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Abstract: Membrane fouling is still a critical issue for the application of ultrafiltration, which has been
widely used in water treatment due to its efficiency and simplicity. In order to improve the antifouling
property, a new 2D material MXene was used to fabricate composite ultrafiltration membrane with the
approach of in situ embedment during the phase inversion process in this study. Scanning electron
microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), energy
dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), water contact angle,
bovine serum albumin rejection and porosity measurements were utilized to characterize the prepared
membranes. Due to the hydrophilicity of the MXene, the composite membranes obtained higher
hydrophilicity, confirmed by the decreased water contact angle. All the modified membranes had a
high bovine serum albumin rejection above 90% while that of the pristine polysulfone membrane was
77.48%. The flux recovery ratio and the reversible fouling ratio of the membranes were also improved
along with the increasing content of the MXene. Furthermore, the highest flux recovery ratio could
also reach 76.1%. These indicated the good antifouling properties of MXene composite membranes.
The enhanced water permeability and protein rejection and excellent antifouling properties make
MXene a promising material for antifouling membrane modification.
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1. Introduction

Ultrafiltration (UF) technology is effective for turbidity and pathogen removal at low pressures,
so it has been widely used in the process of drinking water treatment. The advantages of UF include
high water production, compact modular design, and good adaptation to changes in water quality [1,2].
Owing to these advantages, UF membrane systems are now widely applied in water plants in order to
simplify the conventional water treatment process. Polysulfone (PSF), as a resin material, is now widely
used as the raw material for ultrafiltration membrane fabrication due to its outstanding mechanical
properties, great chemical resistance, good thermal stability and wide pH operation range. However,
the hydrophobic nature of polysulfone could result in membrane fouling which may reduce membrane
service life and thus has become a major challenge for its wide applications.

Membrane modification such as chemical grafting, surface modification or physical doping can
overcome the weaknesses caused by the hydrophobic nature of PSF and this has attracted much
attention [3]. Among various modification methods, physical blending of PSF with nanomaterials has
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gained great popularity for its ease, cost-effectiveness and ability to retain the primary morphology of
the membrane [4,5]. Ding et al. [6] fabricated the ultrafiltration membrane using N-doped graphene
oxide (NRG)/TiO2 as a filler, showing good improvement of hydrophilicity, fouling resistance and
permeability for the PSF membrane. Khan et al. [7] used modified nanocarbon black as nanofillers to
enhance the antifouling properties of the ultrafiltration membrane, and the results showed that the
highest flux recovery reached up to 89.4% after three cycle tests. Therefore, finding a suitable inorganic
material has become a hot spot in current research.

Recently, a new family of 2D materials named “MXene” has received great attention in the field of
membrane separation [8–10]. MXenes are a type of layered 2D materials prepared by removing the A
layer of their precursor MAX phases, where M represents the early transition metal, A corresponds
to the group element (mainly IIIA or IVA group), and X stands for C and/or N. The MXene defined
as Mn+1XnTx, where T refers to the function groups (e.g., O, F or OH). It has hydrophilic surfaces,
good structure, great chemical stability as well as excellent electrical conductivity [11–13]. Owing to
these advantages, MXene has been widely utilized in the field of separation membranes for water
desalination, gas separation, ion sieving, and wastewater treatment [14–18]. Meanwhile, considerable
attention has been paid to adding carbon-based nanomaterials into polymer to fabricate ultrafiltration
membranes. Compared to normal polymer membranes, these modified membranes have obvious
improvements in hydrophilicity, mechanical strength, as well as antifouling ability [19–21]. Han et al.
fabricated a new 2D MXene/PES composite membrane, showing excellent hydrophilicity and enhanced
water flux and high rejections to Congo red dye [11]. However, there are few studies on the antifouling
ability of MXene membranes.

In this work, MXene (Ti3C2Tx) were incorporated into PSF membrane to fabricate a new kind
of nanocomposite membrane, which has an improved hydrophilicity and antifouling performance.
Selective etching followed by delaminating of Ti3C2Tx powders was utilized to synthesize MXene
nanosheets. The resulting MXene nanosheets were dispersed in water and were incorporated into
PSF membrane by the in situ embedment method. The effect of different MXene concentrations
on hydrophilicity, surface charge, porosity and pore structure were systematically evaluated.
The morphology, water permeation, separation performance and antifouling properties of the composite
membranes were studied following the standard experimental protocol.

