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Abstract: Large-scale truck-involved crashes attract great attention due to their increasingly
severe injuries. The majority of those crashes are passenger vehicle–truck collisions. This study
intends to investigate the critical relationship between truck/passenger vehicle driver’s intentional
or unintentional actions and the associated injury severity in passenger vehicle–truck crashes.
A random-parameter model was developed to estimate the complicated associations between the risk
factors and injury severity by using a comprehensive Virginia crash dataset. The model explored the
unobserved heterogeneity while controlling for the driver, vehicle, and roadway factors. Compared
with truck passengers, occupants in passenger vehicles are six times and ten times more likely to suffer
minor injuries and serious/fatal injuries, respectively. Importantly, regardless of whether passenger
vehicle drivers undertook intentional or unintentional actions, the crashes are more likely to associate
with more severe injury outcomes. In addition, crashes occurring late at night and in early mornings
are often correlated with more severe injuries. Such associations between explanatory factors and
injury severity are found to vary across the passenger vehicle–truck crashes, and such significant
variations of estimated parameters further confirmed the validity of applying the random-parameter
model. More implications based on the results and suggestions in terms of safe driving are discussed.

Keywords: passenger vehicle–truck; injury severity; unsafe driver actions; random parameters;
ordered probit; freight transportation

1. Introduction

The economic impacts and safety hazards resulting from truck-involved crashes highlight freight
transportation safety as a contemplative societal concern [1,2]. From 2014 to 2015, the vehicle miles
traveled by large trucks (gross vehicle weight > 10,000 pounds) increased by 0.3%, while the number
of fatal large truck-involved crashes increased by 8% [3]. In addition, truck-involved collisions are
often more disruptive (e.g., damage to vehicles, roadway systems, as well as other facilities) and costly
(e.g., loss of life, use of emergency medical service (EMS), property damage, and traffic congestion) [4].
From an injury severity perspective, in 2014, a total of 3600 people died in large truck-involved crashes,
out of which 16% were truck occupants and 68% were occupants of passenger vehicles [5].

Although most of the truck-involved crashes involve multiple vehicles, two-vehicle passenger
vehicle–truck collisions often contribute to the majority (about 48%) of total fatal crashes according
to the 2017 Fatality Analysis Reporting System (FARS) on fatal truck-involved crashes. For instance,
in 2014, two-thirds of all police-reported crashes involved a truck and another vehicle [6], and 63% of the
fatal large truck crashes involved two vehicles [6]. Alarmingly, 97% of the vehicle occupants who died
in two-vehicle passenger vehicle–truck crashes were the occupants of passenger vehicles [5]. Therefore,
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this study focuses on crashes with one passenger vehicle and one truck. Another reason why this paper
focuses on two-vehicle passenger vehicle–truck crashes is the lack of clarity in identifying the drivers
who acted unsafely. Despite significant improvements in decreasing the national toll of truck-involved
fatalities, based on the statistics there is still an urgent need for careful investigation of the factors that
are associated with injury severity outcomes in two-vehicle passenger vehicle–truck collisions.

Some studies have successfully disentangled the complex associations between key factors
(such as driver age, gender, alcohol intake, and over-speeding) and the most severe injury outcomes
in truck-involved collisions [7–10]. However, questions concerning which unsafe driver (truck or
passenger vehicle driver) with intentional or unintentional improper driving actions will result in the
most severe injury in a crash level have been under-researched in the literature; in particular, among
the unsafe driving actions, which ones can substantially contribute to severe injury outcomes [11–13].
In addition, due to several unobserved crash-, vehicle-, and driver-related factors, injury severity models
often do not show well goodness-of-fit if the models do not account for unobserved heterogeneity.
Ultimately, the modeling results are biased and can adversely affect the policy implications of risk factors
or countermeasures. Thus, the present study addresses the methodological concern of unobserved
heterogeneity by capturing the complexities embedded in the data of passenger vehicle-truck collisions.
This is achieved by estimating random-parameter ordered probit models and comparing with traditional
fixed-parameter ordered probit models.

The present study contributes by focusing on two objectives:

1. Quantify the associations between unsafe driving behaviors and injury severity outcomes in
passenger vehicle–truck collisions. Specifically, the intentional and unintentional driving actions
of truck and passenger vehicle drivers.

2. Explore unobserved heterogeneity in the associations of injury severity with unsafe pre-crash
behaviors, while controlling for the driver, vehicle, and roadway factors.

An explicit investigation of drivers’ unsafe pre-crash actions is likely to allow us to develop
actionable safety improvement strategies. In order to achieve the objectives, sophisticated fixed-
and random-parameter ordered probit models are estimated by using real-world police-reported
crashes, which allows for the unearthing of important and embedded relationships in crash data.
The content of the paper is original and timely given the enormous costs sustained by society in
consequence to passenger vehicle–truck collisions, and the implications of safety concerns for occupants
of passenger vehicles.

