
International  Journal  of

Environmental Research

and Public Health

Review

DNA Hydroxymethylation at the Interface of the
Environment and Nonalcoholic Fatty Liver Disease

Stella Tommasi * and Ahmad Besaratinia

Department of Preventive Medicine, Keck School of Medicine, University of Southern California, M/C 9603,
Los Angeles, CA 90033, USA
* Correspondence: tommasi@med.usc.edu; Tel.: +1-(323)-442-7753

Received: 21 July 2019; Accepted: 3 August 2019; Published: 5 August 2019
����������
�������

Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent forms of chronic
liver disorders among adults, children, and adolescents, and a growing epidemic, worldwide.
Notwithstanding the known susceptibility factors for NAFLD, i.e., obesity and metabolic syndrome,
the exact cause(s) of this disease and the underlying mechanisms of its initiation and progression
are not fully elucidated. NAFLD is a multi-faceted disease with metabolic, genetic, epigenetic,
and environmental determinants. Accumulating evidence shows that exposure to environmental
toxicants contributes to the development of NAFLD by promoting mitochondrial dysfunction
and generating reactive oxygen species in the liver. Imbalances in the redox state of the cells
are known to cause alterations in the patterns of 5-hydroxymethylcytosine (5hmC), the oxidative
product of 5-methylcytosine (5mC), thereby influencing gene regulation. The 5hmC-mediated
deregulation of genes involved in hepatic metabolism is an emerging area of research in NAFLD.
This review summarizes our current knowledge on the interactive role of xenobiotic exposure and
DNA hydroxymethylation in the pathogenesis of fatty liver disease. Increasing the mechanistic
knowledge of NAFLD initiation and progression is crucial for the development of new and effective
strategies for prevention and treatment of this disease.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease
worldwide, affecting 25% of the global population [1–6]. The prevalence of NAFLD is rising in many
parts of the world, especially in developed countries [7]. In the United States alone, between 30 to
40% of the adult population is affected by NAFLD [7]. Among children and adolescents, NAFLD is
currently the primary form of liver disease; it is estimated that nearly 10% of the US population aged
between two and nineteen has NAFLD [8,9]. NAFLD encompasses a wide spectrum of conditions
ranging from benign steatosis, characterized by abnormal lipid accumulation within the hepatocytes, to
non-alcoholic steatohepatitis (NASH), a more severe form of liver injury accompanied by inflammation
and variable fibrosis. Current trends show that NASH is becoming a major risk factor for cirrhosis and
end-stage liver disease requiring transplantation [10–13].

NAFLD is strongly associated with the clinical manifestations of metabolic syndrome, such as
obesity, type II diabetes, and dyslipidemia. However, high prevalence of NAFLD does not always
correlate with high caloric intake, and non-obese or non-diabetic individuals can also develop the
disease [5,6,14]. Although diet and sedentary lifestyle remain the major risk factors for NAFLD,
other factors or modifiers, including genetic predisposition, infection, environmental toxicants,
and epigenetic mechanisms, may also play a role in the pathogenesis of this disease (Figure 1) [3,5,15–18].
According to the revised multi-hit hypothesis, a single or combination of risk factors triggers the
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disruption of lipid homeostasis and fat accumulation that lead to liver steatosis, i.e., first hit. The induced
liver steatosis predisposes the affected individual to subsequent hits that can further provoke liver
injury through the modulation of pathways involved in mitochondrial dysfunction, oxidative stress,
fatty acid biosynthesis, and inflammation, thus giving rise to NASH [15,17]. In other words, the first
hit increases an individual’s susceptibility to multiple hits.
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Figure 1. Pathogenesis of NAFLD (non-alcoholic fatty liver disease). NAFLD is characterized by
abnormal accumulation of lipids within the hepatocytes (liver steatosis), which manifests with the
development of vesicles that can displace the cytoplasm, disrupt cell constituents, and in severe cases,
lead to cell rupture/burst. NAFLD is a multi-faceted disease. Multiple factors, including diet and
sedentary lifestyle, exposure to toxicants and infectious agents, and genetic and epigenetic mechanisms,
are now known to contribute to NAFLD development.

The objective of this review is to outline the impact of environmental exposure on the pathogenesis
of NAFLD, with a special focus on an emerging epigenetic mechanism, i.e., DNA hydroxymethylation.
Many environmental toxicants are known to promote mitochondrial dysfunction and oxidative
stress. There is growing evidence that oxidative stress alters the patterns of 5-hydroxymethylcytosine
(5hmC), a primary oxidative product of 5-methylcytosine (5mC), which may influence gene regulation.
Thus, investigating the 5hmC-mediated deregulation of genes involved in liver metabolism may
provide insight into the interactive role of environment and epigenetics in NAFLD development.
A better understanding of the mechanisms of NAFLD genesis and progression can lead to the
development of effective preventive strategies and treatment options for this disease. We note that the
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association between obesity/metabolic syndrome and NAFLD has been discussed in comprehensive
reviews [6,14,19]; readers are referred to these elegant references.

