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Abstract: The existing studies on drivers’ injury severity include numerous statistical models that
assess potential factors affecting the level of injury. These models should address specific concerns
tailored to different crash characteristics. For rear-end crashes, potential correlation in injury severity
may present between the two drivers involved in the same crash. Moreover, there may exist
unobserved heterogeneity considering parameter effects, which may vary across both crashes and
individuals. To address these concerns, a random parameters bivariate ordered probit model has
been developed to examine factors affecting injury sustained by two drivers involved in the same
rear-end crash between passenger cars. Taking both the within-crash correlation and unobserved
heterogeneity into consideration, the proposed model outperforms the two separate ordered probit
models with fixed parameters. The value of the correlation parameter demonstrates that there indeed
exists significant correlation between two drivers’ injuries. Driver age, gender, vehicle, airbag or seat
belt use, traffic flow, etc., are found to affect injury severity for both the two drivers. Some differences
can also be found between the two drivers, such as the effect of light condition, crash season, crash
position, etc. The approach utilized provides a possible use for dealing with similar injury severity
analysis in future work.
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1. Introduction

With the increase of vehicle miles/kilometers travelled, traffic crash has become one of the main
factors that cause human injury and death along with huge property damage. According to the World
Health Organization, nearly 1.25 million people died in traffic crashes worldwide annually and each
fatality, on average, causes a loss of about 1.42 million dollars [1]. Injury crashes become a major
concern of researchers, policy-makers, and the public [2]. There are various types of traffic crash such
as rear-end, head-on, forward impact, side wipe, etc., among which rear-end crash results in a much
great proportion of severe injuries or fatalities [3]. For instance, rear-end crashes account for 30%
of all injuries and 29.7% of all property damage in the USA [4]. As one of the main concerns of the
rear-end collision, drivers’ injury severity is influenced by many contributing factors, such as roadway
alignments, environment characteristics, driver characteristics, traffic flow, etc. Accordingly, it is
necessary to identify the factors related to rear-end crashes and having a comprehensive knowledge of
these factors’ potential positive or negative effects is essential to prevent crashes and reduce injury
severities [5].

To investigate the contributing factors of rear-end crash, vehicle laboratory crash test [6], numeric
simulation [7,8], and field crash data analysis are three effective tools. As a direct and well-targeted
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method, vehicle laboratory crash test usually uses the scrapped vehicles and human body models
to conduct vehicle collision tests. Such kinds of tests are non-repeatable and expensive; thus, fewer
samples can be obtained. Conversely, the numerical simulation can be used to explore the injury
mechanism by setting different parameter values and combinations of significant factors such as
collision angle, impact speed, vehicle types, etc. The numerical simulation is a powerful tool; however,
it needs many refined modeling and complex mechanics analysis, and some natural conditions are
usually neglected.

As the crash data recorded in the real world become more and more detailed and specific, the field
crash data analysis has been the most widely used method to analyze human injury severity in rear-end
crashes. As pointed out by Chen et al. [9], these naturally collected data usually include almost all
crash-related perspectives like human factors (age, seat position, sex, fatigue, alcohol usage, and so
on), vehicle (speed, vehicle type, weight, and so on), and environment (light condition, road surface,
weather, and so on). These data reflect the real state of crashes pretty well. Moreover, Wang et al.
developed a quasi-vehicle-trajectory-based method to find crash contributing factors, presenting a
possible use of real-time data [10]. Based on various methodological and analytical techniques in big
data analysis, many prediction models are also obtained and applied, including multinomial logit
models, latent class logit models, random parameter (mixed) logit models, ordered logit/probit models,
support vector machine, and so on [11–13].

In terms of specific models for investigating injury severity in previous studies, there are also
abundant researches. Yuan et al. developed a binary logistic regression model to predict occupant
injury severity. This model identified corresponding affecting factors in rear-end crashes involving
trucks as the front vehicle [14]. A multinomial logit model was utilized by Konstantina et al. to
investigate severity outcomes of farm vehicle crashes and it was found that antiquated farm vehicles
were more likely to suffer serious injuries or fatalities in crashes under insufficient light conditions [15].
Via the same approach, the corresponding factors were identified to classify four severity outcomes
based on the most severe injuries in crashes [16]. Substantial difference between the impacts of variables
on the driver-injury severity in single- and multi-vehicle accidents had been found by a mixed logit
model developed by Chen and Chen [17].

