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Abstract: Introduction: To examine the validity and reliability of the Fitbit Charge HR (FCH), wrist-worn 
ActiGraph (AG) accelerometers were used for assessing the classification of physical activity (PA) into 
intensity categories in children. Methods: Forty-three children (n = 43) participated in the study. Each 
participant completed 3 min bouts of 12 PAs ranging from sedentary to vigorous intensity while 
simultaneously wearing FCH and AG on both hands, a Polar HR monitor, and a portable indirect 
calorimeter. Total time spent in different PA intensity levels measured by FCH and AG were compared 
to the indirect calorimetry. Results: The highest classification accuracy values of sedentary behavior was 
81.1% for FCH. The highest classification (72.4%) of light intensity PA was observed with Crouter’s 
algorithm from the non-dominant wrist. Crouter’s algorithm also show the highest classification (81.8%) 
for assessing moderate to vigorous intensity PA compared to FCH (70.8%). Across the devices, a high 
degree of reliability was found in step measurements, ranging from an intra-class correlation (ICC) = 0.92 
to an ICC = 0.94. The reliability of the AG and the FCH showed high agreement for each variable. 
Conclusion: The FCH shows better validity for estimating sedentary behavior and similar validity for 
assessing moderate to vigorous PA compared to the research-grade monitor. Across the devices, the 
reliability showed the strongest association. 

Keywords: accelerometer; Fitbit; physical activity classification 
 

1. Introduction 

An accurate assessment of children’s physical activity (PA) is important to identify and quantify PA 
patterns of children to reverse the childhood obesity epidemic [1]. However, it is challenging to accurately 
assess children’s PA in a free-living environment because of the recall bias and their intermittent/sporadic 
activity patterns [2]. In addition, there is still a lack of consensus on the accuracy of a research version of 
activity monitors (i.e., ActiGraph) for use in PA and epidemiological research in children. Several 
accelerometry-based cut points have been introduced to accurately classify intensity of activities in children 
[3,4]. However, there is currently no established consensus on which cut-points should be employed nor 
where the monitor should be placed (i.e., waist vs. wrist). In addition, accelerometry-based activity 
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monitors do not adequately capture some specific types of movements such as weight-bearing activities 
(i.e., weight lifting), stationary (i.e., cycling) or gliding activities (i.e., skating), and only involved upper 
body movement [5]. 

The ActiGraph (ActiGraph LLC, Pensacola, FL, USA) is one of the most commonly utilized 
accelerometers for assessing children’s PA in free-living conditions [6]. However, it is expensive (around 
$250 per device) and purchasing the ActiGraph software license necessary to process, manage, and analyze 
its data involves additional expenses (around $1700). On the other hand, the Fitbit Charge HR (Fitbit Inc., 
San Francisco, CA, USA) is a relatively new accelerometry-based activity tracker that has been developed 
for consumers. The Fitbit brand is one of the popular wearable activity trackers and the price of the tracker 
is around $100 and users are able to easily track their activity through its LED display and an application 
on their smartphone. Furthermore, minute-by-minute PA data can be downloaded from the third-party 
website (i.e., Fitabase.com) for researchers and practitioners with the subscription-based fee. Fitbit brand 
trackers are not only widely used in research and clinical settings for assessing individuals’ PA but also 
utilized as intervention tools to promote physical activity. 