2. The Contribution of Xenobiotics in the Pathogenesis of NAFLD

The liver plays a crucial role in the maintenance of metabolic homeostasis. Because of its
portal location within circulation and its function in the metabolism and excretion of potentially
harmful xenobiotics, the liver constitutes the first line of defense against environmental toxicants and
contaminants [20]. Liver cells are constantly exposed to significant concentrations of toxic metabolites,
making this organ susceptible to chemical- or drug-induced injury (hepatotoxicity). Hepatotoxicity is
thus the best indicator of environmental exposure, and manifests in several pathological conditions,
with fatty liver or steatosis being the most common and consequential disease [16,21].

An increasing number of studies has shown an association between exposure to xenobiotics,
both in the form of pharmaceutical and non-pharmaceutical chemicals, and the pathogenesis of
NAFLD [17,22]. Certain environmental contaminants, including perfluoroalkylated substances (PFAS),
and polychlorinated biphenyls (PCBs), which are present in a variety of industrial and consumer
products, have been shown to promote hepatic steatosis/triglyceride accumulation and liver injury
through the generation of reactive oxygen species (ROS) [16–18]. Liver steatosis and steatohepatitis are
also induced by several pharmaceutical drugs (tetracyclines, tamoxifen, valproic acid, etc.), which are
known to interfere with normal lipid metabolism by affecting fatty acid oxidation and retention and
mitochondrial function and inducing oxidative stress [17,22].

To date, several animal models have been used to investigate the mechanisms through which
environmental chemicals/agents may cause liver steatosis and NAFLD [17,18]. Although each
compound may exhibit a different mode of action, the most frequent mechanisms promoted by
exposure to environmental chemicals/agents have been mitochondrial dysfunction, impairment of
lipid metabolism and excretion, insulin resistance, and elevated cytokine production [23]. Early life
exposure of animals to endocrine-disrupting chemicals, including bisphenol A (BPA), benzo[a]pyrene,
and phthalates, has been shown to induce fatty liver through mechanisms involving the activation of
nuclear hormone receptors and epigenetic alterations [17,18,24].

Few animal studies have also highlighted the role of secondhand smoke (SHS), a known inducer
of ROS and oxidative stress [25–27], in NAFLD development [28–30]. For example, Yuan et al. [30]
have shown that sub-chronic exposure of mice to SHS stimulates the synthesis of fatty acids in the liver
by modulating two key regulators of lipid metabolism, including AMP-activated kinase (AMPK) and
sterol regulatory element binding protein-1c (SREBP-1c). The SHS-exposed mice developed hepatic
steatosis, which, according to the authors, was an indication of the animals being en route to NAFLD
development [30]. Azzalini et al. have shown that nose-only exposure of Zucker obese rats to cigarette
smoke, which mimics SHS exposure, results in enhancement of the histological severity of NAFLD and
concomitant increases in oxidative stress and hepatocellular apoptosis [28].

Recently, we have investigated the role of SHS in the development of metabolic liver disease by
characterizing the global regulation of genes and molecular pathways and gene networks in mice
sub-chronically exposed to SHS (four months’ exposure). Histological examination of liver tissues from
SHS-exposed mice versus controls revealed significant fat accumulation (steatosis), which progressively
increased as the exposed animals underwent recovery in clean air. Genome-wide gene expression
analysis identified a large number of aberrantly expressed transcripts in the SHS-exposed mice upon
termination of exposure (n = 473). The number of differentially expressed genes in the SHS-exposed
mice having undergone one-month recovery in clean air remained substantially high (n = 222).
The persistent transcriptional changes in the SHS-exposed mice predominantly affected genes and
functional networks involved in lipid metabolism as well as in the regulation of the endoplasmic
reticulum where manufacturing of lipids occurs. The perturbation of key lipid genes in the SHS-exposed
mice is highly consistent with the progressive accumulation of fat in the corresponding animals.
Our data support a role for SHS, independently of diet, in the genesis and progression of metabolic liver
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disease through deregulation of genes and molecular pathways and functional networks involved in
lipid homeostasis. Our findings underscore how environmental carcinogens, such as SHS, in addition
to cancer-causing effects, may contribute to metabolic liver disease (manuscript in preparation).

