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Abstract: We present a series of SIR-network models, extended with a game-theoretic treatment of
imitation dynamics which result from regular population mobility across residential and work areas
and the ensuing interactions. Each considered SIR-network model captures a class of vaccination
behaviours influenced by epidemic characteristics, interaction topology, and imitation dynamics.
Our focus is the resultant vaccination coverage, produced under voluntary vaccination schemes,
in response to these varying factors. Using the next generation matrix method, we analytically
derive and compare expressions for the basic reproduction number Ry for the proposed SIR-network
models. Furthermore, we simulate the epidemic dynamics over time for the considered models,
and show that if individuals are sufficiently responsive towards the changes in the disease prevalence,
then the more expansive travelling patterns encourage convergence to the endemic, mixed equilibria.
On the contrary, if individuals are insensitive to changes in the disease prevalence, we find that they
tend to remain unvaccinated. Our results concur with earlier studies in showing that residents from
highly connected residential areas are more likely to get vaccinated. We also show that the existence
of the individuals committed to receiving vaccination reduces Ry and delays the disease prevalence,
and thus is essential to containing epidemics.

Keywords: vaccination; epidemic modelling; SIR model; strategy imitation; herd immunity;
Erdos-Rényi random networks; greater Sydney commuting network

1. Introduction

Vaccination has long been established as a powerful tool in managing and controlling infectious
diseases by providing protection to susceptible individuals [1]. With a sufficiently high vaccination
coverage, the probability of the remaining unvaccinated individuals getting infected reduces
significantly. However, such systematic programs by necessity may limit the freedom of choice
of individuals. When vaccination programs are made voluntary, the vaccination uptake declines as a
result of individuals choosing not to vaccinate, as seen in Britain in 2003 when the vaccination program
for Measles-Mumps-Rubella (MMR) was made voluntary [2]. Parents feared possible complications
from vaccination [2,3] and hoped to exploit the ‘herd immunity’ by assuming other parents would
choose to vaccinate their children. Such hopes did not materialize precisely because other parents also
thought similarly.

Under a voluntary vaccination policy an individual’s decision depends on several factors:
the social influence from one’s social network, the risk perception of vaccination, and the risk perception
of infection, in terms of both likelihood and impact [4]. This decision-making is often modelled using
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game theory [3,5-11], by allowing individuals to compare the cost of vaccination and the potential
cost of non-vaccination (in terms of the likelihood and impact of infection), and adopting imitation
dynamics in modelling the influence of social interactions. However, many of the earlier studies [12-14]
were based on the key assumption of a well-mixed homogeneous population where each individual
is assumed to have an equal chance of making contact with any other individual in the population.
This population assumption is rather unrealistic as large populations are often diverse with varying
levels of interactions. To address this, more recent studies [7-11,15] model populations as complex
networks where each individual, represented by a node, has a finite set of contacts, represented by
links [16].

It has been shown that there is a critical cost threshold in the vaccination cost above which the
likelihood of vaccination drops steeply [6]. In addition, highly connected individuals were shown
to be more likely to choose to be vaccinated as they perceive themselves to be at a greater risk of
being infected due to high exposure within the community. In modelling large-scale epidemics,
the population size (i.e., number of nodes) can easily reach millions of individuals, interacting in a
complex way. The challenge, therefore, is to extend epidemic modelling not only with the individual
vaccination decision-making, but also capture diverse interaction patterns encoded within a network.
Such an integration has not yet been formalized, motivating our study. Furthermore, once an integrated
model is developed, a specific challenge is to consider how the vaccination imitation dynamics
developing across a network affects the basic reproduction number, Ry. This question forms our
second main objective.

One relevant approach partially addressing this objective is offered by the multi-suburb
(or multi-city) SIR-network model [17-21] where each node represents a neighbourhood (or city)
with a certain number of residents. The daily commute of individuals between two neighbourhoods is
modelled along the network link connecting the two nodes, which allows to quantify the disease spread
between individuals from different neighbourhoods. Ultimately, this model captures meta-population
dynamics in a multi-suburb setting affected by an epidemic spread at a greater scale. To date,
these models have not yet considered intervention (e.g., vaccination) options, and the corresponding
social interaction across the populations.

To incorporate the imitation dynamics, modelled game-theoretically, within a multi-suburb model
representing mobility, we propose a series of integrated vaccination-focused SIR-network models.
This allows us to systematically analyze how travelling patterns affect the voluntary vaccination
uptake due to adoption of different imitation choices, in a large distributed population. The developed
models use an increasingly complex set of vaccination strategies. Thus, our specific contribution is the
study of the vaccination uptake, driven by imitation dynamics under a voluntary vaccination scheme,
using an SIR model on a complex network representing a multi-suburb environment, within which the
individuals commute between residential and work areas.

In Section 2.2, we present the models and methods associated with this study: in particular,
we present analytical derivations of the basic reproduction number R for the proposed models using
the Next Generation Operator Approach [22], and carry out a comparative analysis of Ry across
these models. In Section 3, we simulate the epidemic and vaccination dynamics over time using the
proposed models in different network settings, including a pilot case of a 3-node network, a 3000-node
Erdos-Rényi random network and a real-world commuting network in Greater Sydney area generated
from 2016 Australian census data. The comparison of the produced results across different models
and settings is carried out for the larger network, with the focus on the emergent attractor dynamics,
in terms of the proportion of vaccinated individuals. Particularly, we analyze the sensitivity of the
individual strategies (whether to vaccinate or not) to the levels of disease prevalence produced by the
different considered models. Section 4 concludes the study with a brief discussion of the importance
of these results.
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2. Materials and Methods
2.1. Technical Background

2.1.1. Basic Reproduction Number Ry

The basic reproduction number R is defined as the number of secondary infections produced
by an infected individual in an otherwise completely susceptible population [23]. It is well-known
that R is an epidemic threshold, with the disease dying out as Ry < 1, or becoming endemic as
Ro > 1[17,24]. This finding strictly holds only in deterministic models with infinite population [25].
The topology of the underlying contact network is known to affect the epidemic threshold [26].
Many disease transmission models have shown important correlations between Ry and the key
epidemic characteristics (e.g., disease prevalence, attack rates, etc.) [27]. In addition, Ry has been
considered as a critical threshold for phase transitions studied with methods of statistical physics or
information theory [28].

2.1.2. Vaccination Model with Imitation Dynamics

Imitation dynamics, a process by which individuals copy the strategy of other individuals,
is widely used to model vaccinating behaviours incorporated with SIR models. The model proposed
in [3] applied game theory to represent parents” decision-making about whether to get their newborns
vaccinated against childhood disease (e.g., measles, mumps, rubella, pertussis). In this model,
individuals are in a homogeneously mixing population, and susceptible individuals have two ‘pure
strategies’ regarding vaccination: to vaccinate or not to vaccinate. The non-vaccination decision can
change to the vaccination decision at a particular sampling rate, however the vaccination decision
cannot be changed to non-vaccination. Individuals adopt one of these strategies by weighing up their
perceived payoffs, measured by the probability of morbidity from vaccination, and the risk of infection
respectively. The payoff for vaccination (f;) is given as,

fv = —TIy @

and the payoff for non-vaccination (f;), measured as the risk of infection, is given as

fnv = _rnvml(t) (2)

where r,, is the perceived risk of morbidity from vaccination, r,; is the perceived risk of morbidity
from non-vaccination (i.e., infection), I(t) is the current disease prevalence in population fraction at
time ¢, and m is the sensitivity to disease prevalence [3].