Both the research and consumer version of activity monitors can be worn on the wrist to improve 
participant/user compliance in terms of wear time and wear position [7]. Previously conducted studies 
indicated that the Fitbit Flex showed moderate validity for measuring PA relative to direct observation and 
the ActiGraph in adults [8,9]. Fitbit One trackers appear to accurately and reliably measure step counts in 
healthy young populations during treadmill walking [10]. One of the studies indicated that waist-oriented 
wearable trackers (i.e., Fitbit Zip and Fitbit One) revealed most accurate measures of step count in three 
different conditions (i.e., treadmill, over-ground, and free-living condition) in adults [11]. Several research 
studies have examined the validity of Fitbit monitors in adults [12–16]. However, to the best of our 
knowledge, none of the studies investigated the feasibility for the consumer wearable tracker (i.e., Fitbit 
Charge HR) in terms of activity intensity classification and heart rate measure in children. Therefore, the 
primary purpose of the study was to examine the validity and reliability of the Fitbit Charge HR and two 
previously developed children’s cut points (Chandler’s and Crouter’s) utilized for wrist-worn Actigraph 
monitors against the criterion measures (i.e., indirect calorimetry) on activity classification. The secondary 
purpose of the study was to examine the validity of heart rate measures from the Fitbit Charge HR 
compared to the Polar heart rate monitor in structured settings. 

2. Methods 

2.1. Participants 

A total of 43 children (girls = 18 and boys = 25), aged 8–12 years, volunteered to participate in the study 
and were recruited from adjacent communities of Yong-In, South Korea. Prior to the data collection, each 
participant and their parent completed an assent and a written informed consent form, and were provided 
with details on the study protocol before providing consent and assent. Participants were eligible for this 
study only if they fell within the appropriate age range and had no apparent contraindications to the 
activity protocol. The study protocols were approved by the institutional review board of Yong-In 
University. 

2.2. Procedures 

Participants’ standing height and weight were measured to the nearest 0.1 cm/kg. Body mass index 
(BMI) was calculated and expressed as a percentile based on the population mean BMI values reported in 
the CDC growth charts [17]. Body composition (i.e., body fat percentage) was measured using dual-energy 
X-ray absorptiometry (Lunar DXA, General Electric, Boston, MA, USA), following standard procedures 
[18]. 
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Following the anthropometric measures, each participant was asked to lay down in bed for 10 min for 
resting and then fitted with a flexible pediatric mask for the assessment of resting energy expenditure (REE) 
for an additional 10 min and the REE was expressed as mL·kg·min−1. Two Fitbit Charge HR trackers and 
two ActiGraph GT3X+ were worn on the dominant and non-dominant wrist. We randomly 
counterbalanced the wear position between the ActiGraph and Fitbit tracker on the wrist. The 
manufacturer’s suggested guidelines were carefully followed for each device. All instruments were 
synchronized and initialized using the participant’s personal information (i.e., age, gender, height, weight, 
and handedness) before the measurements. The test was performed at various times of day. However, 
participants were asked to abstain from eating and exercise for 4 h before the test. Each participant then 
performed an activity routine that included a series of different activities and lasted 48 min in a gym. 

Participants performed each activity for 3 min and there was a 1 min rest between each activity to 
facilitate transitions and tracking of data. Due to an initialization delay for the monitor, data during the 
first minute of activity were not selected for the data analysis. Oxygen consumption and heart rate were 
simultaneously measured throughout the routine with the COSMED K4B2 metabolic analyzer and the Polar 
heart rate monitor. A total of 12 activities that were selected to mimic children’s usual free-living activities 
were categorized into four distinct PA intensities: (1) sedentary (sitting quietly in a chair, playing a video 
game, and watching TV), (2) moderate intensity (treadmill walking at 2 and 3 mph, stationary cycling at 80 
watts, sweeping, hand weight exercise, and cool-down walking), and (3) vigorous intensity (treadmill 
running at 5 mph and stationary cycling at 120 watts) (Table 1). 
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Table 1. Description of performed activities by intensity. 

Intensity Type Activity Duration Measured METs  Description 

Sedentary 
Activity 

Supine position 20 min 1.0 (5.4 mL/kg/min) Children lay in the supine position on a bed 
Sitting on a chair 3 min 1.4 (7.6 mL/kg/min) Sitting on a chair quietly 

Playing a Video game 3 min 1.4 (7.6 mL/kg/min) While sitting on a chair desk, playing a video 
game provided by a researcher 

Watching TV 3 min 1.3 (7.3 mL/kg/min) Watching a TV show/movie selected by a 
researcher while seating on a chair at a desk 