2. Materials and Methods

2.1. Materials

HCl (36–38%, AR) was bought from Lingfeng Chemical Reagent, China. LiF (99.9%) was purchased
from Aladdin Industrial Corporation, Shanghai China. MAX phase (Ti3AlC2) which was utilized
for chemical etching to obtain MXene nanosheets was purchased from Ming Shan new materials
corporation, Nanjing China. N-methylpyrrolidone (NMP, AR), polyvinylpyrrolidone (PVP, GR),
polysulfone (PSF, AR) and bovine serum albumin (BSA, MW = 67,000 g/mol) were purchased from
China Sinopharm International (Shanghai, China) Corporation.

2.2. Synthesis of MXene Nanosheets

The schematic of synthesis and embedment of MXene nanosheets is shown in Figure 1. In this
work, the precursor used to synthesis MXene nanosheets was Ti3AlC2. It has a brick-like structure with
firmly stacked layers which is hard to delaminate by sonication because of the Ti-Al metallic bond [22].
Therefore, in situ HF formation was utilized to exfoliate Ti3AlC2 powders to obtain the Ti3C2Tx MXene
powders. Then, the MXene nanosheets were produced by sonication.

In brief, 1.0g LiF was added into a plastic beaker with 20mL of 9M HCl with stirring at room
temperature for 5 min so that the etchant could be prepared. Then 1.0g Ti3AlC2 powders were gradually
added to the etchant in 10 min with magnetically stirring and 24h was needed to complete the reaction.
The resulting suspension was washed with deionized (DI) water via centrifugation for several cycles



Int. J. Environ. Res. Public Health 2019, 16, 4659 3 of 16

(5 min per cycle at 3500 rpm) until pH 5 was achieved. Afterwards, bottom sediment was diluted with
100mL DI water for ultrasonication delamination for 1h. Then Ti3C2Tx nanosheets would be finally
obtained after centrifugation for 1h [16,23,24].

2.3. Membrane Fabrication and in Situ Nanosheet Embedment

Amounts of 17 wt % PSF and 3 wt % PVP additive were dissolved in NMP (80 wt %) with
continuous stirring at 150 rpm of 50 ◦C for 8 h. Then, the beaker with casting solution was placed in
water bath cauldron for 24 h in order to remove air bubbles. Afterwards, the solution was cast onto a
clean and flat glass plate to form a film with a self-made casting knife. The film on the glass plate was
then immersed into a water bath at room temperature.

According to the literature [25], the water bath used for membrane formation was dispersed with
the MXene nanosheets at a certain concentration (0mg/L, 100mg/L, 300mg/L, 500mg/L, respectively) to
embed MXene nanosheets. Correspondingly, the fabricated membranes are represented by M0, M1,
M2 and M3, respectively.

2.4. Characterization of Membranes

The morphologies of the composite membranes were observed by using scanning electron
microscopy. Furthermore, the surface roughness of the membrane was investigated by atomic force
microscope. Energy dispersive spectroscopy (EDS; S-4200N, Hitachi, Tokyo, Janpan) was utilized
to determine the quality of the dispersion and the existence of MXene nanosheets on the membrane
surface. Fourier transform infrared spectroscopy (FTIR; Nicolet 6700, Thermo Electron Corp., Madison,
WI, USA) was also applied to characterize the membranes.

To measure the thermal stability of the membranes, thermogravimetric analysis (TGA; 409pc,
Netzsch, Selb, Germany) was applied with a heating rate of 10 ◦C/min from 20 ◦C to 800 ◦C under
inert atmosphere.

The hydrophilicity of the membranes was evaluated from the water contact angle. Further, the
water contact angle of membranes was measured with a contact angle goniometer at room temperature
(G10, Kruss, Hamburg, Germany). Besides, the membrane surface charge was also tested by streaming
potential measurement using a SurPASS analyzer (Anton Paar Gmbh, Austria).