From Equations (1) and (2), it can be seen that the payoff for vaccinated individuals is a simple
constant, and the payoff for unvaccinated individuals is proportional to the extent of epidemic
prevalence (i.e., the severity of the disease).

It is assumed that life-long immunity is granted with effective vaccination. If one individual
decides to vaccinate, s/he cannot revert back to the unvaccinated status. To make an individual switch
to a vaccinating strategy, the payoff gain, AE = f, — fu» must be positive (AE > 0). Let x denote the
relative proportion of vaccinated individuals, and assume that an unvaccinated individual can sample
a strategy from a vaccinated individual at certain rate o, and can switch to the ‘vaccinate strategy” with
probability pAE. Then the time evolution of x can be defined as:

X = (1—x)oxpAE

®)
=6x(1 — x)[—ry + ruoml]
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where § = op can be interpreted as the combined imitation rate that individuals use to sample and
imitate strategies of other individuals. Equation (3) can be rewritten so that x only depends on
two parameters:

¥ =xx(1—x)(—-1+wl) 4)

where k¥ = 1y and w = mryy /1y, assuming that the risk of morbidity from vaccination, ;, and the risk
of morbidity from non-vaccination (i.e., morbidity from infection), 7,5, are constant during the course
of epidemics. Hence, « is the adjusted imitation rate, and w measures individual’s responsiveness
towards the changes in disease prevalence.

The disease prevalence I is determined from a simple SIR model [23] with birth and death
that divides the population into three health compartments: S (susceptible), I (infected) and R
(recovered). If a susceptible individual encounters an infected individual, s/he contracts the infection
with transmission rate 8, and thus progresses to the infected compartment, while an infected individual
recovers at rate -y. It is assumed that the birth and death rate are equal, denoted by u [29]. Individuals
in all compartments die at an equal rate, and all newborns are added to the susceptible compartment
unless and until they are vaccinated. Vaccinated newborns are moved to the recovered class directly,
with a rate px. Therefore, the dynamics are modelled as follows [3]:

S=u(l—x)—BSI—us
[=pBSI—yl—ul
R=pux+~yI—uR
¥ =xx(1—x)(—-1+ wI)

©)

where S, I, and R represent the proportion of susceptible, infected, and recovered individuals
respectively (that is, S+ I+ R = 1), and x represents the proportion of vaccinated individuals
within the susceptible class at a given time. The variables S, I, and R, as well as x, are time-dependent,
but for simplicity, we omit subscript ¢ for these and other time-dependent variables.

Model (5) predicts oscillations in vaccine uptake in response to changes in disease prevalence.
It is found that oscillations are more likely to occur when individuals imitate each other more quickly
(i.e., higher x). The oscillations are observed to be more volatile when people alter their vaccinating
behaviours promptly in response to changes in disease prevalence (i.e., higher w). Overall, higher x
or w produce stable limit cycles at greater amplitude. Conversely, when individuals are insensitive
to changes in disease prevalence (i.e., low w), or imitate at a slower rate (i.e., low «), the resultant
vaccinating dynamics converge to equilibrium [3].

2.1.3. Multi-City Epidemic Model

Several multi-city epidemic models [17-19] consider a network of suburbs as M nodes, in which
each node i € V represents a suburb, wherei =1,2,--- M. If two nodes i, j € V are linked, a fraction
of population living in node 7 can travel to node j and back (commute from i to j, for example for work)
on a daily basis. The connectivity of suburbs and the fraction of people commuting between them are
represented by the population flux matrix ¢ whose entries represent the fraction of population daily
commuting from i to j, ¢;; € [0, 1] (Equation (6)). Note that ¢;; # ¢;;, thus ¢ is not a symmetric matrix.
Figure 1 shows an example of such travel dynamics.

P11 P2 - Pim
4’:21 47:22 472:M ©)

PmMxMm =

dm1 PNz o Pmm
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Figure 1. Schematic of daily population travel dynamics across different suburbs (nodes): a 4-node
example. Solid line: network connectivity. Dashed line: volume of population flux (influx and outflux).
Non-connected nodes have zero population flux (e.g., ¢34 = ¢43 = 0). For each node, the daily outflux
proportions (including travel to the considered node itself) sum up to unity, however, the daily influx
proportions do not.

Trivially, each row in ¢, representing proportions of the population of a suburb commuting to
various destinations, has to sum up to unity:

M
Z(Pijzl,ViGV (7)
=1

However, the column sum measures the population influx to a suburb during a day, and therefore
depends on the node’s connectivity. Column summation in ¢ does not necessarily equal to unity.
It is also necessary to differentiate between present population N jp and native population N in node j

on a particular day. N ].p is used as a normalizing factor to account for the differences in population flux
for different nodes:

M
NI'= ) ¢uNk ®)
k=1

Assuming the disease transmission parameters are identical in all cities, the standard incidence

can be expressed as [17]:
M

% MBS ©)
JPigP 1
fe P B 4
where I; and S; denote respectively the number of infective and susceptible individuals in city /, and A,
is the average number of contacts in city / per unit time. Incorporating travelling pattern defined by ¢,
yields [19]:
M M 4’1{'1
j ik
> ) Bigii g7 Si (10)
j=1k=1 i
The double summation term in this expression captures the infection at suburb j due to the
encounters between the residents from suburb i and the residents from suburb k (k could be any
suburb including i or j) occurring at suburb j, provided that suburbs i, j, k are connected with non-zero
population flux entries in ¢.
Rp can be derived using the Next Generation Approach (see Appendix A for more details).
For example, for a multi-city SEIRS model with 4 compartments (susceptible, exposed, infective,
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recovered), introduced in [17], and a special case where the contact rate )\j is set to 1, while § is
identical across all cities, Rg has the following analytical solution:

_ pe
K= G raera ()
where 1/d,1/€, and 1/ denote the average lifetime, exposed period (i.e., the latent period of
individuals becoming infectious) and infective period respectively. It can be seen that this solution
concurs with a classical SEIRS model with no mobility. When € — co, Equation (11) reduces to
B/(d + ), being a solution for a canonical SIR model. Furthermore, if the population dynamics is not
considered (i.e., d = 0), Equation (11) can be further reduced to 5/, agreeing with [19].

2.2. Methods

2.2.1. Integrated Model

Expanding on models described in Sections 2.1.2 and 2.1.3, we bring together population mobility
and vaccinating behaviours in a network setting, and propose three extensions within an integrated
vaccination-focused SIR-network model:

e  vaccination is available to newborns only (model (14) below )
e  vaccination is available to the entire susceptible class (model (26) below)
e committed vaccine recipients are present in the population (model (36) below)

In this study, we only consider vaccinations that confer lifelong immunity, mostly related to
childhood diseases such as measles, mumps, rubella and pertussis. Vaccinations against such diseases
are often administered for individuals at a young age, implying that newborns (more precisely,
their parents) often face the vaccination decision. These are captured by the first extension above.
However, during an outbreak, adults may face the vaccination decision themselves if they were not
previously vaccinated. For example, diseases which are not included in formal childhood vaccination
programs, such as smallpox [30], may present vaccination decisions to the entire susceptible population.
These are captured by the second extension. The third extension introduces a small fraction of
susceptible population as committed vaccine recipients, i.e., those who would always choose to
vaccinate regardless of the prevalence. The purpose of modelling committed vaccine recipients is to
demonstrate how successful immunization education campaigns could affect vaccination dynamics.