Free-living 
Activity 

Mopping 3 min 2.8 (15.0 mL/kg/min) Mopping a floor on their own pace 

Hand weight exercise 3 min 2.1 (11.5 mL/kg/min) 
Lifting a 5 kg (decided by a researcher’s visual 
inspection on a participant’s physical maturation) 
dumbbell up and down constantly 

Cycling  
Stationary cycling at 80 watts 3 min 6.1 (36.8 mL/kg/min) Cycling a stationary bicycle ergometer at 80 watts 
Stationary cycling at 120 watts 3 min 6.8 (40.9 mL/kg/min) Cycling a stationary bicycle ergometer at 120 watts 

Locomotor 
Activity 

Treadmill walking 2.0 mph 3 min 2.7 (15.8 mL/kg/min) Walking at 2.0 mph on the treadmill 
Treadmill walking 3.0 mph 3 min 3.5 (20.8 mL/kg/min) Walking/running at 3.0 mph on the treadmill 
Treadmill running 4.0 mph 3 min 4.7 (29.6 mL/kg/min) Running at 4.0 mph on the treadmill 
Treadmill running 5.0 mph 3 min 6.0 (37.9 mL/kg/min) Running at 5.0 mph on the treadmill 
Cool down walking 3 min 2.3 (12.3 mL/kg/min) Self-paced cool down walking on the treadmill 

MET, metabolic equivalent of task. 
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2.3. Instruments 

2.4. Criterion Measure 

The K4b2 (COSMED, Rome, Italy) is a portable indirect calorimeter that allows the measurement 
of oxygen consumption under free-living conditions and it was used as a criterion measurement to 
examine the intensity of PA in this study. The K4b2 has been extensively validated and utilized for 
examining the physical activity level [19,20]. Before each trial, gas calibrations (16% O2, 5% CO2) and 
flow-volume were calibrated with a flow range capacity up to 20 L·s−1. A room air calibration and 
delay calibration were also performed using the manufacturer’s user manual. Breath-by-breath 
measures of pulmonary ventilation and gas exchange were used to calculate oxygen uptake VO2 
(mL·kg·min−1) and metabolic equivalent tasks (METs) values. METs were computed by dividing the 
activity VO2 by the measured participant’s resting metabolic rate. The Polar RS400 heart rate monitor 
(Polar Electro, Inc, Lake Success, NY, USA) is also used as a criterion measure for assessing heart rate. 
The Polar heart rate monitor has been validated with ECG in children [21]. 

2.5. Activity Monitors 

The ActiGraph GT3X+ (Pensacola, FL, USA) is a research-grade monitor, the most commonly 
used accelerometer to assess physical activity in free-living environments. It features a tri-axial 
accelerometer that records acceleration ranging from 0.05 g to 6.00 g and provide physical activity 
frequency, intensity, and duration. The ActiGraph accelerometer has been utilized in a subsample of 
the National Health and Nutrition Examination Survey (NHANES) to provide objective measures of 
physical activity [22]. 

The Fitbit Charge HR (Fitbit, San Francisco, CA, USA) is a wrist-worn activity monitor that 
continuously measures movement and heart rate, using a tri-axial accelerometer and LED light 
sensor. The Fitbit Charge HR utilizes optical blood flow sensing using photoplethysmography (PPG) 
techniques to measure heart rate (HR). PPG is a non-invasive method for the detection of HR and is 
connected with the optical properties of vascular tissue using a probe, usually LEDs. PPG sensors use 
the probe (e.g., LED light) to shine directly into the skin and interact with changes in the blood 
volume to configure an HR. The monitor uses these measures to give the wearer information 
regarding heart rate, PA intensity, energy expenditure (EE), step count, distance traveled, and stairs 
climbed (increasing 10 ft based on atmospheric pressure). The Fitbit Charge HR uses its proprietary 
algorithm; the Fitbit Charge HR transforms acceleration signals into activity counts in 60 s sampling 
intervals that define PA intensities as 0 = sedentary, 1 = light PA, 2 = moderate PA, and 3 = vigorous 
PA. The Fitbit Charge HR has a small screen on the band so the wearer can track their progress. The 
band can also be connected to a mobile phone app or synced to a PC to track patterns over time. 