Recently, some innovative methods have also been used in analyzing injury severity. Kunt et al.
compared a genetic algorithm and an artificial neural network. The results demonstrated that the
artificial neural network provides the best prediction [18]. In [3], Chen et al. studied the driver
injury severity in rear-end crashes with the use of a multinomial logit model-Bayesian network hybrid
approach, which performs reasonably well. The results indicated that the factors including inferior
lighting conditions, windy weather, etc. could significantly increase driver injury severities in rear-end
crashes. Other related researches can also be found and they present detailed insights into injury
severity analysis [19–27].

Abundant as the models in assessing the injury severity seem, each model often has its own
limitations. For instance, the genetic algorithm, artificial neural network, and Bayesian network have
some deficiencies in interpreting the relationship between a certain factor and the injury severity.
Moreover, injury severity has its natural character as severity outcomes are ordered from a low level
to a high level naturally, and this should be noted in the model. After decades of exploration, the
ordered probit model has been one of the most common approaches used in accident severity studies.
In [28], Chandler et al. demonstrated an ordered probit model to examine the impact of various
factors on injuries severity to passenger car occupants involved in truck-car collisions. Abdel-Aty
developed several ordered probit models to examine driver injury severity for crashes at roadway
sections, signalized intersections, and toll plazas in Central Florida, respectively [29]. Alcohol, lighting
conditions, and the existence of a horizontal curve were found to be of significance in the roadway
sections’ model. An ordered probit model was developed to analyze the injury severity of wrong-way
driving crashes, which also found the lighting condition to be significant to injury severity [30].
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In this paper, instead of the most severe injury, we focused mainly on comparing the injury severity
of the two drivers in passenger cars involved in the same rear-end crash. There exists a problem if
we simply use the ordered probit model, since the two drivers share some common conditions such
as road surface condition, but the model allows only one dependent variable. Moreover, there may
be some unobserved factors causing correlation. To address this correlation, the bivariate ordered
probit model was proposed and two dependent variables were designed for each crash. Furthermore,
compared with the fixed-parameter model, the random-parameter regression model is often adopted,
because the unobserved heterogeneity issues can be addressed by allowing parameters to vary across
observations [2,5,31].

The remainder of this paper is organized as follows: in Section 2, the random parameter bivariate
ordered probit model adopted in this paper is introduced in detail; in Section 3, a brief description of
the rear-end crashes is provided; Section 4 presents the results and discussion of the model; Finally,
Section 5 provides the summaries and conclusions of the work.

2. Methodology

As previously stated, the injury severity levels of two drivers involved in the same rear-end crash
are typically correlated considering they usually share the same lighting condition, road alignment,
road surface condition, and, especialy, other unobserved factors. To address such kinds of possible
correlation problems, the bivariate ordered probit model, which is a hierarchical system of two
equations, can be employed to model a simultaneous relationship of two response variables [22].

Suppose yi j is the observed injury severity; (i, j) is the index indicating the two drivers involved
in the same rear-end crash, where i (i = 1, 2, 3, . . . , n) refers to the crash number and j refers to the
driver number in a certain crash i (j = 1 for the rear vehicle, 2 for the front vehicle). Thereafter, the
latent (unobserved) injury severity propensities of the two drivers match their actual injury severity, as
presented in the following equations [7]:

yi, j = 1 = k, i f µ j = 1, k−1 < y∗i, j=1 < µ j = 1, k (1)

yi, j = 2 = l, i f µ j = 2,l−1 < y∗i, j=2 < µ j = 2, l (2)

where µ j,k−1,µ j,k,µ j,l−1,µ j,l are thresholds or cut-off values used to determine observed injury severity
levels of both two drivers, their values are relative to their corresponding injury factors in crash i.
Additionally, k (k = 0, 1, 2, . . . , K) and l (l = 0, 1, 2, . . . , L) represent ordinal categories of injury severity
sustained by each driver. y ∗i, j = 1 and y ∗i, j=2 can be calculated using real data as follows:

y∗i, j=1 = β′0, j=1 + β′1, j=1 ∗ x1i, j=1 + β′2, j=1 ∗ x2i, j=1 + . . .+ εi, j=1 = β′1Xi, j=1 + εi, j=1 (3)

y∗i, j=2 = β′0, j=2 + β′1, j=2 ∗ x1i, j=2 + β′2, j=2 ∗ x2i, j=2 + . . .+ εi, j=2 = β′2Xi, j=2 + εi, j=2 (4)

where Xi j is the variable vector; β′j is a parameter vector remaining to be estimated; εi j represents the
random components that capture all unobserved factors associated with two involved parties, which
is assumed to follow a bivariate normal distribution as follows:(

εi, j=1

εi, j=2

)
∼ N

[(
0
0

)
,
(

1 ρ
ρ 1

) ]
(5)
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where ρ is the estimated correlation parameter between εi, j =1 and εi, j=2. Therefore, the joint probability
when the injury severities of two drivers in a rear-end crash are k and l, which, respectively, can be
expressed as follows:

Pr
(
yi, j=1 = k; yi, j=2 = l

)
= Pr (µ j=1, k−1 < y∗i, j=1 < µ j=1, k; µ j=2,l−1 < y∗i, j=2 < µ j=2, l)

= Pr
(
µ j=1, k−1 < β

′

1Xi1 + εi1 < µ j=1, k; µ j=2,l−1 < β
′

2Xi2 + εi2 < µ j=2, l
)

= Pr
(
µ j=1, k−1 − β

′

1Xi1 < εi1 < µ j=1, k − β
′

1Xi1; µ j=2,l−1 − β
′

2Xi2 < εi2 < µ j=2, l − β
′

2Xi2
)

= Φ2
(
µ j=1, k − β

′

1Xi1,µ j=2, l − β
′

2Xi2;ρ
)
−Φ2

(
µ j=1, k−1 − β

′

1Xi1,µ j=2, l − β
′

2Xi2;ρ
)

−Φ2
(
µ j=1, k − β′1Xi1,µ j=2, l−1 − β

′

2Xi2;ρ
)

+ Φ2
(
µ j=1, k−1 − β

′

1Xi1,µ j=2, l−1 − β
′

2Xi2;ρ
)

(6)

where Φ2( ) is the standard bivariate normal cumulative distribution function.
Due to the characteristic of the bivariate ordered probit model, the signs of the parameters are of great

interest. A positive sign of the parameter indicates a positive effect on the probability of the injury severity.
While bivariate ordered probit can address the problem of factors correlation between two drivers

involved in the rear-end crash, this method assumes the parameters β′1, β′2 to have a certain value neglecting
the effect of unobserved heterogeneity of observations. This constraint on model parameters may lead to
inconsistent and biased parameter estimation [2]. As previously stated, the random-parameter method can
address the unobserved heterogeneity by allowing the parameters to vary across observations. Therefore,
the random parameters bivariate ordered probit model can be derived by setting:

β′i = β+ γi (7)

where β′i is the vector of specific parameters; γi is the randomly distributed term which is normally
distributed with a zero mean value and variance σ2.

3. Data Description

In this paper, the crash data from the National Automotive Sampling System (NASS) General
Estimates System (GES) were obtained. Data for all car-car rear-end collisions occurring from the
calendar year 2011 to 2015 were sampled as the basic dataset. These crash data recorded details of
the crash time, driver information, environmental condition, roadway condition, vehicle characters,
etc. Some data were excluded for those crashes in which the driver’s injury severity was unknown or
serious errors and missing existed.

The final dataset included a total of 15,159 rear-end crashes involving 30,318 motor vehicle
drivers. The original injury severity was coded on the KABCO scale and was regrouped due to the low
proportion of fatal injuries and incapacitating injury levels. The new groups were presented as follows:

• L1: No injury (O) and no apparent injury (O);
• L2: Possible injury (C);
• L3: Non-incapacitating evident injury (B), suspected minor injury (B);
• L4: Incapacitating injury (A), suspected serious injury (A), fatal injury (K).