Our models divide the population into many homogeneous groups [31], based on their residential
suburbs. Within each suburb (i.e., node), residents are treated as a homogeneous population. It is
assumed that the total population within each node is conserved over time. The dynamics of epidemic
and vaccination at each node, are referred to as ‘local dynamics’. The aggregate epidemic dynamics of
the entire network can be obtained by summing over all nodes, producing ‘global dynamics’.

We model the ‘imitation dynamics” based on the individual’s travelling pattern and the
connectivity of their node defined by Equation (6). For any node i € V, let x; denote the fraction of
vaccinated individuals in the susceptible class in suburb i. On a particular day, unvaccinated susceptible
individuals (1 — x;) commute to suburb j and encounter vaccinated individuals from node k (where k
may be i itself, j or any other nodes) and imitate their strategy. However, this ‘imitation” is only
applicable in the case of a non-vaccinated individual imitating the strategy of a vaccinated individual
(that is, deciding to vaccinate), since the opposite ‘imitation” cannot occur. Therefore, in our model,
every time a non-vaccinated person from i comes in contact with a vaccinated person from k,
they imitate the ‘vaccinate’ strategy if the perceived payoff outweighs the non-vaccination strategy.
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Following Equation (4) proposed in [3], the rate of change of the proportion of vaccinated
individuals in i, that is, x;, over time can be expressed by:

=
&

X =0(1-x) PijpAEDy;xx

g |
M M

=0(1—x;) Y Y ¢ij(—ro + ruoml;) rixe (12)
j=1k=1
M M

=x(1—2x7) ) ¢ij(—14+wlj) Y drjxe
= =1

The players of the vaccination game are the parents, deciding whether or not to vaccinate
their children using the information of the disease prevalence collected from their daily commute.
For example, a susceptible individual residing at node 7 and working at node j uses the local disease
prevalence at node j to decide whether to vaccinate or not. If such a susceptible individual is infected,
that individual will be counted towards the local epidemic prevalence at node i.

We measure each health compartment as a proportion of the population. Hence, we define a ratio,
ef , as the ratio between present population Nl’[J and the ‘native’ population N; in node / on a particular
day as:

NP gk baiNg

P _
A B i (13)
N N

Our main focus is to investigate the effects of vaccinating behaviours on the global epidemic
dynamics. To do so, we vary three parameters:

e Individual’s responsiveness to changes in disease prevalence, w
e  Adjusted imitation rate,
e  Vaccination failure rate, {

while k¥ and w have had been considered in [3], we introduce a new parameter { as the vaccination
failure rate, { € [0,1] to consider the cases where the vaccination may not be fully effective.
The imitation component (Equation (12)) is common in all model extensions. While the epidemic
compartments vary depending on the specific extension, Equation (12) is used consistently to model
the relative rate of change in vaccination behaviours.

2.2.2. Vaccination Available to Newborns Only

Model (14) captures the scenario when vaccination opportunities are provided to newborns only:
; g Prjlx
Si=ulixi+ (1 —x)]— Y Y Bigij—5Si — uSi
j=1k=1 €

Ii

M M (Pk'lk
Y- ) Bty P ki,
So e T T (14)

u(1—=)x; + vl — uR;

—

R
M M

X=x(1—2x) ) ¢ij(—1+wl) Y drjxe
=1 k=1

Unvaccinated newborns and newborns with unsuccessful vaccination u[(x; + (1 — x;)] stay in
the susceptible class. Successfully vaccinated newborns, on the other hand, move to the recovered
class y(1 — ¢)x;. Other population dynamics across health compartments follow the model (5).
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Since S+ I+ R =1(S+ I+ R = 0), model (14) can be reduced to:

_ M M T
Si=pullxi+(1—x)] =Y. ) ﬁj%’%si — uS;

j=1k=1 i

oy Prjlk
=YY Bitij—5Si—vli—uli (15)
j=1k=1 €
M M
X =x(1—x;) ) dij(—1+wl}) Y drjxe
=1 k=1

Model (15) has a disease-free equilibrium (disease-free initial condition) (S?, IIQ) for which

S7=ax + (1-x)
! (16)
We can now obtain R for the global dynamics in this model by using the Next Generation
Approach, where Ry is given by the most dominant eigenvalue (or ‘spectral radius’ p) of FV~!, where F
and V are M x M matrices, representing the ‘new infections” and ‘cases removed or transferred from
the infected class’, respectively in the disease free condition [22,32]. As a result, R is determined as
follows (see Appendix A for detailed derivation):

-1
Ro=p(FV™") (17)
where )
9f1 94 9F
oI dl Jl
aF 0B . b
) aI dl
F=|°n % T (18)
aFy  0Fwm 3Fum
oL, ok oy |
v N W]
Jdl JI dl
v
dl dI dl
v | R (19)
aVM aVM avM
o, ob oLy |
while
j=1k=1 ) 10
kj'k
F=SIL Y b
Jryp
M M € (20)
0 0

Clearly, the solution of Ry depends on S?, IY, epidemiological parameters (i.e., B,7, ),
and mobility matrix ¢. Here, we obtain an analytical expression of Ry by studying a special case where
all nodes are uniform at disease free equilibrium.

Proposition 1. At the disease free equilibrium, x° has two solutions (x = 0 or x° = 1) if x° and S° are
uniform across all nodes (see proof in Appendix B).
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Using Proposition 1, F can be simplified as:

i % 471]'2’1;' % ‘PljZ’Zj AZA 4’1]‘4;Mj i
=1 ¢ j=1 ¢ =1 ¢
M goip1; M oidy; M ¢ipp;
o| B Lo g o
F=p85"|/i=t 5 =t F =1 (21)
Mooyt M omjty M oduj
1) IR 1TV
Lo L L=
L/ i j ] j

We can now prove the following simple but useful proposition (see proof in Appendix B).

Proposition 2. Matrix G, defined as follows:

[ M ¢1jp1j M g1 M ¢1j9m; 7
Lo Log v Loy
=1 ¢ =1 ¢ =1
AZA P21 % P2j92j % $2j9M;
P R =€
G= |75 =t =T (22)

M ¢pmit1j M Pmjdaj M ppmiPm;

Z p* }”* E P*

=1 NP = N =1 N

is a Markov matrix.

As a Markov matrix, G always has the most dominant eigenvalue of unity. All other eigenvalues
are smaller than unity in absolute value [33].
Now the next generation matrix K can be obtained as follows:

_ g
T+
_ Bl =2 +0x7] (23)
T+

From Proposition 2 and Equation (17), Rp can be obtained as:

Ro = p(K)
(1 —x0) + 20
= Al vt }P(G) (24)
B =) + 22
YU

Noting Proposition 1, there are two cases: x = 0 and x = 1. When nobody vaccinates (x%=0,50 =1),
the entire population remains susceptible, which reduces model (15) to a canonical SIR model without
vaccination intervention and Ry returns to 7—5# On the other hand, if the whole population is
vaccinated (x* = 1), the fraction of susceptible population only depends on the vaccine failure rate ,
resulting in:

Ry B
THHu

Clearly, fully effective vaccination ({ = 0) would prohibit disease spread (Ry = 0). Partially
effective vaccination could potentially suppress disease transmission, or even eradicate disease spread
if Ry < 1. If all vaccinations fail ({ = 1), model (15) concurs with a canonical SIR model without
vaccination, which also corresponds to a special case in Equation (11) where € — .