2. Literature Review

Given the considerable costs imposed by truck-involved collisions, several researchers have
investigated such collisions and the key factors that may be associated with injury outcomes. In this
section, previous studies are synthesized with the specific focus on methodological approaches that are
used for establishing associations between different crash characteristics, unsafe pre-crash behaviors,
and injury outcomes in passenger vehicle–truck collisions.

A broad spectrum of studies investigated the associations between several factors such as collision
types, roadway types, vehicle types, and injury outcomes in passenger vehicle–truck collisions [4,14–19].
For instance, rear-end collisions, and right/left-turn crash types were found to be associated with higher
injury severity [4,14,15]. From the perspective of the striking and struck vehicle, Duncan et al. [4]
concluded a higher likelihood of severe injuries to passenger car occupants if struck by a truck [4]. From
roadway related factors, studies by Lemp et al. [17] and Khattak et al. [16] concluded a higher likelihood
of severe injury outcomes on curved sections and roadway sags [16,17]. Previous studies have shown
that the relaxation of the speed limit often increases the number of fatalities, and the speed limit could
reduce the possibility of accidents to a certain extent [20,21]. The lane width also has an effect on traffic
safety. One study from Wu et al. concluded that the standard-sized lane (width around 3.45 m) is less
likely to associate with a crash, while the undersized and oversized widths are often more likely to
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associate with crashes [22]. Regarding vehicle and driver-related factors, Chang and Mannering [15]
and Christoforou et al. [18] found that a greater number of occupants in a vehicle (or weighted vehicles)
is associated with higher injury outcomes [15,18]. Likewise, females, older people, and the non-use of
seatbelts were found to be associated with higher injury outcomes [4,17,23]. Driver condition-related
factors such as fatigue or falling asleep, driving under the influence, and physical or mental impairment
are also documented to be associated with a higher possibility of injury severity [24–26].

The role of driver actions in truck-involved crashes has also received considerable
attention [4,15,16,23,27]. Council et al. [28] investigated motor vehicle drivers’ unsafe driving actions
(UDAs) that resulted in (or contributed to) passenger vehicle–truck crashes. The study concluded that
most frequent unsafe behaviors were driving inattentively, improper merging, failure to stop or slow,
and following too closely [28]. Likewise, several studies concluded that speeding was the riskiest
driving behavior in truck-involved collisions [4,15,16,23].

The aforementioned studies did not focus primarily on investigating a broad range of unsafe
pre-crash driving behaviors, intentional and unintentional improper actions of either truck driver or
passenger vehicle driver, and the implications on most severe injury outcomes of passenger vehicle–truck
collisions. An explicit investigation of drivers’ unsafe pre-crash actions can help in developing
actionable safety improvement strategies for passenger vehicle–truck collisions. Furthermore, due to
the complex crash data structure and different unobserved crash-, vehicle-, and driver-related factors,
the associations between key driving behaviors and injury outcomes may vary significantly across
different crashes. Ignoring the possibility of varying relations between key explanatory factors and
injury outcomes can neglect important information embedded in passenger vehicle–truck crash
data [29]. The study of Zou et al. [30] applied a generalized finite mixture of the negative binomial
model with K mixture components to accommodate the heterogeneity. Xiong and Mannering [31]
accounted for unobserved heterogeneity by combining the finite-mixture and random-parameter
models. Finite-mixture and random parameter models are two main methods to examine the
unobserved heterogeneity. Both studies above did not focus on passenger vehicle–truck collisions.
Note that while the study by Islam and Hernandez [23] addresses unobserved heterogeneity in
passenger vehicle–truck collisions using a unique national-level database, it did not focus explicitly on
investigating intentional and unintentional pre-crash behaviors and their associations with most severe
injury outcomes in such collisions. Regarding the effects of the heterogeneity, a copula regression
model was used to identify the effect of underreporting on the analysis of wildlife-vehicle collisions by
Zou et al. [32]. Ye and Lord [33] also identified the effects of underreporting on the models, which are
commonly used in injury severity analysis. However, in this study, the random-effects ordered probit
models were also estimated but did not result in significant improvement in the model fit compared
with random-parameter models. We could perform a future study on other datasets to further explore
the effects of the underreporting on different models.

3. Methodology

3.1. Data Source

This paper used the 2013 Virginia Police Crash Reports obtained from the Virginia Department
of Transportation. The database is comprehensive and well-organized containing records of crashes
occurring across Virginia. For this study, three files are extracted from the database and linked together
in order to obtain the crash, vehicle, and person-level information involved in passenger vehicle–truck
collisions. Specifically, the crash file contains information on variables describing the crash, crash time,
roadway characteristics, and collision type—the vehicle file contains information on vehicles such as
vehicle body type, and the person file contains information on occupants (including driver) such as
age and gender, level of injury sustained, and other driver-related factors. All three files are linked
together through a unique crash identification number. Figure 1 presents the data structure and the
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conceptual framework. Note that passenger vehicles in this study include passenger car, pick-up truck,
van, and sports utility vehicles (SUV).Int. J. Environ. Res. Public Health 2019, 16, x 5 of 16 
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Figure 1. Data structure and conceptual framework.

