shows that most dots were near the 1:1
line, no matter whether the dot stands for interpolated observations or checking observations, which
indicates that the DCIM was an effective tool to interpolate observations.

Table 2. Statistics of the ideal experiments.

K1 K2 K3 K4

Expt Initial Final Initial (%) Final (%) Initial Final Initial (%) Final (%)
IE_11 0.26 0.01 124.96 5.29 0.33 0.11 157.20 77.67
IE_12 0.28 0.01 135.45 4.00 0.24 0.07 118.44 28.00
IE_13 0.27 0.01 134.51 4.91 0.33 0.12 123.47 47.18
IE_14 0.30 0.01 131.71 3.74 0.21 0.09 135.63 50.93
IE_15 0.27 0.01 135.35 5.13 0.28 0.08 121.89 37.02
IE_21 0.28 0.02 132.47 6.06 — — — —
IE_31 0.28 0.02 134.46 8.20 — — — —
IE_32 0.28 0.02 134.27 7.68 — — — —
IE_33 0.29 0.03 140.18 10.62 — — — —

K1 is MAGEs between the interpolated observations and the interpolated SNCs (mg/L); K2 is MNGEs between the
interpolated observations and the interpolated SNCs; K3 is MAGEs between the checking observations and the
interpolated SNCs (mg/L); K4 is MNGEs between the checking observations and the interpolated SNCs.
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Figure 2. Comparison of simulated and observed surface nitrogen concentrations (SNCs), including
interpolated observations (red dots) and checked observations (blue dots), for (a) IE_11, (b) IE_12,
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To make the fullest use of all observations, another twin experiment IE_21 was conducted. In IE_21
all observations were used to interpolate and the final MAGE was 0.02 mg/L, which was reduced
by 92.9%, while the final MNGE was 6.06% (see Table 2). Comparison between interpolated SNCs
and prescribed observations is shown in Figure 2f. The correlation coefficient was near 1.00 on the
whole, meaning that the final interpolated results were almost equal to the artificial observations.
Thus, we can say that the DCIM was a feasible and effective method to interpolate the SNCs.

3.1.2. Sensitivity to Observational Errors

In the real ocean environments, the observations can be contaminated by noises. Therefore,
another three twin experiments, named by IE_31, IE_32, and IE_33, respectively were conducted,
in which random perturbations were added to the prescribed observations. The maximum percentages
of observation errors were 10%, 20%, and 30% in three experiments, respectively. The comparison
between interpolated SNCs and observations were shown in Figure 2g–i, and the results indicated that
the final interpolated SNCs were close to the observations in all three twin experiments. Moreover,
the statistics of MAGEs and MNGEs shown in Table 2 also demonstrated that although the observations
contained noises, the DCIM can still perform well when used to interpolate the SNCs. This means that
the interpolation results may still be convincing when the DCIM was adopted in the practical situation.

3.2. Practical Applications

In this section, the observed data of SNCs were used to carry out practical experiments. The final
MAGE and MNGE were 0.21 mg/L and 47.9%, respectively (Table 3), which were both reduced by
more than 55%. The mean value and the standard deviation of the observed SNCs were 0.69 and
0.55 mg/L, respectively, while those of the interpolated SNCs were 0.69 and 0.46 mg/L, respectively.
The results indicated that the interpolated SNCs were almost equal to the observed SNCs. Figure 3
showed the scatterplot to compare interpolated SNCs and observed SNCs visually. The 2:1, 1.25:1, 1:1,
0.85:1, and 1:2 lines were shown for reference. For 84.3% of the observations, the ratio of interpolated
SNCs to the observed was between 0.5 and 2; for 11.6%, the ratio was over 2 and for 4.1%, the ratio
was below 0.5. It was obvious that the closer the ratio was to 1, the close the interpolated SNCs were to
the observed SNCs. For 53.7% of the observations, the ratio was between 0.85 and 1.25. What is more,
the correlation coefficient between the interpolated SNCs and the observed SNCs was 0.77.