(25)
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2.2.3. Vaccination Available to the Entire Susceptible Class

If the vaccination opportunity is expanded to the entire susceptible class, including newborns
and adults, the following model is proposed based on model (15):

MY Prjli
=) ﬁjﬁbz‘jTJP Si — uSi — xiSi + x;(5;

=1

:%ﬁﬁcp% — 7L — pl;
j=1k=1 M ef Z l (26)

Ri = Sixi(1—¢) + 9L — ul;

—.
=~

M M
=x(1—x) ) dij(—1+wl) Y drjxe
=1 k=1
Model (26) has a disease-free equilibrium (S?, 19, x9):
Coptal(1-0) (27)

while

—1k=1 € (28)

p+x0(1-7) (29)

where [lis a M x M identity matrix.
The next generation matrix K can then be obtained as:

_ Bu
= o oa-g°¢ 30)

Using Proposition 2, Ry can be obtained as:

P
Ro = (31)
(v + ) +20(1 =]
When nobody vaccinates (xX’ = 0), model (26) concurs with a canonical SIR model with
Rg reducing to T When the vaccination attains the full coverage in the population (x° = 1),

the magnitude of RO depends on the vaccine failure rate {:

B
Rp = (32)
(r+mp+1-0)
Equation (32) reduces to % if all vaccines fail ({ = 1). Conversely, if all vaccines are effective

¢ = 0, Equation (32) yields

_ Bu
K= G e+ (33)
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Given that 4 < 1, Ry is well below the critical threshold:

Rozﬁ’f«l (34)

If 0 < ¢ < 1, by comparing Equations (25) and (32), we note that Ry becomes smaller, provided
¢ > u, thatis:

b susceptible ﬁé ﬁ"l/l
Rgew orn RO

Tt (rEmpE+1-7)
BA-DE—n _,
(r+uw)(p+1-7)

(35)

2.2.4. Vaccination Available to the Entire Susceptible Class with Committed Vaccine Recipients

We now consider the existence of committed vaccine recipients, x, as a fraction of individuals
who would choose to vaccinate regardless of payoff assessment [34,35] (0 < x° < 1). We assume
that committed vaccine recipients are also exposed to vaccination failure rate  and are distributed
uniformly across all nodes. It is also important to point out that the fraction of committed vaccine
recipients is constant over time. However, they can still affect vaccination decision for those who
are not vaccinated, and consequently, contribute to the rate of change of the vaccinated fraction x.
Model (26) can be further extended to reflect these considerations, as follows:

: M M Prjlk c
Si=wu—Y.Y Bi¢ij—Si—uSi+ (g —1)[(xi + xS
j=1k=1 €
; & Prjlx
=YY Bi¢ij—5Si — vl — ul; (36)
j=1k=1 €;

M M
¥ =x(l—x; —x°) Z ¢ij(—1+ wl;) Z dxi (xx + x°)
j=1 k=1

Model (36) has a disease-free equilibrium:

S0 — K

ot (49 (1-0) 37)
70—

)=

while -
s Pril

F =g0 . TRk

1 1 % i :B](Pl] 6]’-; (38)
Vz = ')’Izo + ;”Izo

Substituting S?, using Equation (37), yields:

[ M 1jr; M g M ¢1j¢mj
ae A A
F — H ]':1 E]- j:1 ej j:1 ej
0 +x)(1-0 . S (39)
% ¢M/:’1j % 4’M];P2j AZA ‘PM]';”Mj
Li=t 5 = =g

V= (r+ul
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where [ is a M x M identity matrix.

The next generation matrix K can now be obtained as:

- Pu
K= [;4+(x0+xc)(1—§)](7+y)c (40)

Proposition 3. At the disease free equilibrium, x° has two solutions x° = x¢ = 0 or x* + x° = 1if x°, x® and

SO are uniform across all nodes.

Ry can be obtained for this case as:

P
Ry = (41)
DT A= Dl )
If nobody chooses to vaccinate (x% = x¢ = 0), Ry can be reduced to % Conversely, if the

entire population is vaccinated (x* + x, = 1), Equation (41) reduces to Equation (32), and Ry is purely
dependent on the vaccine failure rate g.

2.2.5. Model Parameterisation

The proposed models aim to simulate a scenario of a generic childhood disease (e.g., measles)
where life-long full immunity is acquired after effective vaccination. The vaccination failure rate, ,
is set as the probability of ineffective vaccination, to showcase the influence of unsuccessful vaccination
on the global epidemic dynamics. In reality, the vaccination for Measles-Mumps-Rubella (MMR) is
highly effective: for example, in Australia, an estimated 96% of vaccines that were administered are
successful in conferring immunity [36].

The population flux matrix ¢ is derived from the network topology, in which each entry represents
the connectivity between two nodes: if two nodes are not connected, ¢;; = 0; if two nodes are
connected, ¢;; is randomly assigned in the range of (0, 1]. The population influx into a node i within a
day is represented by the column sum Zj]\il ¢ji in flux matrix ¢. The entries of ¢ are determined by
network topologies.

The parameters used for all simulations are summarized in Table 1. Same initial conditions are
applied to all nodes. Parameters w and « are calibrated based on values used in [3]. Here, we aim to
investigate how vaccination behaviours affect overall epidemic dynamics. To do so, we mainly study
the effects of two parameters on all models: w, responsiveness to changes in disease prevalence; and x,
imitation rate (i.e., how quickly individuals imitate each other).
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Table 1. Epidemiological and behavioural parameters.

13 of 31

Parameter Interpretation Baseline Value References

1/ Average length of recovery period (days) 10 [37]

Ry Basic reproduction number 15 [37]

U Mean birth and death rate (days ') 0.000055 [3]

g Vaccination failure rate [0,1] Assumed

K Imitation rate 0.001 [3]

w Responsiveness to changes in disease prevalence  [1000,3500] [3]

Pij Fraction of residents from node i travelling to j [0,1] Network connectivity
(See Figures 10b and 11d
for degree distribution.)

I Initial condition 0.001 [3]

S Initial condition 0.05 [3]

Initial condition 0.95 [3]

Our simulations were carried out on three networks:

e apilot case of a network with 3 nodes (suburbs),
e an Erdos-Rényi random network [38] with 3000 nodes (suburbs), and
e the commuting network in Greater Sydney with 311 suburbs (nodes) [39,40].

Each of the first two networks was used in conjunction with the following three models of
vaccination behaviours:

e  vaccinating newborns only: using model (15)
e  vaccinating the susceptible class: using model (26),
e  vaccinating the susceptible class with committed vaccine recipients: using model (36).

The third network is a real-world network and is considered a more realistic representation of
travelling patterns. It was only used in conjunction with model (15) where only newborns are
vaccinated as the existing immunisation programmes in Australia typically administer measles
vaccines to newborns.

In the pilot case of 3-node network, two network topologies are studied: an isolated 3-node
network where all residents remain in their residential nodes without travelling to other nodes
(equivalent to models proposed in [3]), and a fully connected network where the residents at each
node commute to the other two nodes, and the population fractions commuting are symmetric and
uniformly distributed (Figure 2).

We then consider a suburb-network modelled as an Erdds-Rényi random graph (with number
of nodes M = 3000) with average degree (k) = 4, in order to study how an expansive travelling
pattern affects the global epidemic dynamics. (See Figure 10 for the degree distribution of the network
used.) Other topologies, such as lattice, scale-free [41,42], small-world networks and other real-world
networks [20,43], can easily be substituted here, though in this study our focus is on an Erdds-Rényi
random graphs.
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T Susceptible T Susceptible

'l Vaccinated 'n‘ Vaccinated

o o
'l Infected I‘ Infected

(a) (b)

Figure 2. Schematic of the 3-node case: population mobility across nodes. (a) No population mobility.
i=j={123},¢; = 0wherei # j. Otherwise ¢;; = 1. (b) Equal population mobility. i = j =
{1,2,3},¢;j = 3.