3. Modulation of DNA Oxidation and TET Activity by Environmental Exposures

Methylation at the C5 position of cytosine (5mC), mostly in the context of CpG dinucleotides, is
the best studied epigenetic mechanism in mammalian cells, with critical functions in transcriptional
regulation, development, and other biological processes [31–36]. 5mC is a stable covalent modification
of the DNA; although in recent years, views on 5mC stability and persistence have drastically changed
owing to new insights gained on DNA hydroxymethylation. It is now well-known that 5mC is
converted to 5hmC by a DNA methylcytosine dioxygenase, belonging to the ten-eleven translocation
(TET) family [37–40]. TET proteins, including TET1, TET2, and TET3, can sequentially oxidize 5mC to
5hmC, 5-formylcytosine (5fC), and finally to 5-carboxylcytosine (5caC) [41–43]. 5fC and 5caC are both
repaired by mismatch-specific thymine DNA glycosylase (TDG) -mediated base excision repair (BER)
mechanisms, thus resulting in conversion to cytosine, as part of an active process of demethylation
(Figure 2) [44].
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Figure 2. DNA methylation and demethylation in mammalian cells. DNA methylation occurs at
the C5 position of cytosine (5mC), mostly in the context of CpG dinucleotides. 5mC is converted to
5-hydroxymethylcytosine (5hmC) by a DNA methylcytosine dioxygenase, belonging to the ten-eleven
translocation (TET) family. TET proteins, including TET1, TET2, and TET3, can sequentially oxidize
5mC to 5hmC, to 5-formylcytosine (5fC), and finally to 5-carboxylcytosine (5caC), using oxygen, iron and
α-ketoglutarate as co-factors/substrates. 5fC and 5caC are both repaired by base pair mismatch-mediated
excision repair mechanisms (BER), thus resulting in conversion to cytosine, as part of an active process
of demethylation. Alternatively, passive demethylation can occur during cell division.

Conversion of 5mC to 5hmC has been associated to epigenetic reprogramming and regulation
of tissue-specific genes [37,45,46]. 5hmC appears to be a prevalent epigenetic mark not just in the
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nuclear genome but in the mitochondrial genome as well [47–49]. The distribution of 5hmC within the
genome also differs from that of 5mC [43,50–54]. Whereas 5mC is located within repetitive elements
and heterochromatin, often associated to transcriptional silencing, enrichment of 5hmC is found within
promoters, gene bodies, and distal cis-regulatory elements (i.e., enhancers), and is likely to participate
in the regulation of tissue-specific expressed genes [39,54–57]. Furthermore, while the 5mC content
remains constant across tissues, 5hmC is highly tissue-specific [58] and dependent on changes in the
cellular state, induced by environmental and metabolic perturbations [59].

TET proteins catalyze the conversion of 5mC to 5hmC using Fe(II), O2 and α-ketoglutarate as
co-substrates (Figure 2) [51]. α-ketoglutarate is converted to succinate during the Krebs cycle, which
occurs in the matrix of mitochondria and regulates the redox state of the cells. A defective Krebs cycle
is usually associated to increased oxidative stress, which causes inflammation, a hallmark of many
diseases and conditions, including NASH [60]. Apart from TET enzymatic reaction, 5mC can also be
converted to 5hmC, though less efficiently, via radical oxidation reactions mediated by ROS, such as
hydroxyl radicals (•OH) and one-electron oxidants [41].

A growing number of studies has shown that environmental toxicants inducing ROS/oxidative
stress affect TET protein activity and oxidation of 5mC to 5hmC, thus interfering with the epigenetic
machinery and increasing susceptibility to disease (reviewed in refs [61–63]). Two recent studies
have independently investigated the effects of redox-active quinones on TET proteins and 5hmC
formation [64,65]. Both reports found that hydroquinone, a predominant metabolite of benzene and a
carcinogen found in cigarette smoke and other environmental pollutants, increases TET1 activity as well
as hydroxymethylation in human cells, possibly via a ROS-triggered mechanism [64,65]. Specifically,
Zhao et al. reported that local enrichment of 5hmC was associated to aberrant expression of more than
3000 genes involved in a broad range of cellular functions [65]. Delatte et al. used two experimental
models, namely SY5Y neuroblastoma cells treated in vitro with buthionine sulfoximine (BSO), a known
inducer of oxidative stress, and double knockout mice lacking both the antioxidant enzymes Gpx1
and Gpx2 (Gpx1/2 DKO mice), to study the global patterns of 5hmC in response to oxidative stress [66].
The authors reported a global loss of 5hmC in both the in vitro and in vivo systems. However, they also
identified locus-specific gain of 5hmC within coding genes and microRNAs involved in oxidative
stress response pathways, as well as loss of 5hmC at genomic loci involved in the physiopathology
of liver, heart, and kidney [66]. Exposure of rodents to a non-genotoxic carcinogen, phenobarbital
(a known hepatocarcinogen), has also been shown to affect the patterns of 5mC/5hmC at the promoter
region of a set of hepatic genes involved in xenobiotic metabolism [67].