2.6. Data Processing 

Breath-by-breath data from the indirect calorimetry were aggregated to provide average minute-
by-minute data to facilitate integration with the activity intensity classification from each monitor. 
The last 5 min average values of the resting metabolic rate were used as one metabolic equivalent of 
task (i.e., 1 MET) to categorize children’s physical activity intensity (measured-METs). The raw 
ActiGraph accelerometer data for each axis and the mean vector magnitude (VM: The square root of 
the sum of squares of each of the three axes) were converted to counts per 5 s, then collapsed into 
minute-by-minute data in order for the comparisons. Fitbits’ minute-by-minute data (i.e., PA 
intensity, energy expenditure, and HR) was downloaded from the Fitabase website (Small Steps Labs 
LLC, San Diego, CA, USA). All methods were compared across the measured METs for PA 
(sedentary, light PA, and moderate and vigorous PA (MVPA)). Crouter’s and Chandler’s wrist cut-
points [3,4] were applied to the data to create a dichotomous categorization for every minute of the 
protocol to the measured METs, and Polar heart rate data was downloaded and aggregated to 
provide average minute-by-minute data to examine the accuracy of the measured HR from the Fitbit 
Charge HR. Following Welk’s recommendation for designing accelerometer-based value calibration, 
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all activities were performed progressively from sedentary to vigorous intensity [23]. Data during the 
first minute of each activity was removed for data analysis due to the time delay in attaining a steady-
state condition at the start and end of each activity [24]. 

2.7. Statistical Analyses 

Descriptive statistics were calculated to summarize the demographic information for the 
participants. Overall agreement and classification accuracy of the Fitbit Charge HR against measured 
child-METs were evaluated using the following statistical analyses: (1) Cohen’s kappa evaluating the 
levels of agreement on activity intensity classification between the three methods and measured 
METs [25], (2) sensitivity (Se), specificity (Sp), and area under the receiver operating curve (ROC-
AUC) to determine the classification accuracy of the three methods with/without cycling activities, 
(3) mean absolute percentage error (MAPE) was calculated to find the overall measurement error for 
the heart rate comparison, and a repeated measures ANOVA with Bonferroni post-hoc corrections 
were used to test for differences among the three HR measures, and (4) intra-class correlation (ICC) 
estimates and their 95% confidence intervals were calculated to examine the reliability for Fitbit and 
two ActiGraph cut-points on each variable (i.e., MVPA, energy expenditure, steps, HR, and vector 
magnitude) (dominant vs. non-dominant) based on a mean-rating (k = 2), absolute-agreement, and 
2-way mixed-effects model suggested by Koo et al. [26]. Cronbach’s Alpha was used to measure the 
strength of the consistency, and Friedman’s Chi-square was calculated to test differences between 
groups. In addition, normality was tested by the Kolmogorov–Smirnov test and the Shaprio–Wilk 
test. All statistical analyses were performed using STATA Version 14 (StataCorp, College Station, TX, 
USA), and statistical significance was set at α = 0.05. 

3. Results 

Table 2 presents the descriptive statistics for demographic characteristics of children (n = 43). 
The mean ± SD was calculated to be 9.7 ± 1.3 years for age, 144.5 ± 9.6 cm for height, 37.8 ± 8.1 kg for 
weight, 17.9 ± 2.2 m·kg−2 for BMI, 57.9 ± 25.1% for BMI percentile, resting heart rate 105.6 beats·min−1, 
and 19.4 ± 6.6% for body fat. Only two children reported their left hand is their dominant hand. 

Table 2. Participant’s characteristics (mean ± standard deviation). 