3. Results
3.1. 3-Node Network

3.1.1. Vaccinating Newborns Only

When there is no population mobility, we observe three distinctive equilibria (Figure 3;
dotted lines): a pure non-vaccinating equilibrium (where x/ = 0, representing the final condition,
and w = 1000), a mixed equilibrium (where xf # 0, w = 2500), and stable limit cycles (where xf #£0,
w = 3500). This observation is in qualitative agreement with the vaccinating dynamics reported by [3].

When commuting is allowed, individuals commute to different nodes, and their decision will
no longer rely on the single source of information (i.e., the disease prevalence in their residential
node) but will also depend on the disease prevalence at their destination. As a consequence, the three
distinctive equilibria are affected in different ways (Figure 3; solid lines). The amplitude of the stable
limit cycles at w = 3500 is reduced as a result of the reduced disease prevalence. It takes comparatively
longer (compare the dotted lines and solid lines in Figure 3) to converge to the pure non-vaccinating
equilibrium at w = 1000, and to the endemic, mixed equilibrium at w = 2500 with high amplitude
of oscillation at the start of the epidemic spread. As w can be interpreted as the responsiveness of
vaccinating behaviour to the disease prevalence [3], if individuals are sufficiently responsive (i.e., w is
high), the overall epidemic is suppressed more due to population mobility (and the ensuing imitation),
as evidenced by smaller prevalence peaks. Conversely, if individuals are insensitive to the prevalence
change (i.e., w is low), epidemic dynamics with equal population mobility may appear to be more
volatile at the start, but the converged levels of both prevalence peak and vaccine uptake remain
unchanged in comparison to the case where there is no population mobility.
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Figure 3. Epidemic dynamics of a 3-node case for three values of w when vaccinating newborns.
Time series of (a) the relative proportion of vaccinated individuals, x, and (b-e) Infection prevalence, I.
Solid line: Symmetric uniform population mobility. Dotted line: No population mobility. Commuting
suppresses prevalence peaks over time at high w, but may produce higher prevalence peaks over time
at mid and low w.

We further investigated how the vaccination failure rate J affects the global epidemic dynamics.
If, for example, only a half of the vaccine administered is effective ({ = 0.5), as shown in Figure 4b—d,
the infection peaks arrive sooner, for all values of w. As a result of having the earlier infection peaks,
the individuals respond to the breakout and choose to vaccinate sooner, causing the vaccine uptake
to rise. This seemingly counter-intuitive behaviours have also been reported in [44]. When { = O,
the prevalence peaks take longer to develop and the extended period gives individuals an illusion
that there may not be an epidemic breakout, and consequently encourages ‘free-riding’ behaviour.
In the case where half of the vaccinations fail, epidemic breaks out significantly earlier at lower
peaks, an observation that is beneficial to encourage responsive individuals to choose to vaccinate.
Although some (in this case half) of the vaccines fail, a sufficiently high vaccine uptake still curbs
prevalence peaks and shortens the length of breakout period. In terms of the final vaccination uptake,
the vaccine failure rate predominantly affects behaviours of responsive individuals (when w is high,
such as 3500). In this case, instead of the stable limit cycles observed when { = 0, an endemic,
mixed equilibrium is reached when the vaccination failure rate is significant. Final vaccination uptake
is impacted little by vaccination failure rate when individuals are insensitive to changes in disease
prevalence (when w is lower in value, such as 2500 or 1000). These observations are illustrated
in Figure 4.
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Figure 4. Comparison of vaccination failure rates: epidemic dynamics of a 3-node case for three values
of w (which measures the responsiveness of individuals to prevalence) when vaccinating newborns.
(a) Relative proportion of vaccinated individuals, x, and (b—d) Disease prevalence (i.e., Proportion of
infected individuals), I. Solid line: { = 0. Dashed line: { = 0.5.

3.1.2. Vaccinating the Entire Susceptible Class

If (voluntary) vaccination is offered to the susceptible class regardless of the age, the initial
condition of x = 0.95 represents the scenario that the vast majority of population are immunized to
begin with, and the epidemic would not breakout until the false sense of security provided by the
temporary ‘herd immunity” settles in. This feature is observed in Figure 5a,b: the vaccination coverage
continues to drop at the start of the epidemic breakout, indicating that individuals, regardless of their
responsiveness towards the prevalence change, exploit the temporary herd immunity until an infection
peak emerges. Since vaccination is available to the entire susceptible class, a small increase in x could
help suppresses disease prevalence. However, when vaccination is partially effective (i.e., { = 0.5),
the peaks in vaccine uptake, x, are no longer an accurate reflection of the actual vaccination coverage,
and such peaks therefore may not be sufficient to adequately suppress infection peaks. It can also
be observed that vaccinating the susceptible class encourages non-vaccinating behaviours due to the
perception of herd immunity, and therefore pushes the epidemic towards an endemic equilibrium,
particularly when sensitivity to prevalence is relatively high ( mid and high w), as the responsive
individuals would react promptly to the level of disease prevalence, altering their vaccination decisions.
However, no substantial impact is observed on those individuals who are insensitive to changes in the
disease prevalence (low w).
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Figure 5. Comparison of vaccination failure rates: epidemic dynamics of a 3-node case for three values
of w (which measures the responsiveness of individuals to prevalence) when vaccinating newborns
and adults. (a,b) Relative proportion of vaccinated individuals, x, and (c,d) Disease prevalence (i.e.,
proportion of infected individuals), I. Solid line: { = 0. Dashed line: = 0.5.

3.2. Erdos-Rényi Random Network of 3000 Nodes

We now present the simulation results on a much larger Erdo-Rényi random network of
M = 3000 nodes, which more realistically reflects the size of a modern city and its commuting patterns.
It was observed by previous studies [45] that such a larger system requires a higher vaccination
coverage to achieve herd immunity, and thus curbs ‘free-riding’ behaviours more effectively.

3.2.1. Vaccinating Newborns Only

In this case, three distinct equilibria are observed (as shown in Figure 6a) for three values of w:
a pure non-vaccinating equilibrium at w = 1000 and two endemic mixed equilibria at w = 2500 and
w = 3500 respectively, replacing the stable limit cycles at high w previously observed in the 3-node
case. As expected, when individuals are more responsive to disease prevalence (higher w), they are
more likely to get vaccinated. The expansive travelling pattern also somewhat elevates the global
vaccination coverage level (compared to the 3-node case), particularly in the case that the individuals
show a moderate level of responsiveness to prevalence (w = 2500), and shortens the convergence time
to reach the equilibrium. However, for those who are insensitive to the changes in disease prevalence
(w = 1000), the more expansive commuting presented by the larger network does not affect either the
level of voluntary vaccination, or the convergence time in global dynamics—these individuals remain
unvaccinated as in the case of the smaller network. It is also found that the vaccination coverage is
very sensitive to the disease prevalence change at the larger network since the disease prevalence
peaks are notably lower than the 3-node case counterparts. If half of the vaccines administered are
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unsuccessful ( = 0.5), the impact of early peaks on global dynamics is magnified in a larger network
(Figure 6b—d), leading to a shorter convergence time, although the final equilibria are hardly affected
compared to the 3-node case as shown in Figure 4.

(a) | (b)

1 ‘ ‘ ‘ : 0.005
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Figure 6. Comparison of vaccination failure rates: epidemic dynamics of a Erdos-Rényi random
network of 3000 nodes for three values of w (which measures the responsiveness of individuals to
prevalence) when vaccinating newborns. (a) Relative proportion of vaccinated individuals, x, and (b—d)
Disease prevalence (i.e., proportion of infected individuals), I. Solid line: { = 0. Dashed line: { = 0.5.