Among 121,601 crashes documented in the database, 7501 are truck-involved crashes, and 4926
crashes are two-vehicle passenger vehicle–truck crashes. Given the focus of this study (as explained
earlier), two-vehicle passenger vehicle–truck collisions are extracted (i.e., 4926), which accounts for a
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significant 66% of the total truck-involved collisions. Given the national average of 63%, the sample
size at hand is reasonably representative.

There are nine combinations of different (truck and passenger vehicle) driver actions that are
shown in Table 1. Among them, the first four combinations account for around 90% of all combinations.
Moreover, to better analyze the associations of drivers’ actions with most severe injury outcome,
the cases in which only one driver (either passenger vehicle or truck) undertook an improper action are
selected. From the collision type perspective, as the present study focuses on two-vehicle passenger
vehicle–truck collisions, types such as non-collision, fixed object, collisions with train, motorcyclist,
and animals are ignored. Finally, after data processing and cleaning, the resulting sample size contains
3774 passenger vehicle–truck collisions such as rear-end, angle, head-on, and sideswipe same and
opposite directions.

Table 1. Combinations of different driver actions.

Possible Combinations Truck Driver Passenger Vehicle Driver

1 I No
2 U No
3 No I
4 No U
5 I I
6 U U
7 I U
8 U I
9 No No

Note: “I” stands for an intentional improper action; “U” stands for an unintentional improper action; “No” stands
for no improper action.

In terms of injury severity, this study utilized the most severe injury among all the occupants in
both vehicles as the injury severity level of the crash. As reported in the police crash report forms,
five levels of injury severity are observed: killed, serious injury, minor injury, no apparent injury,
and non-injury (property damage only). However, due to the limited number of crashes with fatalities,
and in order to facilitate the analysis, the injury severity scale is categorized into fatal/serious injury,
minor injury, and no injury. Several studies in the past have re-categorized injury severity scales due to
limited cases with fatalities [34].

Finally, to analyze the associations between unintentional and intentional driver actions (either
the truck driver or passenger vehicle driver), the driver actions reported in VDOT police crash report
forms are classified into four categories:

Action 1: Passenger vehicle driver undertook no improper action while truck driver undertook
an intentional improper action.

Action 2: Passenger vehicle driver undertook no improper action while truck driver undertook
unintentional improper action.

Action 3: Passenger vehicle driver undertook intentional improper action while truck driver
undertook no improper action.

Action 4: Passenger vehicle driver undertook unintentional improper action while truck driver
undertook no improper action.

To have a general map of those actions, the intentional actions include behaviors such as speeding,
following too close, wrong place or no right-of-way, disregard of officers, signals or signs, and so forth;
the unintentional actions include driver behavior that related to driving technique inadequate, failing to
maintain proper control, avoiding animals or object and other improper actions, and so forth. Note that
the classification scheme adopted in this study is consistent with Liu et al. [35], who investigated
pre-crash driver actions in work zones. For convenience, the four categories of unsafe pre-crash driver
actions will be referred to as Actions 1 to 4 hereafter.
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3.2. Modeling Framework

An ordered probit modeling framework is used in this study due to the ordinal nature of the
response outcome [16]. The model can be defined in terms of the ordinal dependent variable Y∗ as:

Y∗ = βX + δ (1)

where Y∗ is a dependent variable (in our case most severe injury outcome of a collision), β is a vector of
estimated parameters, X is a vector of the explanatory variable (driver action, collision type, collision
time, and etc.), and δ is error term, assuming it is normally distributed. Based on the ordered probit
model with normal residual distribution and from Equation (1), the dependent variable Y∗ can be
formulated as follows:

Y = n if γn−1 ≤ Y∗ < γn (2)

where γn denotes estimated parameters that define the observed ordinal data Y∗. Y∗ is related to the
latent variable Y∗ through the estimated parameter γn. The probability of the ordered probit model as
follows:

P(y = n) = ∅(γn −βX) −∅(γn−1 −βX) (3)

where ∅(.) is a function of normal cumulative distribution.
Note that the above framework implies an unduly restrictive assumption of constant parameter

effects across sampled observations. For instance, one coefficient is estimated for each explanatory
factor at times when the associations between explanatory factors and injury severity may vary
across sampled observations due to the presence of several observed and unobserved factors [34].
In the presence of such observed and unobserved factors (which are likely to be present in crash
data), constraining the fixed model coefficients across observations could potentially result in biased
parameter estimates, as shown in various studies [29,36]. Therefore, random parameters may be
incorporated to solve this issue using new estimation procedures through simulated maximum
likelihood estimation techniques as:

βi = β+ ϑi (4)

In this study, the random-parameter ordered probit model is estimated by simulated maximum
likelihood estimation, and by using 200 Halton draws as recommended by other studies [36].
For random parameters, we tested different distributions such as lognormal, triangular, Weibull,
and normal distributions (discussed later).