The statistical results mentioned above indicated that the interpolated SNCs with DCIM were
coherent with the observed SNCs. The final distribution of the interpolated surface nitrogen
concentration was given in Figure 4. The MAGE between each interpolated observation and interpolated
SNC was shown in Figure 5. Statistics of MAGEs was shown in Figure 6. By statistics, we can know
that 46.3% (56/121) of the MAGEs were no more than 0.1 mg/L and only 20.7% (25/121) of the MAGEs
were over 0.3 mg/L. Figure 4 showed that high concentration appears in the three bays, while in the
central Bohai Sea the concentration was low, and comparing with Figure 1 it showed a good agreement
with the observed nitrogen concentration distribution.

Table 3. Statistics of practical experiment.

K1 K2

Initial Final Initial (%) Final (%)
0.48 0.21 120.74 47.90

K1 is MAGEs between the interpolated observations and the interpolated SNCs (mg/L); K2 is MNGEs between the
interpolated observations and the interpolated SNCs.
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4. Conclusions

In this paper, we interpolated the surface nitrogen concentration with the dynamically constrained
interpolation methodology (DCIM). The pollutant transport model was taken as dynamic constraint
and the interpolated results were optimized iteratively with the adjoint method.

The feasibility and validity of DCIM were testified with prescribed observations in ideal
twin experiments. The statistics and the scatterplot of twin experiments illustrated that the
interpolated SNCs with DCIM were close to the prescribed observations and that the interpolated
results were still convincing when noises were added to the prescribed observations. In practical
experiment, the observed data were used to interpolate the surface nitrogen concentration with DCIM.
The correlation coefficient between interpolated SNCs and observed SNCs was 0.77. The distribution
of final interpolated surface nitrogen concentration shows a good agreement with the observations.
The interpolated results in ideal experiment and in practical experiment demonstrated that the DCIM
can be an effective method to interpolate the spatial and temporal distributing observations.
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Appendix A. Difference Form of Equation (1) and Equation (5)

For Equation (1), the difference form was as follows
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For Equation (5), the difference form can be described as
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Appendix B. Statistic Results of Other Initial Guess Values

During calculation, there are three kinds of initial guess values, including the minimum, half and
maximum of the nitrogen concentration. The simulation results were given in Table A1.

Table A1. Simulation results of different initial guess values.

Initial Guess
K1 K2

Initial Final Initial (%) Final (%)

Minimum 0.37 0.02 85.39 5.48
Half 0.28 0.02 132.47 6.06

Maximum 0.90 0.02 344.03 8.58

K1 is MAGEs between the interpolated observations and the interpolated SNCs (mg/L); K2 is MNGEs between the
interpolated observations and the interpolated SNCs (mg/L).

From Table A1 we know that after iterative optimization the final MAGE of the three initial guess
values were all 0.02 mg/L. It meant that no matter what the initial guess value was, the final simulation
results were almost the same. The reason why the final percentages of K2 were different was that due
to the different initial guess values, the initial errors were different. So in the paper, half of the max
value of nitrogen concentration was taken as the initial guess value.

Appendix C. Comparison between the DCIM and Cressman Interpolation Method

In order to access the quality of results, the Cressman interpolation (CI) method was introduced
to the ideal twin experiments IE_11-IE_15. Comparison of MAGEs between CI and DCIM was shown
in Table A2.

Table A2. Comparison of MAGEs between the two methods (unit: mg/L).

IE_11 IE_12 IE_13 IE_14 IE_15

DCIM 0.11 0.07 0.12 0.09 0.08
CI 0.23 0.22 0.29 0.28 0.35

In experiments, from IE_11 to IE_15, the MAGEs were reduced by 52.2%, 68.1%, 58.6%, 67.9%, and
77.1%, respectively, and errors were reduced by almost an order of magnitude. Through comparison,
we can draw the conclusion that the DCIM was a much more effective interpolation method than
the CI.
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