It is observed that the shape of oscillation, in terms of amplitude and period, varies with different
values of w. Figure 6a (also Figure 4 for a much smaller network) show that lower w is related with
higher damping ratio in the oscillatory dynamics of the disease prevalence I and the vaccination
coverage x. A closer inspection reveals that the oscillations observed are non-harmonic with the
period reducing after every cycle (Figure 7a,b). Also, period is positively correlated with the value of
w, an observation supported by some preliminary analysis as reported in Appendix C, indicating
that the time interval between prevalence peaks is longer if population is sufficiently responsive to
prevalence change. Such a conclusion is not affected by the vaccine failure rate g, although the period
is noticeably smaller at the start of the outbreak when ( is larger (¢ = 0.5) (Figure 7c,d). Furthermore,
it is worth noting that the oscillatory properties may also be affected by epidemiological parameters,
such as transmission rate 8, a shown in Appendix C.
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Figure 7. Oscillation properties of epidemic and vaccination dynamics for three values of w when
vaccinating newborns. (a) Period of the disease prevalence, Tj, and (b) Period of the relative proportion
of vaccinated individuals, Ty. Circle: = 0; plus sign: { = 0.5. A peak, for the purpose of measuring
period, is defined by a peak threshold 6: §; = 0.0001 for I, and 6, = 0.01 for x.

To verify the analytical derivation of Ry, we investigated the relationship between epidemic
and vaccination dynamics and the basic reproduction ratio Rg. According to Equation (24),
higher vaccination coverage leads to a reduction of Ry. Figure 8 confirms this analytical dependency
by showing that higher vaccination coverage (higher x), reduces Ry and consequently leads to smaller
cumulative prevalence, provided individuals are sufficiently responsive towards prevalence change
(i.e., w = 2500 and w = 3500). When population is insensitive to prevalence change (w = 1000),
the vaccination dynamics always converge to the non-vaccination equilibrium, corresponding to the
case where x = 0 in Equation (24).
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Figure 8. Epidemic and vaccination dynamics of a Erdos-Rényi random network of 3000 nodes for
various values of basic reproduction number Ry, for three values of w. (a) Cumulative prevalence,
Itot. (b) Relative proportion of vaccinated individuals, x. Ry is varied by varying the infection rate j.
Cumulative prevalence Iy is obtained by integrating the prevalence over the simulated time frame.
Note that different w settings correspond to different ranges for Ry due to the different vaccination
coverage, X, at their respective endemic equilibria. Note that in (b) the case for w = 1000 is not shown
because it is trivially zero for all values of Ry.

We also compared the epidemic dynamics in terms of the adjusted imitation rate, represented by
the parameter «x, as shown in Figure 9 (recall that the value of imitation rate used in our simulations,
unless otherwise stated, is ¥ = 0.001 as reported in Table 1). Here we present results where this value
of imitation rate is compared with a much smaller value of ¥ = 0.00025. In populations where the
imitation rate is comparatively high (i.e., higher x), the oscillations in prevalence and vaccination
dynamics appear earlier in time with larger amplitude, although the converged vaccine uptake and
disease prevalence are relatively unaffected by the value of x. For a higher x, the convergence to
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equilibria is quicker. These observations are consistent with results reported by earlier studies [3].
A smaller value of x (x = 0.00025) also altered behaviours of those individuals who are insensitive
to prevalence change. Instead of converging to the pure non-vaccination equilibrium, the dynamics
converge to a mixed endemic state, meaning that when imitation rate is very low, some individuals
would still choose to vaccinate even when they are not very sensitive to disease prevalence.
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Figure 9. Epidemic dynamics of a Erdos-Rényi random network of 3000 nodes, varying the value

of x for three values of w (vaccinating newborns). Time series of relative proportion of vaccinated

individuals, x, and disease prevalence (i.e., proportion of infected individuals), I. (a) Solid line:

x = 0.001. (b) Dotted line: x = 0.00025.

For such a large network, vaccinating behaviour of individuals also depends on the weighted
degree (number and weight of connections) of the suburb (node) in which they live. This is
illustrated in Figure 10. For individuals living in highly connected suburbs (nodes), there are
many commuting destinations, allowing access to a broad spectrum of information on local disease
prevalence. Therefore, it is not surprising that we found that individuals living in ‘hubs’ are more likely
to get vaccinated, particularly when the population is sensitive to prevalence (w is high), as shown
in Figure 10a. This observation is in accordance with previous studies [6]. Note that in in Figure 10a,
nodes with degree k > 10 are grouped into one bin to represent hubs, as the frequency count of these
nodes is extremely low. Note also that there is a positive correlation between the number of degrees
and the volume of population influx as measured by the sum of proportions from the source nodes
(Figure 10b), indicating that a highly connected suburb has greater population influx on a daily basis.

To verify that the above mentioned simulation experiments reasonably model real-world
scenarios, we performed additional experiments using a real-world commuting network of Greater
Sydney generated from the 2016 Australian census data [39,40,46,47]. In contrast with agent-based
models [46,47], in which commuting individuals interact at their workplaces or schools only with
other commuters, rather than with the residential population, we consider a general case where
commuting and residential populations are well-mixed at every node. This assumption provides a
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generic insight into how empirical networks affect epidemic and vaccination dynamics. As illustrated
in Figure 11d, the real commuting network is substantially denser (M = 311, (k) ~ 150) in comparison
with the studied Erdds-Rényi random network. While the three distinctive equilibria still hold, it takes
longer for insensitive individuals (i.e., w = 1000) to reach non-vaccinating equilibrium (Figure 11b),
an observation that is not previously noted in the 3-node pilot case and 3000-node Erdos-Rényi random
network. In general, however, the dynamics produced on this real-world network concur with the
results obtained for previously described simulation experiments.
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Figure 10. The relationship between node degree and proportion of people who vaccinate voluntarily
(vaccinating newborns only) for an Erdos-Rényi random network of 3000 nodes. (a) The fraction of
vaccinated individuals as a function of node degree (which is the number of neighbouring suburbs
for each suburb considered) has for three values of w. (b) The degree distribution of the Erdos-Rényi
random network. The inset figure shows the population influx per node (sum of flux fractions from
each source node) as a function of the node degree.
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Figure 11. Simulated dynamics (vaccinating newborns only) of the commuting network in Greater
Sydney generated from the 2016 Australian census data, for three values of w. Time series of (a) disease
prevalence, I, (b) relative proportion of vaccinated individuals, x, (c) out-degree distribution of the
network (representing population outflux), and (d) in-degree distribution of the network (representing
population influx). The inset figure shows the population influx per node as a function of the node
degree. Other network properties: M = 311, (k) ~ 150.



Int. ]. Environ. Res. Public Health 2019, 16, 2477 22 of 31

3.2.2. Vaccinating Entire Susceptible Class

If (voluntary) vaccination is offered to the susceptible class regardless of age, we found that
the global epidemic dynamics converge quicker compared to the similar scenario in the 3-node case.
Only one predominant infection peak is observed, corresponding to the high infection prevalence
around year 25, as shown in Figure 12. Oscillations of small magnitude are observed for both vaccine
uptake and disease prevalence at later time-steps for middle or high values of w (as shown in insets of
Figure 12). These findings also largely hold if half of the vaccines administered are ineffective (i.e.,
¢ = 0.5), although the predominant prevalence peak and the corresponding vaccination peak around
year 25 are both higher than their counterparts observed for the case where § = 0.

