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Abstract: In this research, we explore for the first time the use of leaf stomatal conductance (gs) for
phytotoxicity assessment. Plants respond to stress by regulating transpiration. Transpiration can be
correlated with stomatal conductance when the water vapor pressure gradient for transpiration is
constant. Thus, our working hypothesis was that the gs measurement could be a useful indicator of
the effect of toxic compounds on plants. This lab-scale study aimed to test the measurement of gs as
a phytotoxicity indicator. Our model plants were two common hydrophytes used in zero-effluent
constructed wetlands for treating landfill leachate. The toxic influence of two types of leachate
from old landfills (L1, L2) on common reed (Phragmites australis (Cav.) Trin. ex Steud.) and sweet
flag (Acorus calamus L.) was tested. The gs measurements correlated well with plant response to
treatments with six solutions (0 to 100%) of landfill leachate. Sweet flag showed higher tolerance to
leachate solutions compared to common reed. The estimated lowest effective concentration (LOEC)
causing the toxic effect values for these leachates were 3.94% of L1 and 5.76% of L2 in the case of
reed, and 8.51% of L1 and 10.44% of L2 in the case of sweet flag. Leachate L1 was more toxic than L2.
The leaf stomatal conductance measurement can be conducted in vivo and in the field. The proposed
approach provides a useful parameter for indicating plant responses to the presence of toxic factors
in the environment.

Keywords: environmental pollution; remediation; landfill leachate; constructed wetlands;
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1. Introduction

Policy plans are being made to phase out the present day landfilling of municipal solid waste
(MSW) with technologies consistent with the zero-waste, waste-to-carbon [1], and circular economy
goals. However, even with the advances of the circular economy, the leachate of old, legacy landfills
will need to be managed. One of the promising technologies for landfill leachate treatment and
disposal is because of a considerable decrease in leachate volume due to evapotranspiration from
zero-effluent constructed wetlands (CWs) [2–7]. Plants have a critical role in determining the dynamics
of water loss, mainly by controlling the rate of water loss through evaporation and plant transpiration,
i.e., evapotranspiration (ET). The ET of emergent hydrophytes (aquatic plants) in CWs is significant,
reaching levels that are 7~8 times higher than actual evaporation without plants [7].
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The leachate ET technology in zero-effluent CWs relies on evaporation from free water and soil
surfaces and plant transpiration. An important CW design consideration is the toxic properties of
leachate and the nutrients for improved plant growth conditions. With these eco-technologies for
landfill leachate treatment, plants—typically hydrophytes—are exposed to leachate containing both
nutrients and toxic compounds, e.g., ammonium and heavy metals. Hydrophyte response differs with
soil and climatic conditions, which, in turn, influence the treatment efficiency related to ET. As ET
is the main mechanism of leachate treatment, this parameter may also be used as an indicator of
plant activity [8,9].

In this research, we explore for the first time the use of leaf stomatal conductance (gs), which is
correlated to plant transpiration, to determine the toxic influence of harmful compounds in landfill
leachate on plants. The advantages of the proposed measurement of gs as a toxicity indicator are that it
is (1) less invasive to plants, (2) an easily measurable parameter, and (3) a measurement applicable to
the on-site, field scale assessment of hydrophytes in CWs [10] and plants in general.

Therefore, we hypothesized that the direct measurement of leaf stomatal conductance might
indicate a plant’s response to toxic substances in the environment and that the stomatal conductance
will decrease with the increase of toxicant concentration. The proposed new method allows observation
of the effect of toxicants on plant activity without damaging the plants in vivo.

The aim of this initial lab-scale study was to determine the influence of potentially toxic substances
in two types of landfill leachate on leaf stomatal conductance of two hydrophyte species and
to present an innovative approach to using the measurement of leaf stomatal conductance as a
phytotoxicity indicator.

2. Materials and Methods

2.1. Landfill Leachate and Hydrophytes

Landfill leachate originating from two MSW landfills were used in the experiment: (L1) from
Zakurzewo, near Grudziadz, Poland; and (L2) for Wola Pawłowska, near Ciechanów, Poland.
The detailed multicomponent and initial chemical and physical properties of the landfill leachates used
in the experiment have been presented by Białowiec [9]. Two emergent hydrophyte species were used:
common reed (Phragmites australis (Cav.) Trin. ex Steud and sweet flag (Acorus calamus L.). The average
plant weight and length was 19.5 ± 11.6 g and 42.1 ± 11.2 cm, and 34.2 ± 16.9 g and 66.2 ± 10.8 cm
for P. australis and A. calamus, respectively.

2.2. The Experimental Matrix

The experiment was designed on two groupings of landfill leachate (L1, L2) and two plant species
(P. australis, A. calamus). The independent variable was the concentration of landfill leachate in the
solution; i.e., 0% (tap water), 6.25%, 12.5%, 25%, 50%, and 100%. Each variant of the experiment was
repeated n = 5 times. The experimental matrix with 24 variants is shown in Table 1. The measured leaf
stomatal conductance (gs) was used as the dependent variable.