Finally, after model estimation, the signs of parameter estimates are of great importance. A positive
sign shows an increase in the probability of the most severe injury severity and a decrease in
the probability of the least severe outcome and vice versa for negative parameter estimates [29].
The coefficients can be also used to interpret the effects of explanatory factors on intermediate
categories [16]. As such, marginal effects for sample means are estimated both for fixed and
random-parameter ordered probit models as:

∂P(y = n)
∂X

= −[∅(γn −βX) −∅(γn−1 −βX)]β′ (5)

where β′ is the impact of changes in X and ∅(.) is a function of standard normal distribution [34,37].

4. Results

4.1. Descriptive Statistics

The present study analyzes 3774 passenger vehicle–truck crashes, which involve 7548 vehicles
and 7871 individuals. Figure 2 shows the distributions of most severe injury outcomes of the overall
occupants in the collisions (green bars), most severe injury outcomes of the passenger vehicle occupants
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(red bars), and most severe injury outcomes of the truck occupants (orange bars). It shows the
proportion of each injury category decreases as the injury severity increases. The majority of the
crashes are no apparent/no injury collisions. The proportion of minor/possible injury is much less than
the no apparent/no injury. The proportion of serious/fatal injury is the smallest, which only accounts
for about 6% of the collisions. The distribution is consistent with the Federal Highway Administration
(FHWA) highway safety statistics [38], which show a similar KABCO distribution (KABCO scale is
a kind of classification of injury severity. K: fatal injury; A: incapacitating/suspected serious injury;
B: non-incapacitating/suspected minor injury; C: possible injury; O: no/no apparent injury) indicating
the scarce fraction of serious/fatal injury crashes among all crashes. The distributions provide important
information embedded in the data. For instance, from an overall crash injury severity level distribution
perspective, 6.01%, 14.89%, and 79.09% of the crashes were serious/fatal, minor, and no apparent/no
injury, respectively. Importantly, the stratification of most severe injury outcomes based on passenger
vehicle and truck reveals that, compared with truck occupants, passenger vehicle occupants are six
times more likely to sustain minor injuries (14.12% vs. 2.41%) and ten times more likely to suffer
serious/fatal injuries (5.70% vs. 0.58%). These findings are in agreement with several past studies,
which confirm the reasonableness of the data structure [4,26,39,40].
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Figure 2. Most severe injury severity distributions in passenger vehicle–truck involved collisions.

Regarding the key explanatory variables, Table 2 presents descriptive statistics of variables
included in the fixed- and random-parameter ordered probit models. Table 2 displays the mean,
standard deviation (SD), and the variance inflation factors (VIFs) value for each indicator variable.
Due to several unidentified interactions among key factors in crash data, multicollinearity may
arise, which might significantly affect model results if not addressed carefully. The existence of
multicollinearity among independent variables was checked by VIFs (Table 2). The VIF values of each
variable are much smaller than 10, indicating the absence of significant multicollinearity [41].
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Table 2. Descriptive statistics of key variables.

Variable Description Mean SD VIF

Driver actions

Action 1 indicator
1 if passenger vehicle driver undertook no improper action
while truck driver undertook intentional improper action,

0 otherwise
0.375 0.484 2.487

Action 2 indicator
1 if passenger vehicle driver undertook no improper action

while truck driver undertook unintentional improper
action, 0 otherwise

0.079 0.270 1.263

Action 3 indicator
1 if passenger vehicle driver undertook intentional

improper action while truck driver undertook no improper
action, 0 otherwise

0.413 0.492 2.507

Action 4 indicator
1 if passenger vehicle driver undertook unintentional

improper action while truck driver undertook no improper
action,0 otherwise

0.133 0.340 1.640

Collision type

Angle 1 If collision type is angle, 0 otherwise 0.298 0.457 1.290

Head-on 1 if collision type is head-on, 0 otherwise 0.017 0.130 1.060

Sideswipe-same direction 1 If collision type is sideswipe-same direction, 0 otherwise 0.306 0.461 1.350

Injury count Total number of injuries in a collision 0.388 0.709 1.050

Roadway Type

Interstate (Base) 1 if roadway type is interstate, 0 otherwise 0.409 0.492 3.640

principal arterial 1 if roadway type is principal arterial, 0 otherwise 0.269 0.443 3.060

minor arterial 1 if roadway type is minor arterial, 0 otherwise 0.186 0.389 2.543

collector 1 if roadway type is collector, 0 otherwise 0.101 0.301 1.835

local 1 if roadway type is local, 0 otherwise 0.035 0.184 1.168

Driver condition

Drinking and driving
(pass. veh. driver) 1 if the passenger vehicle driver is drunk, 0 otherwise 0.023 0.148 1.030

Fatigued driving
(pass. veh. driver)

1 if the passenger vehicle driver is fatigued or asleep,
0 otherwise 0.019 0.135 1.060

Demographics

Age (pass. veh. driver) 1 if the passenger vehicle driver is 20–29 years old,
0 otherwise 0.241 0.428 1.020

Time of Day

Late night/early morning 1 if a crash happened between 01:00 and 08:00, 0 otherwise 0.207 0.405 1.010

Notes: Intentional actions refer to actions including speeding, wrong places, no right-of-way, following too close,
disregard of officers, signals, or signs, and so forth. Unintentional actions refer to actions including avoiding
animals or objects, failing to maintain proper control, other improper actions, and so forth. Pass. veh. refers to the
abbreviation of the passenger vehicle.