Furthermore, We found that employing a small fraction of committed vaccine recipients prevents
a major epidemic by curbing disease prevalence. Such a finding holds for all w (i.e., regardless of the
population’s responsiveness towards disease prevalence) as the magnitude of prevalence is too small
to make a non-vaccinated individual switch to vaccinating (Figure 13).
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Figure 12. Epidemic dynamics of a Erdos-Rényi random network of 3000 nodes for three values of
w (vaccinating susceptible class regardless of age). Relative proportion of vaccinated individuals, x,
and disease prevalence (i.e., the proportion of infected individuals), I, are shown against time. (a) { = 0
(b) £ = 0.5. The inset figure in each figure is a magnified section to show small oscillations.
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Figure 13. Epidemic dynamics of a Erd6s-Rényi random network of 3000 nodes with committed
vaccine recipients for three values of w (vaccinating the entire susceptible class). Relative proportion
of vaccinated individuals, x, against time, and disease prevalence (i.e., the proportion of infected
individuals), I, against time. (a) w = 1000 (b) w = 2500 (c) w = 3500. Solid line: without committed
vaccine recipients. Dotted line: with committed vaccine recipients. The proportion of committed
vaccine recipients, x° = 0.0002. The existence of committed vaccine recipients delays the predominant
peaks and reduces the magnitude of oscillation in the proportion of vaccine recipients in later stages.

4. Discussion and Conclusions

We presented a series of SIR-network models with imitation dynamics, aiming to model
scenarios where individuals commute between their residence and work, which is modelled by
a commuting network where each node represents a suburb. These network models are able to capture
diverse travelling patterns (i.e., reflecting local connectivity of suburbs), and different vaccinating
behaviours affecting the global vaccination uptake and epidemic dynamics. We also analytically
derived expressions for the basic reproduction number Ry for the considered SIR-network models,
and demonstrated how epidemics may evolve over time in these models.

We showed that the stable oscillations in the vaccinating dynamics are only likely to occur either
when there is no population mobility across nodes, or only with limited commuting destinations.
We observed that, compared to the case where vaccination is only provided to newborns, if vaccination
is provided to the entire susceptible class, higher disease prevalence and more volatile oscillations in
vaccination uptake are observed (particularly in populations which are relatively responsive to the
changes in disease prevalence). A more expansive travelling pattern simulated in a larger network
leads to the appearance of attractor dynamics in the relative proportion of vaccinated individuals,
x, and the proportion of infected individuals, I, and the eventual convergence to the endemic,
mixed equilibria, again if individuals are sufficiently responsive towards the changes in the disease
prevalence. If individuals are insensitive to the prevalence, they are hardly affected by different
vaccinating models and remain as unvaccinated individuals, although the existence of committed
vaccine recipients noticeably delays the convergence to the non-vaccinating equilibrium. The presented
models highlight the important role of committed vaccine recipients in actively reducing Ry and disease
prevalence, strongly contributing to eradicating an epidemic spread. Similar conclusions have been
reached previously [34], and our results extend these to imitation dynamics in SIR-network models.

Previous studies drew an important conclusion that highly connected hubs play a key role in
containing infections as they are more likely to get vaccinated due to the higher risk of infection in
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social networks [6,45]. Our results, verified by simulation experiments on a Greater Sydney commuting
network, complement this finding by showing that a higher fraction of individuals who reside in
highly connected suburbs (nodes) choose to vaccinate compared to those living in relatively less
connected suburbs (nodes). These hubs, often recognized as business districts, also have significantly
higher population influx as the destination for many commuters from other suburbs. Therefore, it is
important for policy makers to leverage these job hubs in promoting vaccination campaigns and public
health programs.

Overall, our results demonstrate that, in order to encourage vaccination behaviour and shorten
the course of epidemic, policy makers need to carefully balance the following three considerations:
ensuring a number of committed vaccine recipients exist in each suburb, utilizing the fact that people
well-connected suburbs are more likely to vaccinate, and increasing individual awareness towards the
prevalence change.

There are several avenues to extend this work further. This work assumes that the individuals from
different suburbs (nodes) only differ in their travelling patterns, using the same epidemic and behaviour
parameters for individuals from all nodes. Also, the same w and « are used for all nodes, by assuming
that individuals living in all suburbs (nodes) are equally responsive towards disease prevalence and
imitation. A greater level of accuracy in modelling can be achieved by establishing context-specific
Ry and imitating parameters for factors such as the local population density, community size [37],
travelling rate [21], and suburbs’ level of connectivity. For example, residents living in highly connected
suburbs may be more alert to changes in disease prevalence, and adopt imitation behaviours more
quickly. Bounded rationality can also be used to consider cases where individuals are not perfectly
rational [48,49]. Different network topologies can also be used, particularly scale-free networks [41,42]
where a small number of nodes have a large number of links each. These highly connected nodes
are a better representation of suburbs with extremely high population influx (e.g., central business
districts and job hubs). Dependency between epidemic dynamics and network topologies/properties
are also of strong interest. Further investigation can be conducted by calibrating the network to
real-world networks (other than the Greater Sydney commuting network that we studied here) to
mimic a breakout in a targeted geographical region, such as a city, a suburb, or a statistical local
area [46,47,50]. Previous studies also revealed that network topological metrics such as centrality
measures, assortativity and robustness play an important role in the epidemic dynamics [51-54].
Further refinement on network-based modelling can also be attempted by introducing multiplex
networks [55] where epidemic spreading and social interactions rely on two separate networks. It may
also be instructive to translate the risk perception of vaccination and infection into tangible measures
to demonstrate the aggregate social cost of an epidemic breakout, and help policy makers to visualize
the cost effectiveness of different vaccinating strategies and estimate the financial burden for public
health care. Parameters can also be calibrated to model other diseases with rich epidemic data, such as
2009 HINT1 influenza pandemic and 2003 SARS epidemic [43]. These considerations could advance
this line of research to more accurately reflect contagion dynamics in urban environments, and provide
further insights to public health planning.
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Appendix A. Next Generation Operator Approach

The proposed model (15) can be seen as a finely categorized SIR deterministic model, so that
each health compartment (Susceptible, Infected and Recovered) has M sub-classes. Let us denote
I = {1, I,...Im} to represent M infected host compartments, and y to represent 2M other
host compartments consisting of susceptible compartments ys = {ys1,¥s2, ..., ¥sm } and recovered
compartments yr = {1, Y2, ., YrMm }-

dl;

a Fi(Lys) = Vi(Lyr)

dys

ar = gsj(LVs) (A1)
dy, ‘

ar gr](lr]/r)

wherei € (1, M) and j € (1, M).

Fi is the rate at which new infection enters infected compartments and V; is the transfer of
individuals out of or into the infected compartments.

When close to disease-free equilibrium where S = S* = 1, the model can be linearized to:

% = (F-V)I (A2)

where Fj; = %(O,S*) and V;; = %(O,S*)
The next generation matrix, K, is then given by:
K=Fv! (A3)

where each entry K;; represents the expected number of secondary cases which an infected individual
imposes on the rest of the compartments. F and V are given as follows:

ol ol ol
aF b ... ok
ol ol ol
F=|"" : M (A4)
0Fm  9Fm 9Fm
o, oh oy
ol ol ol
ol ol ol
v= | g (45)
o, ob oy |

The basic reproduction number Ry is given by the most dominant eigenvalue (or ‘spectral radius’
p) of K [22,31,32], and therefore:

Ry = p(K) (A6)
Appendix B. Propositions and Proofs

Proposition A1. At the disease free equilibrium, x° has two solutions (x* = 0 or x* = 1) if x* and S are
uniform across all nodes.
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Proof. At the disease free equilibrium, assuming S x are uniform across all nodes, and therefore:

Hence, under disease-free condition where I = 0 and x; = 0, Equation (15) becomes:

0=

SV =59 20 =x0 vi

1—x

Z i (

Equation (A8) leads to two solutions: x’ = 0 or x°

Assuming B; =

where [lis a M x M identity matrix.