As previously stated, the differences and similarities of the two drivers in the same rear-end crash
should be addressed. When analyzing the crash data, drivers were separated into two groups: the
front vehicle and the rear vehicle. Table 1 presents a summary of the joint distribution of the injury
severity for drivers in front vehicles and drivers in rear vehicles. It can be found that the distributions
of injury severity for drivers in front vehicles and rear vehicles vary in some degrees. For instance,
33.4% of the drivers in front vehicles tend to suffer an injury while the value is 19.4% for rear vehicles.
Moreover, the proportions of L2, L3, L4 for rear vehicles are all smaller than those of front vehicles.
This indicates that the drivers in front vehicles seem to suffer more serious injury.
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Table 1. Summary of injury severity for rear-end crash-involved drivers.

Injury Severity of Driver in the
Front Vehicle

Injury Severity of Driver in the Rear Vehicle
Total

L1 L2 L3 L4

No injury (L1) 8723 576 585 209 10,093 (66.6%)
Possible injury (L2) 1683 548 220 80 2531 (16.7%)
Non-incapacitating injury (L3) 1374 188 264 47 1873 (12.3%)
Incapacitating or fatal injury(L4) 437 60 59 106 662 (4.4%)
Total 12,217 (80.6%) 1372 (9.0%) 1128 (7.4%) 442 (2.9%) 15,159 (100%)

A large number of explanatory variables were examined and possible related variables are presented
in Table 2 and Figure 1 (some variables with complex classifications are depicted in Figure 1, the percentage
curves are also presented). It is interesting to note some substantial differences between the two drivers.
For instance, the drivers in rear vehicles tend to have a higher proportion of alcohol involved and drug
use. Since prior work has identified many injury-related variables, investigation on the differences and
similarities between the two drivers involved in the same rear-end crash needs further efforts and the
quantification of variables’ effect on injury severity needs to be addressed by the statistical model.

Table 2. Summary statistics for driver-related, vehicle-related and other independent variables.

Variables Description and Classification Driver in the Front Vehicle Driver in the Rear Vehicle
Total

L1 L2 L3 L4 L1 L2 L3 L4

HOUR
Day: 7:00~18:00 8437 2098 1533 472 10,193 1130 890 327 25,080
Night: else 1656 433 340 190 2024 242 238 115 5238

AGE
Age 24 and below 2303 433 310 87 4632 438 366 131 8700
Age between 25 and 63 6770 1851 1395 499 6673 790 631 258 18,867
Age 64 and above 1020 247 168 76 912 144 131 53 2751

SEX
Male 4827 952 637 267 6312 574 454 188 14,211
Female 5266 1579 1236 395 5905 798 674 254 16,107

ALCOHOL
Alcohol involved 22 8 4 8 275 50 48 37 452
Alcohol not involved 10,071 2523 1869 654 11,942 1322 1080 405 29,866

DRUGS
Drugs use 7 1 2 4 70 20 26 23 153
No drugs use 10,086 2530 1871 658 12,147 1352 1102 419 30,165

AIR_BAG
Airbag not deployed 260 157 165 124 1896 588 527 174 3891
Airbag deployed 9833 2374 1708 538 10,321 784 601 268 26,427

REST_USE
Seat belt equipment not in use 62 35 24 17 104 30 52 51 375
Seat belt equipment in use 10,031 2496 1849 645 12,113 1342 1076 391 29,943

VALIGN
Roadway alignment: Straight 9539 2440 1787 620 11,547 1326 1092 421 28,772
Curve 554 91 86 42 670 46 36 21 1546

REGION

Northeast 2164 642 90 142 2473 357 104 104 6076
Midwest 1797 313 512 139 2306 142 225 88 5522
South 4971 1155 1122 339 6074 682 625 206 15,174
West 1161 421 149 42 1364 191 174 44 3546

SPEEDREL
Driver’s speed related 109 17 11 10 2492 334 281 115 3369
Driver’s speed not related 9984 2514 1862 652 9725 1038 847 327 26,949

LGTCON
Daylight 7785 1944 1444 443 9373 1067 863 313 23,232
Dark 1954 514 377 191 2431 256 231 118 6072
Dawn or Dusk 354 73 52 28 413 49 34 11 1014