Based on the descriptive statistics, the data seem to be of reasonable quality. In 37.5% of the
collisions, passenger vehicle driver undertook no improper actions while truck driver undertook
an intentional improper action (action 1), as opposed to 41.3% of collisions in which truck driver
undertook no improper actions and passenger vehicle driver undertook intentional improper action
(action 3). Almost 30% of passenger vehicle–truck collisions were angle collisions, and approximately
21% of them occurred between 01:00 and 08:00. The average total number of injured is 0.388 in all
collisions (Table 2).
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4.2. Modeling Results

Explanatory variables are identified by developing the simple correlation matrices of key
factors with injury severity of the most severely injured person in passenger vehicle–truck collisions.
This helped in identifying potential factors related to driver actions, collision types, roadway types,
driver conditions, demographics, and temporal characteristics. Next, a series of fixed-parameter
ordered probit models are estimated for injury severity in the collision. Most variables were either
statistically significant at a 95% confidence level or theoretically important and retained for subsequent
analyses. The results of the final fixed–parameter ordered probit model are presented in Table 3.
Theoretically, fixed-parameter models constrain the parameter estimates to be fixed for explanatory
variables across the entire sample of the passenger vehicle–truck collisions [29]. Given the fact
that several observed and unobserved factors could contribute to injury severity in the collisions,
random parameters are incorporated with respect to conventional (fixed-parameter) ordered probit
framework. Conceptually, random-parameter models provide the flexibility to allow the parameter
estimates to vary across sample observations with some pre-specified distribution [36]. The results
of random-parameter ordered probit model are presented in Table 3. The final random-parameter
model includes 15 correlates, of which five parameters exhibited statistically significant variability
(as indicated by the standard deviation of parameter estimates) across the sampled collisions (Table 3).
One of these parameters is related to truck drivers undertaking unintentional improper actions.
Note that the variability exhibited by random parameters tends to be very large, indicating significant
heterogeneity in the associations of these variables with injury outcomes. Figure 3 shows the variation
of the coefficients. These results suggest the associations between some explanatory factors and injury
outcomes are indeed varying across sampled collisions, with positive parameter estimates for some
collisions and negative ones for others. Note that random-effects ordered probit models were also
estimated but did not result in a significant improvement of the model’s goodness of fit compared with
random-parameter models.
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Table 3. Modeling results for fixed- and random-parameter ordered probit models.

Fixed-Parameter Model Random-Parameter Model

Variable β t-Stats β t-Stats

Driver actions
Action 1 (Base)

Action 2 −0.167 −1.43 −0.391 *** −2.93
standard deviation — — 0.658 *** 5.45

Action 3 0.133 ** 2.07 0.150 ** 2.09
Action 4 0.315 *** 3.72 0.381 *** 4.32

Collision type
Angle 0.160 ** 2.50 0.178 *** 2.63

Head-on 0.793 *** 4.62 0.856 *** 4.39
standard deviation — — 0.932 *** 4.62

Sideswipe-same direction −0.262 *** −3.46 −0.273 *** −3.10
Injury count 1.310 *** 36.54 1.571 *** 43.80

Roadway Type
Interstate (Base)
principal arterial −0.142 ** −2.02 −0.433 *** −5.40

standard deviation — — 0.849 *** 15.02
minor arterial −0.253 *** −3.17 −0.640 *** −6.78

standard deviation — — 1.004 *** 14.43
collector −0.227 ** −2.29 −0.297 *** −2.94

local −0.531 *** −3.11 −0.639 *** −3.94

Driver condition
Drinking and driving (pass. veh. driver) 0.533 *** 3.54 0.581 *** 3.67

Fatigued driving (pass. veh. driver) 0.299 * 1.75 0.335 * 1.86

Demographics
Age (pass. veh. driver) −0.158 ** −2.39 −0.187 *** −2.62

standard deviation — — 0.232 *** 3.77

Time of Day
Late night/early morning 0.196 *** 3.06 0.270 *** 3.82

µ(1) 1.262 *** 26.71 1.518 *** 29.25

Number of observations 3774 3774
Log-likelihood with constant only −2408.439 −2408.439

Log-likelihood at convergence −1494.187 −1472.797
Likelihood Ratio Test Chi–square = 42.780; p–value = 0.005

Notes: ***, **, * represents significance at 1%, 5%, and 10% level. µ(1) represents estimable threshold parameters that
define the most severe injury outcomes of passenger vehicle–truck collisions.