A wide range of environmental carcinogens has been shown to cause perturbations in the
patterns of 5hmC, often via deregulation of TET activity, with effects being strongly dependent on the
intensity and duration of exposure (dose) [61–63,67–69]. Significant changes in the global level and/or
distribution of 5hmC have been detected in several cancers associated with tobacco use [56,70,71] and
in cells/animals exposed to a variety of environmental carcinogens/stressors [61–63]. The observed
changes in the hydroxymethylome are often associated with chromatin remodeling and transcriptional
activation [67].

4. The Role of 5hmC and TET Proteins in the Development of NAFLD

In recent years, there has been a growing interest in the study of epigenetic mechanisms affecting
genes responsible for NAFLD development [72–76]. Tissue-specific epigenetic modifications, associated
with the histological severity and prognosis of NAFLD, have been observed in both nuclear [77–80] and
mitochondrial genomes [81]. Whereas alterations in DNA methylation, histone marks, and noncoding
RNAs have been extensively investigated in fatty liver [74,75,82], data examining the impact of DNA
hydroxymethylation in the initiation and progression of NAFLD remain scarce [49,83,84].

Pirola et al. [49] have recently analyzed the overall levels of 5hmC in fresh liver samples
from NAFLD patients at different stages of the disease versus patients with near-normal liver
histology. Using immuno-specific assays, the authors detected no significant differences in DNA
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hydroxymethylation between NAFLD samples and near-normal controls. Nevertheless, patients with
NAFLD displayed a significant loss in non-nuclear 5hmC staining, probably located on mitochondria,
compared to controls. Of note, the authors found a significant positive correlation between global 5hmC
content and the mitochondrial DNA copy number (R = 0.50, p < 0.01). In addition, they observed an
inverse and significant correlation with mRNA levels of the hepatic peroxisome proliferator-activated
receptor gamma coactivator 1α (PPARGC1A) gene (R = −0.57, p < 0.05), a major transcription factor
modulating mitochondrial biogenesis and a sensor of metabolic changes [49]. These findings are
in agreement with previous data showing that NAFLD is associated with changes in PPARGC1A
expression, mitochondrial function, and mitochondrial DNA (mtDNA) copy number [49,79,85].
Furthermore, they implied a role for 5hmC in the modulation of mitochondrial DNA methylome
and transcription of genes involved in redox reactions (Figure 3), as well as in the regulation of the
PPARGC1α gene [86]. Pirola et al. used targeted next-generation sequencing to explore the contribution
of genetic variations within the three TET loci, of relevance to NAFLD. Analysis of missense variants
in TET1 and TET2 revealed a putative role for the TET1 locus in the modulation of apoptosis and liver
injury in NAFLD, while the TET2 locus is mostly involved in regulating the methylation/demethylation
balance of the liver PPARGC1α and thus its transcription [49,86]. Of note, TET2 is the dominant TET
isoform expressed in the liver [87].
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Figure 3. Modulation of 5hmC by oxidative stress. Enrichment of 5hmC is found within promoters,
gene bodies, and distal cis-regulatory elements (i.e., enhancers) and is likely to participate in the
regulation of tissue-specific expressed genes. Reactive oxygen species (ROS) produced by environmental
toxicants and contaminants and/or as by-products of metabolism are known to accumulate within
the hepatocytes of NAFLD patients. ROS and oxidative stress can alter the hydroxymethylome,
thus affecting the epigenetic reprogramming and transcriptional regulation of key genes involved in
lipid metabolism and/or oxidative stress response.
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Using experimental models of liver fibrosis (both human and rodent), Page et al. investigated the
involvement of 5hmC and TET proteins during hepatic fibrogenesis [83]. The authors demonstrated
that liver fibrosis is accompanied by alterations in the global patterns of 5mC/5hmC and their regulatory
enzymes, which are probably indicative of genome-wide changes in gene expression [83]. Specifically,
they showed increased expression of the maintenance DNA methyltransferase DNMT1 and of the
de novo DNA methyltransferases DNMT3a and 3b, with concomitant reduction of TET enzymes.
Next generation sequencing analysis of quiescent and activated rat hepatic stellate cells (HSCs),
the key cell type responsible for the initiation and progression of liver fibrosis, identified dynamic
remodeling of 5mC and 5hmC marks, genome-wide, during in vivo HSC transdifferentiation. Areas
of high density of 5hmC modifications were observed particularly on chromosome 9 and were
unique to activated HSCs, suggesting that site-specific hydroxymethylation plays a crucial role in
fibrogenesis [83]. Unfortunately, because of the relatively poor annotation of the rat genome, a large
number of differentially hydroxymethylated (and methylated) regions and their associated genes could
not be identified. The mechanisms by which genome-wide alterations in the patterns of 5mC/5hmC
promote changes in gene transcription during fibrogenesis are unknown, but they probably involve
gene silencing by the recruitment of chromatin remodeling complexes and/or reactivation of genes by
TET-induced oxidation of 5mC to 5hmC [83].