WEATHER

Clear 7164 1836 1271 482 8627 970 822 334 21,506
Rain 1154 254 193 68 1396 146 95 32 3338
Snow, Freezing Rain or Drizzle 135 33 24 9 174 11 10 6 402
Fog, Smog, Smoke and so on 25 8 3 0 30 3 3 0 72
Cloudy 1615 400 382 103 1990 242 198 70 5000

INT_HWY
Crash occurred on an interstate way 1442 360 299 169 1765 198 192 115 4540
Crash not occurred on an interstate way 8651 2171 1574 493 10,452 1174 936 327 25,778

MDLYR

Manufacturer’s model year: before 1995 365 125 103 39 873 100 119 30 1754
1996–2000 1113 361 322 87 2303 299 208 85 4778
2001–2005 2400 669 494 205 3662 406 339 123 8298
2006–2010 3726 818 594 193 3579 380 296 137 9723
2011–2015 2489 558 360 138 1800 187 166 67 5765

BDYTYP
The car has four doors 7152 1857 1373 491 8834 1013 787 129 21,636
The number of car’s doors is not four 2941 674 500 171 3383 359 341 313 8682

WRKZONE
Within the boundaries of a work zone 191 40 46 12 228 19 28 14 578
Not within the boundaries of a work zone 9902 2491 1827 650 11,989 1353 1100 428 29,740
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Figure 1. Summary statistics for driver-related, vehicle-related and other independent variables.

To improve the process of modeling, the explanatory variables were coded into dummy variables
(0/1) when conducting model estimations. For instance, the crash season can be described using three
binary indicates (1,0,0 for Spring; 0,1,0 for Summer; 0,0,1 for Autumn and 0,0,0 for Winter).
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4. Model Estimation and Discussion of Results

To start the estimation process of the random parameter bivariate ordered probit model, the initial
value of variable coefficients had to be set up. Therefore, two independent ordered probit models
were developed respectively after separating the dataset into two parts (one for the driver in the
front vehicle and another for the driver in the rear vehicle). All variables that were significant at a
90% confidence level in two separate models were remained for the subsequent analysis of random
parameters bivariate ordered probit model.

Table 3 presents the results of the random parameters bivariate ordered probit models. Parameter
estimates, p-values, standard errors, and z value of the estimates were included. Compared with
the results of two separately ordered probit models, substantive improvements can be found in the
random parameters bivariate ordered probit model, such as the significance level of variables and the
z value. This indicates that the random parameters bivariate ordered probit model indeed addressed
the issue of correlation between the outcomes in the same crash and the unobserved heterogeneity
across the observations.

Table 3. Results of random parameter bivariate ordered probit models.

Variables Coefficient Standard Error Z Value
Percent Observations

Above 0 Below 0

Driver in the Front Vehicle

Constant −0.2028 *** 0.0677 −3.0 — —
N AGE: ≤24 −0.3182 *** 0.0269 −11.8 2.74% 97.26%

Standard deviation 0.1657 *** 0.0238 7.0 — —
N SEX: Male −0.4426 *** 0.0223 −19.9 20.05% 79.95%

Standard deviation 0.5292 *** 0.0177 29.8 — —
N AIRBAG: Not deployed 0.8767 *** 0.0449 19.5 99.95% 0.05%

Standard deviation 0.2692 *** 0.0432 6.2 — —
N SEAT BELT: Not in use 0.5594 *** 0.1025 5.5 — —

SPEEDREL: Speed related −0.3872 *** 0.1163 −3.3 — —
NMDLYR: 2001–2005 −0.1392 *** 0.0320 −4.3 7.08% 92.92%

Standard deviation 0.0945 *** 0.0203 4.7 — —
NMDLYR: 2006–2010 −0.3648 *** 0.0307 −11.9 0.96% 99.04%

Standard deviation 0.1559 *** 0.0178 8.8 — —
NMDLYR: 2011–2015 −0.3569 *** 0.0331 −10.8 0.23% 99.77%

Standard deviation 0.1255 *** 0.0216 5.8 — —
BDYTYP: Four doors 0.0839 *** 0.0232 3.6 76.42% 23.58%