The membrane porosity (ε) was calculated according to Equation (1) [26]

ε(%) =

(W W− WD)
ρW

(W W− WD)
ρW

+ WD
ρP

× 100 (1)

where WW is the weight of wet membranes (g), WD is the weight of dry membranes (g), ρw is the
density of pure water at operating conditions (g·cm−3), and ρp is the density of the polymer (g·cm−3).

Mean pore size (rm) was calculated by the Guerout–Elford–Ferry method in Equation (2):

rm =

√
(2.9−1.75·ε)·(8 ·η·l· j)

ε·Am·∆P
(2)

where η stands for the water viscosity (8.9·10-4 Pa·s); ∆P represents the operation pressure (0.1MPa);
l is the thickness of membrane (m); ε is the membrane porosity, Am is the effective membrane area (m2)
and j is the volume of permeate water per unit time (L/s) [26,27].

2.5. Water Permeability and Separation Performance Tests

Water permeability and separation performance of the prepared membranes were evaluated
through laboratory scale self-made dead-end filtration equipment with a valid membrane area of
31.16 cm2. First, each membrane was compacted at 0.2 MPa with pure water for 30 min to obtain a
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steady flux. Following this, the pressure was reduced to the operation pressure of 0.1 MPa to test the
water flux. The water flux was calculated with the following equation:

Jw,1 =
M

A·∆t
(3)

where M is the weight of the permeated pure water (kg), A is the membrane effective area (m2) and ∆t
is the permeation time (h).

After that, an aqueous feed BSA solution was prepared with the concentration of 500mg/L to
evaluate the performance of ultrafiltration. Rejection (R) at any point in the filtration process was
defined as follows:

R(%) =

(
CF−CP

CF

)
× 100% (4)

where CP is the BSA concentration in the permeation and CF is that in the feed solution.

2.6. Antifouling Performance Evaluation

The static protein adsorption on membrane was evaluated by solution depletion method. Bovine
serum albumin (BSA) was used as model foulants. The prepared membranes with a diameter of
2 cm were immersed in 1g/L BSA solution prepared in phosphate buffer saline (PBS, pH 7.4) at 25 ◦C
for 24 h. The concentration difference before and after adsorption was measured by an ultraviolet
spectrophotometer at 280 nm. The result could represent the adsorption capacity of each membrane.

After water permeability and separation performance tests, the fouled membranes were washed
with pure water for 15 min to clean the membranes contaminated by protein. Afterwards, the water
flux was measured again as Jw, 2(L·m−2

·h−1). The flux recovery ratio (FRR) was defined as follows [28]:

FRR =

(
Jw,2

Jw,1

)
×100% (5)

In order to analyze the fouling process more accurately, the total fouling ration (Rt) with reversible
fouling ratio (Rr) and irreversible fouling ratio (Rir) was used and calculated by the following
equations [28,29]:

Rt(%) =

(
1−

Jp

Jw,1

)
× 100% (6)

Rr(%) =

( Jw,2−Jp

Jw,1

)
× 100% (7)

Rir(%) =

(
Jw,1−Jw,2

Jw,1

)
× 100% (8)
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to their carbon based structure [11,12,30]. In addition, there were no cracks on the surface, 
contributing to the good stability of the membrane. 

Figure 2 also exhibits the cross-sectional SEM images of the prepared membranes with different 
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improved owing to these lateral pores. 

Figure 1. Schematic illustrations of the preparation and embedment of the MXene nanosheets.

3. Results and Discussions

3.1. Morphology and Structure of the Membranes

SEM was utilized to characterize the surface and the cross-section of the composite membrane.
Figure 2 shows the top surface of all the membranes and MXene nanosheets as can be seen on
membranes M1, M2, and M3. The MXene nanosheets were well dispersed in the polymer matrix due
to their carbon based structure [11,12,30]. In addition, there were no cracks on the surface, contributing
to the good stability of the membrane.

Figure 2 also exhibits the cross-sectional SEM images of the prepared membranes with different
MXene contents. All of the membranes had a typical asymmetric structure which consisted of a
finger-like porous sublayer and a dense top layer [30]. During the phase inversion process, the mass
transfer rate between the solvent and the non-solvent was increased by the MXene and larger pore
channels were formed in the membranes [31]. The water permeation of the membranes were thus
improved owing to these lateral pores.
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Figure 2. SEM images of the prepared membranes: M0 (a,b); M1 (c,d); M2 (e,f); M3 (g,h).