The incorporation of random parameters resulted in the overall improvement of fitness compared
with the fixed-parameter model (Table 3). Moreover, following the study of Washington et al. [42],
a chi-square likelihood ratio test is conducted to investigate the statistical superiority of the
random-parameter ordered probit model against its fixed counterpart. The likelihood ratio test
statistic is LR = −2[LL(βa) − LL(βb)], where LL(βa) is the log–likelihood at the convergence of
fixed-parameter (restricted ordered probit) model, and LL(βb) is the log-likelihood at the convergence
of random-parameter (unrestricted ordered probit) model. The test statistic is χ2 distribution is
calculated based on certain degrees of freedom (i.e., the difference in numbers of parameters between
fixed- and random-parameter models). With 22 degrees of freedom (i.e., five random parameters),
the resulting χ2 value is 42.780 (Table 3), which is very close to critical χ2 0.005 (99.5% level of confidence)
of 42.8. As a consequence, a random-parameter ordered probit model is observed to provide statistically
superior predicting capability against the fixed-parameter ordered probit counterpart [42]. Regarding
the functional form of random parameters, normal, lognormal, and uniform distributions are tested
(please refer to authors for more results). All normally distributed random parameters provided a better
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fit. This finding is in agreement with the traffic safety literature [34,36]. Finally, as discussed by Khattak
and Rocha [43], in order to interpret the associations between explanatory factors and intermediate
response category (minor injury), marginal effects are provided for fixed- and random-parameter
models in Table 4.

4.3. Discussion

To facilitate discussion of estimated models, the explanatory factors (Table 2) are categorized
as driver actions, collision types, roadway types, driver-related factors, and time of day. Based off

the modeling results, some variables (e.g., Action 2, principal arterial, and passenger vehicle driver
age) are significantly associated with injury severity in the random-parameter model, but they are
not as significant as in the fixed-parameter model. A possible explanation for this is the unobserved
heterogeneity, which is one of the important contributions in this study. Note that some of the variables
are not significantly based on their impacts on the injury outcome. Therefore, they are not included
in the final model. The correlation estimations are substantially diversified among the fixed- and
random-parameter models across the passenger vehicle–truck crashes as discussed below. Note that
Figure 3 shows the variation of the random parameters.

4.3.1. Driver Actions

Regarding driver actions (Table 3), action 2, 3, and 4 indicators reveal important associations
between driver actions (for both truck and passenger vehicle driver) and injury outcomes. The action
1 indicator (if the passenger vehicle driver undertook no improper action while the truck driver
undertook intentional improper action) is used as the base category. Action 3 and 4 indicators were
statistically significant (at 95% and 99% level of confidence, respectively), while action 2 indicator
is insignificant in the fixed-parameter model. Based on the random-parameter model, intentional
improper action of the passenger vehicle driver (action 3), as well as the unintentional improper
action of the passenger vehicle driver (action 4) are both significantly associated with higher injury
outcomes. From a behavioral perspective, this finding is important in the sense that it highlights
the higher propensity of suffering severe injuries given a crash, irrespective of passenger vehicle
driver undertaking intentional or unintentional improper actions. Similar insights were observed in
another study [23]. However, that study focused on maneuvers and not explicitly on intentional and
unintentional actions [23]. Although action 3 and action 4 indicators are found to be fixed parameters,
the incorporation of random parameters in the ordered probit framework significantly enhanced the
statistical significance of estimated parameters. Passenger vehicle driver with no improper action
and truck driver with unintentional improper action (action 2, normally randomly distributed) is
statistically negatively significant associated with injury severity in the random-parameter model at
a 99% level of confidence compared with action 1 (passenger vehicle driver undertook no improper
action while truck driver undertook intentional improper action). A possible explanation is that the
truck driver’s intentional actions, such as speeding or cutting in, are more likely to associate with
higher injury outcomes than the unintentional actions of the truck driver. The truck drivers are often
well trained so that they may be unlikely to make unintentional driver actions such as distraction
(due to fatigue) or failing to maintain proper control. Thus, the unintentional action of the truck driver
is negatively associated with injury severity compared to the action 1 base. The marginal effect of the
action 2 shows that there is a 5% increase in the possibility of sustaining no apparent/no injury, a 4.9%
decrease in the probability of suffering a minor injury, and a 0.2% decrease in suffering a serious/fatal
injury (compared with the action 1).