Lyall et al. used hepatocyte-like cells (HLCs) exposed to a cocktail of lactate, pyruvate, and
octanoid acid (LPO) to induce steatosis, mitochondrial dysfunction, and oxidative stress, thus mimicking
NAFLD initiation and progression [84]. Genome-wide profiling of 5hmC in LPO-treated and control
HLCs showed no global 5hmC changes in LPO-exposed HLCs relative to the control. However,
local enrichment of 5hmC was observed within the bodies of certain LPO-induced genes involved in
lipid synthesis and transport, including CYP2J2, HMGCS2, APOA4, APOA5, ACADVL, PCK1, CIDEC,
IGFBP1, and PLIN2. Because gene body hydroxymethylation is mostly associated with higher gene
transcription [54], it is plausible that the intragenic enhancement of 5hmC induces up-regulation of
these lipid-specific genes and, in turn, promotes the cellular steatosis observed in LPO-exposed HLCs.
Enzymes involved in pathways relevant to energy metabolism were also dysregulated consistent
with mitochondria dysfunction, which is a central feature of NAFLD [84]. These include isocitrate
dehydrogenase 1 and 2 (IDH1 and IDH2), whose expression is known to determine the overall 5hmC
content in the adult liver [88].

Altogether, these studies provide evidence of the role of DNA hydroxymethylation and TET
activity, in the pathogenesis of NAFLD. Finally, it is worth mentioning that the dynamic interplay of
DNA methylation/demethylation depends on the availability of substrates required for the maintenance
of the epigenetic landscape and that severe/persistent fluctuations in the levels of these substrates greatly
affect the patterns of epigenetic modifications. It is now known that certain metabolites produced by the
gut microbiota influence the host’s long term physiology by modulating the epigenome, for example by
inhibiting epigenetic modifying enzymes [89]. As a consequence, tissues exposed to high concentrations
of these bacterial metabolites, such as the intestinal epithelium or the liver, may undergo epigenetic
changes affecting genes involved in metabolic regulation and, in the long run, alter organ homeostasis
and predispose the host to metabolic chronic disease, including NAFLD (Figure 1) [90]. One of such
substances is the α-ketoglutarate, a co-factor of TET protein family members, which is produced by
bacterial metabolism and can affect the host’s hydroxymethylome [91]. However, more studies are
needed to further explore the crosstalk between microbiota metabolites and epigenetic machinery in
chronic liver disease.

5. Conclusions

The prevalence of NAFLD amongst children, youth, and adult populations is increasing at
an alarming rate [2,92]. Yet, the pathogenesis of this chronic liver disease is not fully understood.
NAFLD is a complex and multifactorial disease. Multiple elements and conditions are now known
to be involved in the progression of NAFLD, from simple steatosis and fatty liver to NASH to
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cirrhosis and hepatocellular carcinoma (HCC). These include diet, genetic predisposition, and gut
microbiota [5,93,94]. An increasing number of studies has also provided evidence for the role of
xenobiotics in the genesis of steatosis and steatohepatitis, through increased ROS production and
oxidative stress [95]. Based on the current evidence, it is plausible that imbalances in the redox state of
the cells, induced by exposure to a variety of pollutants, alter the hydroxymethylome, thus affecting the
epigenetic reprogramming and transcriptional regulation of key genes involved in lipid metabolism
or oxidative stress response (Figure 3). Aberrant expression of these genes may contribute to liver
steatosis and exacerbate liver injury, thus promoting the progression to NASH. Given the reversible
nature of epigenetic modifications, there is growing interest in developing epigenetic-based therapies
to prevent the development of NALFD, and identifying non-invasive biomarkers to distinguish various
stages of the disease.
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