Standard deviation 0.1164 *** 0.0121 9.6 — —
WEEK: Monday 0.0592 ** 0.0291 2.0 — —
N HOUR: 7:00~18:00 −0.1753 *** 0.0370 −4.7 0.69% 99.31%

Standard deviation 0.0713 *** 0.0114 6.3 — —
N VTRAFWAY: Two-way, divided no median 0.1414 *** 0.0292 4.9 68.44% 31.56%

Standard deviation 0.2967 *** 0.0242 12.3 — —
VTRAFWAY: Entrance/Exit Ramp 0.0971 * 0.0588 1.7 57.53% 42.47%

Standard deviation 0.4995 *** 0.0598 8.4 — —
REGION: Midwest 0.0876 *** 0.0273 3.2 56.75% 43.25%

Standard deviation 0.5032 *** 0.0257 19.6 — —
N Light Condition: Daylight 0.1237 ** 0.0577 2.2 100% 0

Standard deviation 0.0306*** 0.0118 2.6 — —
Light Condition: Dark 0.1215 ** 0.0608 2.0 — —
µ1 0.6191 *** 0.0113 54.8 — —
µ2 1.4814 *** 0.0202 73.3 — —
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Table 3. Cont.

Variables Coefficient Standard Error Z Value
Percent Observations

Above 0 Below 0

Driver in the rear vehicle

Constant| −0.7899 *** 0.0921 −8.58 0 100%
Standard deviation 0.2067 *** 0.0123 16.78 — —

N AGE: ≤24 −0.4894 *** 0.0454 −10.79 8.85% 91.15%
Standard deviation 0.3615 *** 0.0221 16.36 — —

AGE: 25–63 −0.2780 *** 0.0426 −6.53 0 100%
Standard deviation 0.0754 *** 0.0166 4.54 — —

N SEX: Male −0.3822 *** 0.0261 −14.67 14.01% 85.99%
Standard deviation 0.3554 *** 0.0192 18.49 — —

ALCOHOL: Involved 0.2452 *** 0.0688 3.56 — —
DRUGS: Involved 0.5898 *** 0.1110 5.31 81.06% 18.94%

Standard deviation 0.6645 *** 0.1128 5.89 — —
N AIRBAG: Not deployed 1.0486 *** 0.0267 39.3 — —
N SEAT BELT: Not in use 1.1682 *** 0.0818 14.28 91.77% 8.23%

Standard deviation 0.8390 *** 0.0906 9.27 — —
MDLYR: 1995–2000 −0.1192 ** 0.0531 −2.25 6.18% 93.82%

Standard deviation 0.0774 *** 0.0281 2.75 — —
NMDLYR: 2001–2005 −0.1669 *** 0.0506 −3.3 17.36% 82.64%

Standard deviation 0.1782 *** 0.0226 7.88 — —
NMDLYR: 2006–2010 −0.2833 *** 0.0517 −5.48 25.78% 74.22%

Standard deviation 0.4353 *** 0.0244 17.81 — —
NMDLYR: 2011–2015 −0.2049 *** 0.0554 −3.70 — —
SEASON: Jun, Jul, Aug 0.0933 *** 0.0291 3.20 94.74% 5.26%

Standard deviation 0.0575 ** 0.0246 2.34 — —
N HOUR: 7:00~18:00 −0.2304 *** 0.0451 −5.11 — —
VSURCOND: Snow −0.6991 *** 0.2430 −2.88 — —

Standard deviation 0.5531 ** 0.2344 2.36 — —
N VTRAFWAY: Two-way, divided no median 0.1426 *** 0.036- 3.97 98.98% 1.02%

Standard deviation 0.0613 ** 0.0296 2.07 — —
VTRAFWAY: Two-way, divided, median 0.2466 *** 0.0303 8.14 — —
VTRAFWAY: One-way 0.2140 *** 0.0815 2.62 — —
VALIGN: Straight 0.1703 *** 0.0609 2.8 — —
REGION: Midwest −0.1221 *** 0.0375 −3.25 — —
REGION: South −0.0916 *** 0.0302 −3.04 — —
N Light Condition: Daylight 0.1929 *** 0.0415 4.65 — —
µ1 0.5090 *** 0.0129 39.56 — —
µ2 1.3173 *** 0.0243 54.17 — —

ρ (correlation parameter) 0.2440 *** 0.0143 17.06 — —
Final log-likelihood −23,365

Note: ***, **, * mean Significance at 1%, 5%, 10% level. Nmeans this variable is significant for both drivers.