Variables Boys (n = 25) Girls (n = 18) Total (n = 43) 
Age (years) 9.8 ± 1.3 9.6 ± 1.2 9.7 ± 1.3 
Height (cm) 145.9 ± 9.3 142.6 ± 9.9 144.5 ± 9.6 
Weight (kg) 39.8 ± 7.6 35.0 ± 8.2 37.8 ± 8.1 
BMI (m·kg−2) 18.6 ± 2.2 17.0 ± 1.9 17.9 ± 2.2 

BMI Percentile (%) 66.8 ± 24.5 45.4 ± 20.6 57.9 ± 25.1 
Normal Weight (BMI %) 55.1 ± 21 (n = 17) 43 ± 18.3 (n = 17) 49 ± 20.3 (n = 34) 

Overweight (BMI %) 90.3 ± 2.7 (n = 6) 87 (n = 1) 89.9 ± 2.7 (n = 7) 
Obese (BMI %) 96 ± 1.4 (n = 2) N/A 96 ± 1.4 (n = 2) 

Resting Heart Rate (beat·min−1) 112.5 ± 41.8 99.2 ± 38.6 105.6 ± 40.3 
Body Fat (%) 19.8 ± 7.3 18.9 ± 5.7 19.4 ± 6.6 

* BMI, Body Mass Index. 

Table 3-1 summarizes statistics for classification accuracy of six different methods. When 
compared with the criterion measure (i.e., indirect calorimetry), on average, the Fitbit Charge HR 
revealed the highest classification accuracy (80.73%), high sensitivity (91.6%), moderate specificity 
(72.4%), and a high ROC-AUC value (0.82) for sedentary behavior. The statistics for the Fitbit Charge 
HR were better than those for the other methods for sedentary behavior. For the light PA 
classification, on average, the Crouter’s cut-points worn on the right showed the highest classification 
accuracy (72.42%), low sensitivity (26.4%), high specificity (94.0%), and a moderate ROC-AUC value 
(0.61). The overall statistical agreement for the light activity classification showed better with both 
research-grade monitors. 
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Table 3-2 presents the agreements in MVPA classification with/without cycling activity. The 
sensitivity, percentage of correctly classified intensity, kappa coefficients, and ROC-AUC values yield 
better agreement without cycling activity. The highest MVPA classification (90.1%), sensitivity 
(74.6%), and ROC-AUC value (.60) were observed with Crouter’s cut-points worn on the right 
without cycling. However, Chandler’s cut-points showed the highest specificity (100%) but revealed 
the lowest sensitivity (14.8%). Overall, the sensitivity improved in general ranging from 2.79% to 
19.93%, the percentage of correctly classified intensity improved ranging from 5.85% to 9.46%, and 
kappa coefficients increased ranging from 0.06 to 0.46. The ROC-AUC values also increased, ranging 
from 0.05 to 0.09 in the devices. However, the percentage of specificity remained at the same level 
regardless of the methods. 

The results from the intra-class correlation coefficient (ICC) are illustrated in Table 4. Across the 
devices, a high degree of reliability was found in step measurements ranging from ICC = 0.92 to ICC 
= 0.94. The reliability of the Fitbit Charge HR was good in general (ICC = 0.75–ICC = 0.94) on each 
variable. Chandler’s MVPA classification showed poor ICC = 0.278. 
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Table 3-1. Agreements in SB and Light PA intensity classifications for four methods, Kappa, ROC-AUC, Sensitivity, and Specificity. 

Intensity Methods Correctly Classified (%) Sensitivity (%) Specificity (%) ROC-AUC (95% CI)  kappa 

SB 

Fitbit dominant 80.32 91.61 72.42 0.82 (0.80–0.84) 0.61 
Fitbit non-dominant 81.14 90.74 72.7 0.82 (0.80–0.84) 0.60 
Chandler dominant 69.61 100 48.32 0.74 (0.71–0.76) 0.43 

Chandler non-dominant 65.16 96.23 43.41 0.70 (0.67–0.72) 0.35 
Crouter dominant 72.28 100 52.88 0.76 (0.74–0.78) 0.48 