4.3.2. Driver Related Factors and Time of Day

Interestingly, if the passenger vehicle driver is fatigued or asleep in a collision, the injury severity
is higher. Results show that fatigued driving is associated with injury severity at a 90% confidence level.
While the parameter estimates for this variable are found to be fixed, the marginal effects obtained
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from fixed- and random-parameter models reveal differences. The average marginal effects for fatigue
(Table 4) show that if the passenger vehicle driver is fatigued, then there is a 6.6% decrease in the
probability of sustaining no apparent/no injury, a 6.3% increase in the probability of suffering a minor
injury, and a 0.4% increase in probability of suffering a serious/fatal injury, all for the most severely
injured occupants in a passenger vehicle–truck collision. Notably, truck driver fatigue did not have a
statistically significant association with injury severity. This might be due to the fact that truck drivers
are usually well trained to avoid fatigued driving. This result is interesting when coupled with the
results that the passenger vehicle–truck collisions occurring late at night and in early morning hours
(between 01:00 and 08:00) are more serious, which perhaps captures drivers’ drowsiness. The results
show that late night/early morning indicator is positively associated with injury outcomes at a 99%
confidence level in both models. The marginal effects in Table 4 show that compared with other times of
day, a collision that occurs late at night and in early morning times has a 4.6% higher chance of suffering
a minor injury, and a 0.2% increased chance of suffering a serious/fatal injury. Though late night/early
morning indicator can be a fixed parameter, its t–value is improved in the random–parameter model.
Drinking and driving by the passenger vehicle driver is associated with more severe injury outcomes
at a 99% confidence level in both fixed and random models, which sounds logical. If the driver is
fatigued or driving after drinking, he/she may be more likely to be involved in an accident. Moreover,
such driving conditions are often correlated with severe injury severity.

In terms of driver demographics, the age of the passenger vehicle driver is found to be a normally
distributed random parameter with a mean of −0.187 and a standard deviation of 0.232. Passenger
vehicle drivers aged 20–29 years are negatively associated with injury outcomes. This finding is in
agreement with other studies [43]. In this study, it is found that the driver in this age range has a
2.7% decreased likelihood of suffering a minor injury, and a 0.1% decreased probability of suffering a
serious/fatal injury. One possible explanation for this is that the young drivers are physically strong,
while the old drivers are often more vulnerable and more likely to be injured in a crash. Previous
studies also show that young passenger vehicle drivers are less likely to sustain a severe injury than old
drivers in more severe crashes, even though they are more likely to be involved in crashes. The results
show that significance of age is found to be significantly enhanced in the random-parameter model.
(Note that driver conditions and the demographics of truck drivers were also considered, but none of
the variables were statistically significant, and thus the results are not presented.)

4.3.3. Roadway Types

Compared with interstates, principal arterials, minor arterials, collector and local are all expected
to be negatively associated with severe injury outcomes. Local roadway systems are more likely to be
associated with less severe crashes, compared with other roadway types. Notably, principal arterials
and minor arterials both resulted in parameter randomness. The significance of principal arterial and
collector are improved from 95% in the fixed model to 99% in the random model. Principal arterials
are normally distributed with a mean of −0.433 and a standard deviation of 0.849 (Table 3), suggesting
a 6.1% increased probability of sustaining no apparent/no injury, a 5.9% decreased probability of
sustaining a minor injury, and a 0.2% decreased probability of suffering a serious/fatal injury, compared
with interstate. Likewise, heterogeneity is observed in associations between minor arterial and
most severe injury outcomes (Table 3). Moreover, the marginal effects obtained from the fixed- and
random-parameter models have significant differences, especially for the serious/fatal injury outcomes
(Table 4). For collisions on the local roads, the chances of serious/fatal injury decrease by 0.7% (in the
fixed-parameter model) as opposed to a 0.2% decrease in the random-parameter model. Even though
other roadway types are at the same significance level in two models, the values of estimates are also
improved in the random-parameter model.
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4.3.4. Collision Types

Out of all collision-type factors, head-on and angle collisions are found to be statistically
positively associated with the most severe injury outcomes in passenger vehicle–truck collisions, while
sideswipe-same direction collisions are negatively associated with the injury severity. Note that both
head-on and sideswipe-same direction collisions are significantly associated with injury severity at a
99% level of confidence in both models. The significance of angle collisions is found to be enhanced in
the random-parameter model (95% and 99% level of confidence in the fixed model and random model,
respectively). Numerous studies have found positive associations between collision types (head-on
and angle) and injury outcomes. However, from a passenger vehicle–truck collision perspective,
the injury outcomes may be more severe, which is potentially due to the enormous physical momentum
of colliding trucks [4]. As such, the modeling results suggest a greater propensity of severe injury
outcomes associated with both head-on and angle collisions. This finding is in agreement with Khattak
and Targa [39] who investigated injury severity and total harm in truck-involved work zone crashes [39].
However, this study suggests that the head-on indicator is found to be a normally distributed random
parameter, suggesting the estimations of the head-on collisions vary across the passenger vehicle–truck
crashes (Figure 3). This heterogeneity may be due to several unobserved factors that are not accessible
to the research team. The marginal effects of head-on collisions also show there is a 22% decreased
possibility of sustaining no apparent/no injury, a 20.1% increased possibility of sustaining a minor
injury, and a 2% increased possibility of suffering a serious/fatal injury. Likewise, a higher propensity
of severe injury outcomes is also associated with greater numbers of injuries.

Table 4. Marginal effects (fixed- and random-parameter ordered probit models).