_ Z 59 4’114’11 5 s 4’11'521'
j=1 6] ]'*1 €
% S0 ‘VZ]:flf E S0 4’2];"2/
=1 = ¢ =1
M o omity M o oMo
Y S0 ] Y S0 v .
LM LT

Proposition A2. Matrix G, defined as follows:

is a Markov matrix.

=1 0O

E SO¢1]¢M] |

j=

—_

i % $1j91 % P92 % $1j9Mj
=N = =
A):/’ P21 % P292j % $2j9M;
Lo Lo Lo

/A j ] j
% oMt M ¢M]¢2] 4’M]<PM]
| j=1 N]?’ =1 N}’ =1 N]F’

€

M
-1+ CUI]> Z Pkj
k=1

B for all nodes, we can derive F and V as follows:

M 50 PMjoM;
7

j

(A7)

(A8)

(A9)

(A10)

Proof. We assume all nodes have the same population N. Then Equation (13) can be reduced to:

M
=) Pxi
k=1

(Al1)

Without loss of generality, substituting Equation (A11) into Equation (A10) and expanding entries
in the first column yields the first column g; of matrix G:

81

4’114’11 + & P12¢12 4.

E i1 Z (%
4’214’11 + & 4’224’12 +-
E P E (%
k=1 k=1

¢%1¢11+%+...

Y ¢ Y ¢
k=1 k=1

+ ¢1M¢1M
Z Pem

4 ‘P2M¢1M
Z Pkm
k=1

+ ¢1;4AM¢1M
Y drm
k=1

(A12)
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Continuing with column 1, the column sum is:

M M M
Y P Y P2 Y Prm
=gl — oS — e —
L P Y P2 Y Prm (A13)
k=1 k=1 k=1
M
=) pu=1
k=1

Similarly, the sums of each column are equal to 1, with all entries being non-negative population
fractions. Hence, G is a Markov matrix. [

Proposition A3. At the disease free equilibrium, x° has two solutions x° = x° = 0 or x° + x° = 1if x0, x°
and S® are uniform across all nodes.

Proof. In analogy with Proposition Al, with committed vaccine recipients, at the disease free
equilibrium, S? and x? are uniform across all nodes, and therefore:

S =25% x) =x0+x¢ Vi (A14)

Hence, under disease-free condition where I = 0 and x; = 0, Equation (36) becomes:
o o M M
0=(1-2x —x)( +x) ) djj(—1+wlj) } gy (A15)
j=1 k=1

Equation (A15) leads to two solutions: xX° + x¢ =0or 2’ + x* =1. O

Appendix C. Preliminary Analysis of the Oscillatory Behaviour of Epidemic and Vaccination
Dynamics When Vaccinating Newborns

We found that a two-term exponential function (f (x) = ae?* + ce?¥) is a satisfactory fit for Figure 7
as shown in Figure Al and Table A1l. Note that we do not fit a function for the case of w = 1000
because of insufficient data points.

Table A2 provides some preliminary insight on how w affects the length of period. The length of
period is relatively unchanged for epidemic and vaccination dynamics despite different oscillatory
profiles. w is positively correlated to the period, indicating that the time interval between prevalence
peaks is longer if population is sufficiently responsive to prevalence change.

@ ‘ ‘ (b)

7 T 7
0 w=3500
fitting
6f O w=2500 |1 6
fitting
0 w=1000
w5 fitting | ® 5r
o ar = Ar
3r 3r
2 . . 2 . . .
0 5 10 15 20 0 5 10 15 20
No of cycles No of cycles

Figure A1l. The function f(x) = ae’™ + ce™ is fitted for the period of epidemic and vaccination
dynamics for three values of w. (a) Period of the disease prevalence, T;. (b) Period of the relative
proportion of vaccinated individuals, Ty. Circle: original data point. Solid line: fitted curve. Results
of goodness-of-fit test are summarised in Table A1. Coefficients of fitting functions are summarised
in Table A2.
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Table A1. Goodness-of-fit test of curves shown in Figure A1. Results rounded to 4 significant figures.
SSE: sum of squared errors of prediction. RMSE: Root Mean Square Error.

Tr SSE R-Square Adjusted R-Square RMSE
w = 3500 0.03564 0.9980 0.9977 0.04450
w =2500 0.002712  0.9998 0.9997 0.01260
w = 1000 0.0008870 0.9980 0.9997 0.009418

Ty SSE R-Square Adjusted R-Square RMSE
w = 3500 0.03076 0.9982 0.9979 0.04385
w = 2500 0.001248 0.9999 0.9998 0.01020

Table A2. Coefficients of two-term exponential fitted functions. Results are with 95% confidence
bounds, shown in bracket.

T a b C d
w =3500 4.593 (4.406,4.78) —0.3882 (—0.4247,—0.3516)  2.983(2.832,3.134) —0.008774 (—0.01176,—0.005788)
w =2500 3.951 (3.9,4.003) —0.3616 (—0.3732,—0.35) 2.399 (2.353,2.446)  —0.00239 (—0.003547,—0.001234)
w =1000 3.468(3.398,3.538) —0.6031 (—0.628,—0.5782)  2.237 (2.195,2.28) —0.006735 (—0.008434,—0.005035)
Ty a b C d

w =3500 4.535(4.341,4.73) —0.3971 (—0.4385,—0.3557)  3.066 (2.889,3.244) —0.01052 (—0.0142,—0.006853)
w =2500 3.882(3.827,3.937) —0.3717 (—0.3857,—0.3577) 2.492(2.422,2.561)  —0.004952 (—0.006928,—0.002976)

We undertook an additional simulation experiment with a low transmission rate (8 = 0.75),
corresponding to a case where the disease is less infectious. Figure A2a,b show that the mixed,
endemic equilibria at mid and high w (w = 2500 and w = 3500) observed in Figure 6, in this case,
are replaced by stable limit cycles, while the convergence to the pure, non-vaccination equilibrium at
low w (w = 1000) is relatively unaffected. The reduced B also delays the first prominent peak with
noticeably longer period between two peaks, as shown in Figure A2. Despite different oscillatory
profiles, we note that higher w generally corresponds to longer period, indicating that more responsive
individuals extend the period between two epidemic peaks due to the higher vaccination coverage.

(a) (b)
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T T T T T
o o
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2 2
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Figure A2. Oscillation properties of epidemic and vaccination dynamics for three values of w when
vaccinating newborns at low B (8 = 0.75, or Rg = 7.5). Note that for the results reported in the main
body of the paper, the transmission rate  was 1.5. (a) Disease prevalence (i.e., proportion of infected
individuals), I, (b) Relative proportion of vaccinated individuals, x, (¢) comparison of the period of
the disease prevalence, T}, at different B, and (d) comparison of period of the relative proportion of
vaccinated individuals, Ty, at different B. Circle: B = 0.75. Cross: B = 1.5. A peak, for the purpose of
measuring period, is defined by a peak threshold 6: 8; = 0.0001 for I, and 6, = 0.01 for x.
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