Crouter non-dominant 71.51 100 51.56 0.76 (0.73–0.78) 0.46 

Light PA 

Fitbit dominant 66.1 33.04 81.6 0.57 (0.55–0.59) 0.23 
Fitbit non-dominant 65.98 35.02 80.5 0.58 (0.55–0.59) 0.28 
Chandler dominant 71.99 39.48 87.23 0.63 (0.61–0.65) 0.15 

Chandler non-dominant 67.56 33.66 83.46 0.58 (0.56–0.60) 0.06 
Crouter dominant 69.77 21.41 92.46 0.62 (0.58–0.62) 0.18 

Crouter non-dominant 72.42 26.36 94.02 0.60 (0.58–0.62) 0.17 
SB, sedentary behavior (<1.5 METs); LPA, light physical activity (1.5–2.99 METs); MVPA, moderate and vigorous physical activity (>3 METs); CI, confidence interval; 
k, kappa statistic; ROC, receiver operating curve; AUC, area under curve. 

Table 3-2. Agreements in MVPA intensity classifications for four methods, Kappa, ROC-AUC, Sensitivity, and Specificity with/without cycling activity. 

Intensity Methods Correctly Classified (%) Sensitivity (%) Specificity (%) ROC-AUC (95% CI)  kappa 

MVPA 

Fitbit Right 70.80 44.62 82.82 0.64 (0.61–0.66) 0.29 
Without Cycling 76.65 54.71 82.89 0.69 (0.67–0.71) 0.40 

Fitbit Left 70.80 41.03 84.47 0.63 (0.60–0.65) 0.27 
Without Cycling 77.69 53.62 84.54 0.69 (0.66–0.71) 0.40 
Chandler Right 77.43 28.25 100 0.64 (0.62–0.67) 0.35 

Without Cycling 86.60 34.49 100 0.70 (0.67–0.72) 0.40 
Chandler Left 70.24 14.57 95.78 0.55 (0.53–0.57) 0.13 

Without Cycling 79.70 22.83 95.88 0.59 (0.56–0.62) 0.60 
Crouter Right 81.88 54.71 94.34 0.75 (0.72–0.77) 0.53 

Without Cycling 90.05 74.64 94.43 0.84 (0.82–0.86) 0.60 
Crouter Left 77.79 45.74 92.49 0.69 (0.66–0.71) 0.43 

Without Cycling 85.96 62.68 92.58 0.78 (0.75–0.80) 0.60 
SB, sedentary behavior (<1.5 METs); LPA, light physical activity (1.5–2.99 METs); MVPA, moderate and vigorous physical activity (>3 METs); CI, confidence interval; 
k, kappa statistic; ROC, receiver operating curve; AUC, area under curve. 
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Table 4. ICC for dominant vs. non-dominant worn trackers using single-rating, absolute-agreement, and 2-way mixed effects models. 

Device Single Measure 
(Variable) 

Intra-class 
Correlation 

95% Confidence Interval  

Lower Bound 
Upper 
Bound 

Cronbach’s 
Alpha 

Friedeman’s  
Sig 

Chi-Square 

Fitbit 

(MVPA) 0.773 0.751 0.793 0.872 8.533 0.003 
(EE) 0.834 0.817 0.850 0.910 17.088 0 

(Steps) 0.944 0.938 0.950 0.971 0.598 0.439 
(Heart Rate) 0.754 0.731 0.776 0.86 0.027 0.869 

ActiGraph 

(Crouter MVPA) 0.734 0.71 0.758 0.847 3.967 0.046 
(Chandler MVPA) 0.278 0.229 0.325 0.435 2.597 0.107 

(Steps) 0.919 0.911 0.927 0.958 7.668 0.006 
Vector Magnitude 0.493 0.453 0.532 0.661 2.947 0.086 

ICC, intra-class correlation; MVPA, moderate and vigorous physical activity; EE, energy expenditure. 
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Figure 1 illustrates the MAPE on heart rates measured by the Fitbit Charge HR. A repeated 
measures ANOVA revealed that there was a significant difference between the heart rate measured 
by the Polar heart rate monitor (criterion measure) and those measured by Fitbit Charge HR for non-
dominant- and dominant-oriented (F(1.250, 1770.88) = 472.85, p = 0.001). However, post-hoc tests 
using the Bonferroni correction indicated that no significant difference was found between Fitbit 
Charge HR placed on the non-dominant and the dominant wrist. The average MAPE values of heart 
rate were 27.31% for the non-dominant-placed tracker and 27.50% for the dominant-placed tracker. 