Int. J. Environ. Res. Public Health 2019, 16, 4659 7 of 16

Figure 3 is the atomic force microscopy (AFM) image of the prepared membranes where
the brightest area represents the highest point of the membrane surface while the dark area
demonstrates the valleys of membrane pores. The surface roughness parameters average roughness
(Sa), root-mean-square of the Z data (Sq) and height difference between the highest peak and the lowest
valley (Sy) are shown in Table 1. The surface roughness parameters of the composite membranes
decreased with the addition of the MXene compared to the neat membrane. One possible reason is
that the nanofillers were regularly collocated in membrane. Therefore, many small peaks appeared on
the membrane surface instead of large peaks, resulting in a smooth surface of the membrane [32,33].
Reducing the surface roughness was an effective approach to restrict the penetration of foulants into
the membrane and adhesion between them [34,35]. All of these contributed to the better antifouling
properties of the nanocomposite membranes.Int. J. Environ. Res. Public Health 2019, 16, x  7 of 16 
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Figure 3. The atomic force microscopy (AFM) images of the prepared membranes: M0 (a); M1 (b); M2
(c); M3 (d).

Table 1. Surface roughness parameters of the prepared membranes.

Membrane
Roughness Parameters (nm)

Sq Sa Sz

M0 43.7 ± 5.2 33.8 ± 1.9 261 ± 20.1
M1 33.0 ± 3.7 24.9 ± 3.1 192 ± 19.1
M2 20.8 ± 1.2 16.0 ± 1.8 123 ± 15.4
M3 20.5 ± 1.3 15.5 ± 1.7 138 ± 16.7

To assess the existence and quality of the MXene in the membrane, EDS analysis was applied.
The spectrums and elements contents are shown in Figure 4, where C, O were mainly sourced from
polysulfone and MXene, S was from polysulfone and Ti was from MXene. The presence of Ti confirmed
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that MXene was successfully embedded into the membrane. FTIR was utilized to analyze the chemical
property of the PSF membrane before and after incorporating MXene nanosheets. As is depicted in
Figure 5, the absorption bands at 3415, 2966 and 1662 cm−1 are corresponding to –OH, –CH and –C
= O groups, respectively. The spectra of M3 demonstrated that there was no shift in characteristics
vibrational bands with addition of MXene nanosheets, which indicated unchanged chemical structure
of PSF and its non-covalent interaction with MXene [7].
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The overall porosities of the prepared membranes are shown in Table 2. The mean pore radius
presented in Table 2 shows an increase with the concentration of the MXene nanosheets up to 100 mg/L
in the water bath. As the concentration of MXene continued to increase, the mean pore radius decreased
accordingly. The hydrophilicity effect of MXene increased the solvent and non-solvent exchange during
the phase-inversion process which was similar to the graphene oxide [31]. The increased exchange
rate led to a higher porosity of the membrane surface. However, when the MXene content increased,
the porosity and the mean pore radius of the membrane reduced which is a result of the increasing
viscosity of the polymer [7,32].

Table 2. Porosities and mean pore sizes of the prepared membranes.

Membrane Porosity (%) Mean Pore Size (nm)

M0 78.5 29
M1 79.4 41
M2 78.8 39
M3 74.4 36

3.2. Thermal Stability and Hydrophilicity

TGA measurements were conducted to evaluate the thermal stability of the membranes and
the results are shown in Figure 6. For all the membranes, there was only one major weight loss
between 500 ◦C and 600 ◦C which was ascribed to the decomposition of the PSF backbone. Therefore,
the nanocomposite membranes possessed good thermal stability as the neat PSF membrane.

Hydrophilicity, one of the most significant parameters for the membrane used for filtration, was
closely related to the antifouling properties of the membrane. The water contact angle was considered
to be able to reflect the hydrophilicity of a membrane. In general, the lower the water contact angle was,
the greater the hydrophilicity of the membrane surface was. Table 3 illustrates that the pristine PSF
membrane had the highest water contact angle of 86.9◦ among all the membranes. With the content of
MXene increasing, the water contact angle decreased consistently to 78.4◦, indicating the improvement
of the composite membranes in hydrophilicity. Higher concentration of MXene nanosheets in the
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coagulation bath added its content onto the surface of the membrane during the phase inversion
step—the hydrophilicity thus improved due to its available hydroxyl groups [7].
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Table 3. Water contact angle and zeta potential of all the prepared membranes.