As presented in Table 3, the final model includes all significant variables and some of them are set
as fixed parameters or random parameters according to constant estimation (the parameter without a
significant standard deviation is set as a fixed parameter). The value of ‘Percent observations’ indicates
the distribution of the value of random parameter (above zero and below zero, respectively), which is
determined by the value of mean and standard deviation.

From Table 3, the coefficient value of younger drivers (age 24 and below) was negative for both
the two parties indicating that younger drivers generally sustained lower level of injury severity. This
result was consistent with previous studies of Abay et al. and Chiou et al. and this may be because of
the physiological or driving behavior differences such as reaction time [32,33]. Moreover, drivers in
the rear vehicle at an age between 25 and 63 were found to suffer a lower level of injury severity, while
the result of drivers in the front vehicle went in the opposite way.

As for the driver’s gender, male drivers in both two vehicles seemed to suffer less severe injuries.
However, the effect of gender seemed to be mixed as the male driver had been found to be less injured
in a previous work by Russo et al. [11] and more at risk for injuries in another work by Chen et al. [34].
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In fact, the ‘Percent observations’ of driver gender may be used to account for this mixed effect as
coefficient’s value has a distribution of 20.05% versus 79.95% (above zero versus below zero) for
the front vehicle, 14.01% versus 85.99% for the rear vehicle. It was also found that drivers tended
to sustain more severe injuries when the airbag was not deployed or the seat belt was not in use.
This is consistent with common sense and highlights the importance of seat belt and airbag checking
(occupant protection systems).

With positive coefficient values, injury severities tended to increase with alcohol or drug use by
the driver in the rear vehicle. However, this effect had not been found for the driver in front vehicle.
This difference may be explained as follows: drivers who were involved in alcohol or drug were usually
found to drive at a relatively higher speed, and speeding was one of the main causes of rear-end
crashes with severe injuries.

From the aspect of vehicle information, the front vehicle whose manufacturer’s model year was
before 2001 (1995 and before, from 1996 to 2000) and the rear vehicle whose manufacturer’s model year
was before 1996 (1995 and before) were more likely to bring the drivers a serious injury. This effect had
been found in a previous study, which showed that old vehicles had a significantly greater chance of
being involved in an injury crash [35]. This may be explained by the lack of fine maintenance and
advanced safety design on old vehicles. This factor has a mixed effect on injury severity for the rear
vehicle according to the value of ‘Percent observations’.

Interesting results can be found regarding the effect of crash time. For drivers in the front vehicles,
the injury severity of crashes that happened on Mondays tended to be higher. For drivers in the
rear vehicles, more severe injuries might be found in crashes happened on a summer day. For both
front and rear vehicles, drivers tended to suffer a severe injury during nighttime (beyond 7:00–18:00).
Related conclusions about time factors’ effect on injury severity had also been obtained in previous
studies. For instance, lower level of injury had been found in the crashes during the winter month
and relative researches attributed this to lower speed and more cautious drivers on a winter day [11];
this may explain why lower injury severity would be sustained by drivers in rear vehicles on a snowy
road surface condition as shown in Table 3. Summer season and nighttime had been found to be
significantly associated with the injury severity, causing a positive effect on the possibility of the
injuries [5]. Moreover, both drivers seemed to suffer a more severe injury when light level that existed
at the time of the crash is daylight.

The traffic way related factor (VTRAFWAY), which focused on the value of coefficients only, it can
be concluded that the level of injury severity for both the two drivers in rear-end crashes may increase
under a two-way divided traffic flow. Moreover, the injury severity for drivers in front vehicles may
also become more serious at the entrance or exit ramp where the sight distance is usually limited.
As for the influence of traffic flow, drivers in rear vehicles may suffer a more severe injury at the
one-way traffic flow. Interestingly, this factor’s effect is not absolutely positive or negative for the front
vehicle according to the result of ‘Percent observations’ for this parameter. It is much better to say the
effect is more possible to be positive (over a 50% probability).