 
Figure 1. Mean absolute percentage error for heart rates from the Fitbit Charge trackers (dominant vs. 
non-dominant). 

4. Discussion 

This study examined the validity and reliability of the Fitbit Charge HR tracker and two 
ActiGraph wrist cut points for classifying PA intensity in 9- to 12-year-old children against indirect 
calorimetry. The Fitbit Charge HR tracker accurately estimated sedentary activities (i.e., 91.61 (se) 
and 72.42 (sp)) and the ActiGraph wrist cut points outperformed the FCH in classifying MVPA. In 
general, good reliability was observed in these trackers regardless of the wear position (i.e., non-
dominant vs. dominant). The results from this study demonstrated that the Fitbit Charge HR tracker 
has comparable validity compared to the indirect calorimetry. Across the intensity classification, the 
Fitbit Charge HR tracker tended to have high levels of agreements in sedentary activity classification 
(80.32%) among the methods. The moderate level of agreements in MVPA (70.8%) is relative to the 
research grade monitor (81.8%). Further, the Fitbit Charge HR did not perform well (i.e., average 
MAPE = 27.0%) in detecting heart rate in children. 

To our knowledge, this is the first study to validate the Fitbit Charge HR for PA intensity 
classification and compare its accuracy with the two recently published sets of ActiGraph wrist cut-
points [3,4]. One study [16] has validated the Fitbit Charge HR tracker in children with congenital 
heart disease but they examined the accuracy of PA classification based on a step measure against 
the waist-oriented ActiGraph. They found that the Fitbit Charge HR reported higher step counts than 
the ActiGraph monitor and device agreement for MVPA was only good for boys, but poorer for the 
overall participants. Another study [27] has validated the waist-oriented Fitbit One device among 
children, finding that the Fitbit One step counts showed comparable estimates of habitual physical 
activity in sedentary and light PA intensity compared to the step-based physical activity intensity 
classification: Sedentary (0–100 step counts per minute), light (101–2295 step counts per minute), 
moderate (2296–4011 step counts per minute), and vigorous (over 4012 step counts per minute) 
activity. The results of the study also showed that strong differences were found in high-intensity 
activity and weak differences were found in light-intensity activity. 
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The Fitbit brand trackers have been largely used in intervention studies as a self-monitoring tool 
for the promotion of physical activity in children [28–33]. However, given that the accuracy of the 
Fitbit monitors for children was unknown, a caveat of these previous studies was that the researchers 
applied a research-grade monitor such as ActiGraph or a SenseWear armband to ensure a collection 
of accurate estimates of PA data [28]. However, using those research-grade activity monitors in 
addition to Fitbit monitors may have hindered achieving high adherence rates due to the increased 
burden of participants, especially in children. This study shows acceptably reasonable levels of 
accuracy of the Fitbit monitor (as compared with the Actigraph), suggesting that the Fitbit Charge 
HR tracker is a viable alternative assessment method for objectively evaluating children’s sedentary 
behavior in intervention and epidemiological research. 

There are several interesting findings in this study. Firstly, the Fitbit Charge HR did not perform 
well detecting heart rate compared to the Polar heart rate monitor. The findings contrast with a 
previous study [34] that compared heart rate values with measurements recorded during continuous 
electrocardiographic (cECG) monitoring in children (8.21 ± 3.09 years) undergoing surgery. In the 
study, the Fitbit Charge HR-derived HR showed excellent accuracy compared to HRs measured by 
cECG and Pulse Oximetry (SpO2R) during pediatric surgical procedures. Another study performed 
by Kroll et al. [35] indicated that the Fitbit Charge HR tended to underestimate heart rate values when 
heart rate values were in the range of 75 to 120 beats per min. Therefore, more testing of these PPG 
sensor-derived HR in free-living settings are needed to provide objective evidence in terms of the 
validity of HR monitoring capabilities in children. 