Membrane Water Contact Angle (◦)
Zeta Potential (mV)

pH = 4 pH = 5 pH = 7

M0 86.9 −2.34 −6.25 −14.17

M1 82.6 −2.84 −7.15 −15.38

M2 79.3 −2.96 −8.97 −18.23

M3 78.4 −3.16 −10.14 −21.01

Membrane surface charge was another significant parameter of the ultrafiltration membrane [36].
The high surface negative charge could have produced electrostatic repulsion between foulants and
membrane surface which is beneficial to antifouling properties [7]. The negative surface charge of the
membranes measured at various pH is presented in Table 3. As can be seen from the table, there was an
increase in negative zeta potential which was related to the MXene content. The negative surface charge
of the membranes was greater than the pristine PSF membrane at all pH values. These were mainly
attributed to the hydrophilic groups on membrane surface and led to a better antifouling performance.

3.3. Water Permeate and Separation Performance

To study the effect of the MXene nanosheets on water transport of various membranes, pure
water permeability was measured. Figure 7 shows a sharp increase in pure water flux of M1 compared
to the pristine PSF membrane M0 under a constant pressure. The water flux of membrane M0 was
218 L·m−2

·h−1 while the flux of nanocomposite membrane M1 reached a peak value of 450 L·m−2
·h−1.

Although the water flux of composite membranes decreased when the content of MXene continued
to increase, the pure water flux of composite membranes was still higher than that of the pristine
membrane. This demonstrates that the increased hydrophilicity of membrane was important in terms
of water permeation improvement. Besides, the enhanced porosity and mean pore size also improved
the water permeation of the nanocomposite membrane. The ultrafiltration membrane protein rejection
was tested under an operating pressure of 0.1 MPa. As is shown in Figure 7, the rejection generally
improved as the MXene content increased, and all the composite membranes exhibited high rejection
over 90%. The MXene nanosheets surface were composed of F, C, Ti, O, H as well as –OH and –C
= O group, and these oxygen-containing groups enabled the MXene composite membranes to be
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hydrophilic which contributed to the improvement of the water flux of the composite membranes [15].
The enhanced BSA rejection was attributed to enhanced hydrophilicity, mean pore size and the surface
charge of nanocomposite membrane resulted from the addition of MXene nanosheets. The increased
negative surface charge of the nanocomposite membrane caused by the addition of MXene also led to
the repulsive interaction between membrane surface and negatively charged BSA protein and finally
provided better protein rejection for the nanocomposite membrane. Therefore, membrane M3 had low
water flux but the highest BSA rejection compared to the membrane M1.
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3.4. Antifouling Performance

Separation performance and usage life which is greatly affected by the membrane fouling are
critical to the practical application of membranes. The blockage or plugging of the pores, concentration
polarization and cake layer formation are common types of the membrane fouling which have bad
influences on the membrane performance [37]. Therefore, a membrane with good quality ought to have
the characteristics of high flux, high rejection rate and low fouling tendency. The causes of membrane
fouling are relatively complex but the hydrophobicity of the membrane surface does account for the
poor antifouling performance of the PSF membranes. To address this problem, hydrophilic material
MXene was incorporated into the membrane which was an effective and convenient method to enhance
antifouling properties [38,39].