Table 1. Experimental design matrix variants.

Plant Species Leachate
Type Leachate Concentration (%)

P. australis
L1

0 (tap water) 6.25 12.5 25.0 50.0 100.0
L2

A. calamus
L1
L2

The plants were cultivated in 1.5 L bottles placed in boxes. Five bottles representing the
same variant (replicates) were placed in one box, so each box represented one specified variant.
The boxes were arranged in a greenhouse along the window and in accordance with experimental
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factors: P. australis—L1 0%/100%, L2 0%/100%; A. calamus—L1 0%/100%, L2 0%/100%; i.e., a total
of 120 bottles arranged in 24 boxes (variants) with 5 replicates per box. To avoid any potential
mistakes during measurements and data recording, the individual plants’ spatial arrangement was
not randomized. The greenhouse window length was 25 m, which ensured that all plants had similar
lighting conditions. The experiment was conducted at 25.4 ± 6.1 ◦C. The greenhouse location was
53’74” N, and 20’44” E.

2.3. Experimental Procedure

The experimental procedures were similar to those described by Białowiec et al. [11]. Briefly,
the plants were pre-cultivated in tap water for 4 weeks. After that, the 4-week-old plants were placed
in bottles with solutions of landfill leachate (Table 2). The minimum 4-week duration of the plants’
hydroponic exposure to leachate was used according to the previous experiments that were focused
on the influence of landfill leachate on transpiration rate, which was measured gravimetrically [8,9].
Gravimetric measurements, while accurate, have a low potential to be used in field work. The leaf
stomatal conductance measurement we advanced here is suited well for on-site field work. The water
was topped up in each bottle weekly to the 3

4 (1.125 L) level. Only tap water (i.e., without leachate)
was used to replenish water losses due to transpiration in both control and treatment.

Table 2. The timeline of the experiment.

Timeline of the Experiment, Weeks

1 2 3 4 5 6 7 8
Pre-cultivation of plants in tap water Treatment of plants with leachate solutions

(gs) *

* daily measurements of leaf stomatal conductance (gs) during week 8.

The leaf stomatal conductance (gs) was measured daily in week 4, i.e., after 3 weeks of leachate
treatment, using an AP-4-UM-3 porometer (Delta-T Devices, Cambridge, UK). The porometer
was calibrated before measurements using the direct calibration technique recommended by the
manufacturer. The porometer was equipped with a molded polypropylene calibration plate with six
groups of holes; the rate of diffusion of water vapor through these holes has been carefully verified.
Water vapor was provided by backing the plate with dampened paper. The sensor head was clipped
onto the calibration plate, and readings were stored from each of the six standard calibration positions.
Calibrations and measurements followed a detailed description in the user manual [12].

The leaf stomatal conductance was measured for each plant. Five randomly selected locations
on leaves (large enough to allow the proper placement of the porometer sensor) were selected each
day. A total of 4200 measurements of gs were made, taking into consideration the 5 repetitions of the
variant (box), 5 measurement locations on each plant, 2 plant species, 2 leachate typed, 6 leachate
concentrations, and 7 days. The obtained data were incorporated into the subsequent statistical
analyses as unweighted means for each plant, leachate type, and leachate dilution.

2.4. Toxicity Evaluation—the Lowest Effective Concentration causing a Toxic Effect (LOEC)

The inhibiting effect (I) caused by landfill leachate solutions was calculated with:

I = 100
(C − T)

C
(1)

where:

I = effect caused by each landfill leachate solution (%);
C = mean measured leaf stomatal conductance for control treated with tap water only (mmol
H2O·m−2·s−1);
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T = mean measured leaf stomatal conductance for plants treated with landfill leachate solutions (mmol
H2O·m−2·s−1).

The estimated I were then examined in relation to leachate concentrations, and LOEC values were
estimated using the following function:

I = a1 − e(LOEC−a2·Cr) (2)

where:

Cr = landfill leachate solution concentration used in the experiment (%);
a1 (%) and a2 (−) = best fit constants [13].

The LOEC was therefore estimated through knowing the inhibition for a given leachate
concentration and knowing that a1 > I and 0 < a2 < 1 from the transformed Equation (2):

LOEC = ln(a1 − I) + a2·Cr (3)

The best fit constants a1, and a2 were determined experimentally.

2.5. Statistical Procedures

The analysis of variance between mean values of estimated leaf stomatal conductance (gs) of
P. australis—L1, P. australis—L2, A. calamus—L1, and A. calamus—L2 groups to indicate the influence
of leachate concentration (Cr) was carried out with the one-way ANOVA test (followed by post–hoc
Tukey’s test) at a significance level of p < 0.05. The estimation of LOEC values was completed with
non-linear regression and the calculation of the determination coefficient R2. The Statistica 12.0 software
package (Statsoft Polska, Kraków, Poland) was used.