Secondly, this study examined the classification accuracy with/without the cycling activities 
because accelerometry-based activity monitors have proven very difficult to measure cycling and 
weight-bearing activity [36]. Given that the actual algorithms used in the Fitbit Charge HR tracker 
are unknown due to the proprietary rights, it is not clear what types of accelerometer data and/or 
demographic variables are used in producing physical activity parameters. However, we speculated 
that the Fitbit tracker might utilize both heart rate and accelerometer information in its algorithms 
alike the Actiheart device (CamNtech Ltd., Cambridge, UK) which integrates both the heart rate and 
accelerometer to improve the accuracy of PA measurement. However, the results are consistent with 
previous research [37–39] showing overall improvements in classification accuracy across the 
monitors without cycling activity (i.e., 6% improvement for Fitbit Charge HR). In this regard, we also 
quantified the estimate of heart rate values from the Fitbit Charge HR tracker and the overall MAPE 
was 27.3%. These findings suggest that the Fitbit Charge HR tracker may not integrate the heart rate 
but the accelerometer information in the algorithms. The estimates of the heart rate from the wrist 
heart rate sensor may provide a significant advantage over the activity monitors that utilized only 
accelerometer data. Additional studies should be performed to examine this issue, and subsequent 
algorithms should take into account heart rate information in order to further improve the accuracy 
of assessing physical activity patterns because most wearable activity trackers currently available in 
the market have a built-in wrist heart rate sensor. 

Lastly, overall good reliability was observed between the non-dominant and dominant wrist-
placed devices and the variables (i.e., MVPA, EE, steps, and heart rate) tested in this study. While 
most of the devices had moderate reliability between the devices. Only Chandler’s MVPA cut points 
showed poor reliability (ICC = 0.278) due to the low sensitivity observed in light and MVPA intensity 
ranging from14.5% to 39.5% which majorly influence the reliability of Chandler’s cut point. The poor 
reliability may also derive from the difference criterion and methodology used in Chandler’s 
calibration study. In contrast to this study, they used the heart rate and direct observation as a 
criterion measure in the gym setting and regression analyses were utilized to develop prediction 
equations to predict the percentage of heart rate reserve (HRR) from activity counts produced by 
ActiGraph. 

There are several notable strengths of this study. First of all, this study is the first to examine the 
validity and the reliability of a consumer-grade activity tracker (i.e., Fitbit Charge HR) and a widely 
utilized research-grade activity monitor (i.e., Actigraph) against indirect calorimetry in children. 
Moreover, we included a series of activities that simulate children’s free-living activities. In addition, 
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this study is the first of its kind providing evidence on a Fitbit device’s heart rate function in children. 
However, a few limitations of the study must also be mentioned. The sample population was only 
healthy children, with a normal range of body weight and body fat between 9 and 12 years old. 
Findings of this study may not be generalizable to the broader populations of children. One of the 
challenges to make a direct comparison of the wearable tracker is the lack of transparency regarding 
the specific algorithms. In addition, there are logistical and ethical challenges to access individual’s 
user profiles directly for research, and fees involved using the Fitabase website. In addition, the 
criterion measure for heart rate assessment was the Polar heart rate monitor, instead of ECG. 

In conclusion, our findings suggest that the Fitbit Charge HR has similar validity for estimating 
physical activity intensity in sedentary behavior and shows comparable MVPA intensity estimation 
compared to the research-grade monitor. Across the devices, reliability was strong between the 
dominant- and non-dominant-placed monitors. The Fitbit Charge HR provides a favorable outcome 
for the measurement of heart rate in children by utilizing the built-in HR sensor. 
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