Figure 8 demonstrates the amount of protein adsorbed from BSA solution to the membrane
surface. With the content of the MXene nanosheets increased, the quantity of BSA adsorbed on the
composite membrane surface declined, reaching maximum (101.03 µg·cm−1) for M0 and minimum
(42.39µg·cm−1) for M3. The enhanced hydrophilicity reduced the affinity and weakened the interaction
between membrane surface and protein, thereby reducing the amount of protein adsorbed [40–42].
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The time dependent flux of the membranes was carried out to evaluate the effects of MXene
nanosheets on membrane antifouling properties and reusability. Figure 9 shows the pure water flux
before and after protein filtration. A slight decrease in pure water flux was observed for all the
membranes during the initial filtration step which resulted from precompaction of the membranes.
Then the water flux declined sharply when BSA solution was used as feed. Part of the BSA protein
then deposited on the membrane surface, blocking the pores and reducing water permeation of
the membrane. All the membranes were then washed with deionized water. The water flux was
measured again after physical cleaning so that the restoration ability and contribution of reversible
and irreversible fouling in total fouling of every membrane could be measured.
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To further evaluate the antifouling properties of the membranes, the flux recovery ratio (FRR),
total fouling ratio (Rt), reversible fouling ratio (Rr) and irreversible fouling ratio (Rir) of each membrane
were calculated. The FRR of each membrane is shown in Figure 10 and a higher FRR value usually
represents better fouling resistance of the membrane. For the pristine PSF membrane, the FRR was
48.3 percent, which is lower than all the nanocomposite membranes. The membrane M3 possessed
the highest flux recovery ratio of 76.1% which is mainly due to its enhanced hydrophilicity. These
data indicate that the antifouling properties of the modified membranes were better than the pristine
membranes. Fouling can be classified as reversible or irreversible depending on the interaction between
the foulants and the membrane surface. Reversible fouling is a result of weak interaction between the
fouling particles and the membrane surface which could be easily removed by hydraulically cleaning.
Irreversible fouling results from strong interaction of foulants with a membrane surface that cannot be
restored by hydraulically cleaning and is harmful to the service life of the membrane [43]. Figure 11
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shows the total fouling ratio (Rt), reversible fouling ratio (Rr) and irreversible fouling ratio (Rir) for all
the prepared membranes. As is depicted in Figure 11, the total fouling resistance of the membrane with
embedded MXene nanosheets was little higher than the pristine PSF membrane but the irreversible
resistance was significantly decreased when MXene content was reduced. The Rir for the membrane
M0 was 51.68% and it decreased to 23.87% for the membrane M3. Meanwhile, the Rr value tended
to be positively related to the MXene content. These results suggested that the foulants were easy
to remove because of the enhanced hydrophilicity and low surface roughness of the nanocomposite
membrane. Therefore, the nanocomposite membrane had greater antifouling properties than the
pristine membrane.

The comparison of different antifouling polysulfone based ultrafiltration membranes is listed in
Table 4. The MXene incorporated membrane showed great performance both in water permeation and
protein rejection which corresponds to the enhanced hydrophilicity caused by the MXene.
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Table 4. Comparison of different antifouling polysulfone based membranes.

Membrane Additive Water Flux (L·m−2·h−1) Rejection (%) Reference

PSF/MWNTs Oxidized MWNTs 70.7 61.9 [44]
PSF/iGO Isocyanate GO 130 95 [33]

PSF/SiO2-GO SiO2-GO 376 98 [45]
PSF/ONC Oxidized nanocarbon 307 97.6 [7]

PSF/MXene MXene nanosheets 306 98 This work
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4. Conclusions

In this work, MXene incorporated polysulfone membranes were prepared. By dispersing MXene
nanosheets into the coagulation bath, the MXene were embedded in the membrane during the phase
inversion process. The influences of the embedment of MXene nanosheets on the morphology and
performance of the composite membranes were measured by SEM, AFM, EDS, TGA, FTIR, water flux
and BSA rejection tests as well as antifouling tests. With the increase of MXene content, the contact
angle of the membranes declined from 86.9◦ to 78.4◦ and the zeta potential became more negative,
indicating an improved hydrophilicity of the composite membranes. All the composite membranes
demonstrated a great improvement in water flux and BSA rejection compared to the pristine PSF
membrane. The membrane M3 showed a great water flux of 306 L·m−2

·h−1 and the highest BSA
rejection of 98%. Besides, the antifouling property of the composite membranes also correspondingly
improved, and membrane M3 exhibited the highest flux recovery ratio of 76.1% after physical cleaning.
The enhanced antifouling property can be attributed to improved surface smoothness, enhanced
hydrophilicity and the more negative zeta potential caused by the MXene nanosheets. Owing to
these great improvements, MXene can be considered as a promising material to fabricate antifouling
ultrafiltration membranes.
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