3. Results

The measurements of gs confirmed the usefulness of this method for the observation of plant
responses to toxicants in the environment. Plants responded by reducing the gs expressed in mmol
H2O·m−2·s−1 (Figure 1). In the case of reed, plants growing in the solution with an L1 concentration of
6.25% reduced gs by about 74% compared to tap water (Figure 1). Plants submerged in 6.25% solution
of L2 reduced gs by about 56% in relation to control. Further increase of leachate content had no
statistically significant influence on the measured changes in gs. Reed response measured as gs was
greater in the case of L1 than L2.

The measured leaf stomatal conductance was also capable of differentiating the response of sweet
flag and reed for the same leachate type and concentration. The lower leachate content in the solution
(6.25%) had a positive and significant (p < 0.05) influence on the gs value (Figure 1) mostly due to
the fertilization effect of nutrients present in the leachate under a relatively low content of toxicants.
The further increase of leachate content caused successive decreases of gs until complete inhibition in
the case of the raw leachate (100%).

The plant’s transpiration rate is correlated to leaf stomatal conductance. Therefore, the hypothesis
that direct measurement of gs may indicate a plant’s response to toxic factors was confirmed in this
controlled environment. To better understand the observed phenomenon of toxic compound influence
on a plants’ stomatal conductance, more research should be done, including the influence of the
lighting, the age of the plant, leaf development [14,15], the plant physiological status and particularly
plant water status, indicators of saline, and osmotic stress [16]. Additionally, more work should
be done on any potential chemical transformation such as ammonification, nitrification, organics
degradation, a plants’ uptake in relation to a possible plant’s survival mechanisms under exposure
to a mixture of complex toxicants, and selected physiological interactions between root zone and
leaf physiology.
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Figure 1. Measured mean (± SD (standard deviation)) leaf stomatal conductance of sweet flag (Acorus 
calamus L.) in the upper part and reed (Phragmites australis (Cav.) Trin. ex Steud) in the lower part as 
a function of leachate concentration treatment. Plants were cultivated for 4 weeks in landfill leachate 
solutions L1 and L2 at six landfill leachate concentrations from 0 (control) to 100 %. The F-Snedecor 
statistic (F) and probability (p) indicating the significance of the difference between mean values are 
given. 

Figure 1. Measured mean (± SD (standard deviation)) leaf stomatal conductance of sweet flag
(Acorus calamus L.) in the upper part and reed (Phragmites australis (Cav.) Trin. ex Steud) in the
lower part as a function of leachate concentration treatment. Plants were cultivated for 4 weeks in
landfill leachate solutions L1 and L2 at six landfill leachate concentrations from 0 (control) to 100 %.
The F-Snedecor statistic (F) and probability (p) indicating the significance of the difference between
mean values are given.
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The LOEC values of leachate L1 and L2 were estimated for both plant species. The coefficient of
determination value was relatively high in the range of ~0.782–0.846 (Figure 2). L1 toxicity was higher
than that of L2 (lower values of LOEC). LOEC values were higher in sweet flag than reed for both
types of leachate. Reed LOEC values were between 3.94 and 5.76% (Figure 1). Sweet flag values varied
from 8.51 to 10.44%, showing higher resistance than reed.
Int. J. Environ. Res. Public Health 2019, 16, x 6 of 7 

 

 
Figure 2. The estimation of lowest effective concentration causing the toxic effect (lowest effective 
concentration [LOEC]) values of landfill leachate L1 and L2, on leaf stomatal conductance of P. 
australis, and A. calamus; the a1 (%) and a2 (−) = best-fit constants, R2 = determination coefficients. 

5. Conclusions 

The leaf stomatal conductance measurements were correlated with plant response to toxics in 
landfill leachate. Sweet flag was more resistant to landfill leachate treatment than reed. Based on 
these initial lab-scale studies, it is recommended that the leachate effluent content discharged into the 
zero-effluent constructed wetland system should not exceed ~8–11% and ~3–6% for sweet flag and 
reed, respectively, especially during the initial growth stage. The recommended landfill leachate dose 
rate could be adjusted to the local precipitation regime. Further research should be continued on the 
development and benchmarking of this method compared to other protocols. The pros of the 
proposed leaf stomatal conductance measurement warrant further research to develop it into a robust 
and minimally-invasive approach for measuring plant response to the presence of toxins in the 
environment. 
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4. Conclusions

The leaf stomatal conductance measurements were correlated with plant response to toxics in
landfill leachate. Sweet flag was more resistant to landfill leachate treatment than reed. Based on
these initial lab-scale studies, it is recommended that the leachate effluent content discharged into
the zero-effluent constructed wetland system should not exceed ~8–11% and ~3–6% for sweet flag
and reed, respectively, especially during the initial growth stage. The recommended landfill leachate
dose rate could be adjusted to the local precipitation regime. Further research should be continued
on the development and benchmarking of this method compared to other protocols. The pros of
the proposed leaf stomatal conductance measurement warrant further research to develop it into a
robust and minimally-invasive approach for measuring plant response to the presence of toxins in
the environment.
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