For lane-related factors, the injury outcome of drivers in rear vehicles tends to be higher within
a straight lane. The crash position reflected the regional characteristics of the crashes and the crash
position had also been found to be related to the injury severity as presented in Table 3. A converse
effect of crash position was shown on two drivers as the drivers in front vehicles may sustain a more
severe injury in the Midwest of the country and the drivers in rear vehicles may suffer a lower level
of injury in the Midwest and South of the country (the classification of region can be found in GES
Analytical User’s Manual, for instance, Midwest includes OH, IN, IL, MI, WI, MN, ND, SD, NE, IA,
MO, and KS of the United States). This phenomenon indicates that there may be a region difference on
injury severity of the rear-end crash.

Apart from addressing the issue as to unobserved heterogeneity across observations, the random
parameter bivariate ordered probit models also quantifies the correlation in the error terms between
the models for each pair of crash-involved drivers by estimating the correlation parameter (ρ). This
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index actually reflects the correlation in unobserved factors affecting injury severity in each rear-end
crash, which may not be included in the recorded data. As presented in Table 3, the value of ρ is
positive suggesting that unobserved factors tend to jointly increase (or decrease) the level of injury
sustained by two drivers involved in the same crash.

5. Conclusions

Rear-end crashes have become one of the main factors of human injury along with huge property
damage; thus, it is necessary to figure out the possible cause of such kind of traffic accidents. This
study examined the degree of injury sustained by drivers involved in the car-car rear-end crashes and
the significant factors affecting injury severity. To address the within-crash correlation between the
two drivers involved in the same crash and varying effects across observations, a random parameters
bivariate ordered probit model was developed concerning the ordered probit model. Specifically,
this model used two equations to describe injury severity for two drivers and proposed a correlation
parameter to demonstrate correlation in unobserved factors between two drivers. The value of the
correlation parameter suggests that these unobserved factors throw a joint increase (or joint decrease)
effect on the degree of injury severity of the two drivers in the same crash. This indicates it is necessary
to account for this within-crash correlation in model developing instead of heterogeneity in parameter
effects only.

Specific effects of all significant variables on the injury for two drivers were also investigated and
presented in this paper. For both vehicles, older age and female drivers tended to sustain a greater
injury in rear-end crashes. The injury severity level with airbag or seat belt not in use becomes relative
higher indicating the importance of a guaranteed occupant protection system. Furthermore, an older
vehicle, nighttime, two-way traffic, and a light condition of daylight also caused positive effects on
the injury severity for both two drivers. Although many common variables and consistent effects can
be found, there are also some differences between the two drivers. For the drivers in rear vehicles,
alcohol or drug use show positive effects on injury severity suggesting a necessary restrict on drivers’
alcohol or drug use. However, this effect has not been found on drivers in front vehicles. The outcome
of injury for drivers in rear vehicles in a summer day or on a snowy road surface also increased,
indicating a time-relation with the crash injury. Similar results have been presented about these effects
on injury severity in previous studies [5,11,32–34]. One interesting result is that converse effects by
crash position on two drivers can be found: when crashes occur in Midwest of the USA, drivers in
front vehicles are prone to suffer a more severe injury, while drivers in rear vehicles sustain less injury.
It has to be addressed that the paper presents the ‘Percent observations’ for random parameters, which
may be used to explain the mixed effect for a certain factor.

Since rear-end crashes are related to many factors, this study gives an insight into several significant
variables. Abundant as the rear-end crash data seem, the outcome of the current study is still limited
with a certain dataset, which may cause a certain over-estimation. Exhaustive as the consideration of
possible variables is, some potentially crucial information such as traffic volume has been neglected
due to the lack of available data. However, the outcome of this study can still be used in some possible
aspects like developing effective driver training, setting vehicle’s using year, offering risk information
on road management, etc. There are also several promising extending of this work, e.g., examining
different collision type, addressing temporal correlation in injury severity, or the injury of occupants in
the same vehicle.
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