Fixed-Parameter Model Random-Parameter Model

Variables No Apparent/
No Injury Minor Injury Serious/

Fatal Injury
No Apparent/

No Injury Minor Injury Serious/
Fatal Injury

Driver actions
Action 2 indicator 0.032 −0.029 −0.003 0.050 −0.049 −0.002
Action 3 indicator −0.028 0.025 0.003 −0.025 0.024 0.001
Action 4 indicator −0.074 0.065 0.009 −0.074 0.070 0.004

Collision type
Angle −0.035 0.031 0.004 −0.030 0.029 0.001

Head-on −0.234 0.190 0.044 −0.220 0.201 0.020
Sideswipe-same

direction 0.051 −0.046 −0.005 0.041 −0.039 −0.002

Injury count −0.272 0.243 0.029 −0.253 0.243 0.010

Roadway Type
principal arterial 0.028 −0.025 −0.003 0.061 −0.059 −0.002

minor arterial 0.048 −0.043 −0.005 0.079 −0.076 −0.003
collector 0.042 −0.038 −0.004 0.041 −0.039 −0.001

local 0.081 −0.075 −0.007 0.068 −0.066 −0.002

Driver condition
Drinking and driving

(pass. veh. driver) −0.143 0.121 0.022 −0.131 0.122 0.009

Fatigued driving
(pass. veh. driver) −0.072 0.063 0.009 −0.066 0.063 0.004

Demographics
Age (pass. veh. driver) 0.031 −0.028 −0.003 0.028 −0.027 −0.001

Time of Day
Late night/early morning −0.043 0.038 0.005 −0.048 0.046 0.002

5. Limitation

The study investigates the associations between unsafe driver actions and injury outcomes in
passenger vehicle–truck collisions by using the real-world police-reported crashes, which has many
intrinsic limitations [29,39]. For example, the driver actions reported in police crash reports were
assumed to be accurate, and the intentional and unintentional driver actions were classified according
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to the description of police officers. However, it is often quite difficult for police officers to reconstruct
what happened in a collision after the fact. Thus, the objectivity of the classification of intentional and
unintentional actions might be a limitation of the study, as it is guessed by police who were not on the
scene. Moreover, there are also some important variables that are not available in the databases, which,
if incorporated, could better improve the estimation results. Such limitations will be solved in the near
future by examining other high–quality crash datasets.

6. Conclusions

This study contributes by quantifying associations of intentional and unintentional improper
actions of truck and passenger vehicle drivers and driver condition with injury severity outcomes in
passenger vehicle–truck collisions. The study explicitly accounts for unobserved heterogeneity and
finds that some of the correlates have both positive and negative associations with injury severity.
Rigorous fixed- and random-parameter ordered probit models are estimated using 2013 state-wide
passenger vehicle–truck collision data from the Commonwealth of Virginia. Significant efforts went
into processing the raw data and linking different databases for collecting important information
on the crash, vehicle, and driver-related factors. The model results showed that compared with
fixed-parameter and random-effects ordered probit models, the random-parameter model provides a
superior fit to data at hand and provides fuller information regarding the relationships between key
factors and the most severe injury outcomes.

Compared with truck occupants, passenger vehicle occupants are six times more likely to sustain
minor injuries and ten times more likely to suffer serious/fatal injuries. All else being equal, intentional
improper actions and unintentional improper actions of the passenger vehicle drivers are both positively
associated with higher injury severity, while the unintentional actions of the truck drivers are negatively
associated with injury severity in passenger vehicle–truck crashes. Passenger vehicle driver-related
factors such as driving under the influence of alcohol and fatigue are associated with higher injury
outcomes. Importantly, compared with other times of day, passenger vehicle–truck collisions occurring
late at night and in early mornings (01:00 and 08:00) are associated with higher injury severity in
such collisions.

From a behavioral perspective, a specific taxonomy of driver errors, whether intentional or
unintentional, should be targeted given that passenger vehicle driver errors are significantly associated
with higher injury outcomes. The safety literature shows numerous examples where intentional errors
are associated with higher injury outcomes. However, in the case of passenger vehicle–truck collisions,
unintentional errors are also of great concern. Driver awareness and training programs such as
educating passenger vehicle drivers about driving carefully in the vicinity of trucks may also target
driver errors that increase injury severity. Regarding driver behaviors and conditions, driving while
fatigued or falling asleep and collisions occurring late at night and in early mornings are high-risk
factors associated with injury severity. Countermeasures (e.g., regular sleep patterns) should be
considered to minimize such risk factors. Finally, from a methodological standpoint, the study results
imply that addressing unobserved heterogeneity is important in injury analysis of such collisions.
Ignoring unobserved heterogeneity can mask important information embedded in data, which may
affect the quantification of effects of risk factors and hence the development of appropriate strategies.
Due to the limitations of this study, further work will be performed to examine more comprehensive
crash databases in order to validate the findings by exploring the effects of underreporting issues of
data quality.
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