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Abstract: Chemical production activities in chemical clusters, if not well managed, will pose great
threats to the surrounding air environment and impose great burden on emergency handling.
Therefore, it is urgent and substantial in a chemical cluster to develop proper and suitable pollution
controlling strategies for an inspection agency to monitor chemical production processes. Apart from
the static monitoring resources (e.g., monitoring stations and gas sensor modules), patrolling by
mobile vehicle resources is arranged for better detecting the illegal releasing behaviors of emission
spots in different chemical plants. However, it has been proven that the commonly used patrolling
strategies (i.e., the fixed route strategy and the purely randomized route strategy) are non-optimal
and fail to interact with intelligent chemical plants. Therefore, we proposed the Chemical Cluster
Environmental Protection Patrolling (CCEPP) game to tackle the problem in this paper. Through
combining the source estimation process, the game is modeled to detect the illegal releasing behaviors
of chemical plants by randomly and strategically arranging the patrolling routes and intensities in
different chemical sites. In this game-theoretic model, players (patroller and chemical sites), strategies,
payoffs, and game solvers are modeled in sequence. More importantly, this game model also considers
traffic delays or bounded cognition of patrollers on patrolling plans. Therefore, a discrete Markov
decision process was used to model this stochastic process. Further, the model is illustrated by a case
study. Results imply that the patrolling strategy suggested by the CCEPP game outperforms both the
fixed route strategy and the purely randomized route strategy.

Keywords: chemical cluster environmental protection patrolling game; source estimation process;
patrolling strategy; fixed route strategy; purely randomized route strategy

1. Introduction

The so-called chemical clusters are formed due to economies of scale, environmental factors, and
other collaboration benefits (e.g., social motives and legal requirements) [1]. However, within such
clusters, the situation is that the air pollutants produced in the process of chemical production are often
illegally released to the surrounding environments instead of being purified and treated [2]. In extreme
situations, the accidental releases caused by spontaneous or anthropogenic activities can exert dramatic
implications [3]. Through transportation and dispersion (e.g., atmospheric flow), humans and the
environment can be undesirably exposed to these dangerous gas emissions and eventually suffer from
the harmful or fatal effects. Therefore, in order to avoid the release of gas substances of high toxicity
and ensure the protection of environment and human health, air quality monitoring and gas emission
detection have to be performed regularly [4]. At present, a core issue of concern to those who manage
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the chemical cluster is the effective prevention and mitigation of impacts caused by risk accidents and
the implementation of effective management that can ensure safe production and social stability [5].

To this end, Qiu et al. [6] proposed a method incorporating a drone-based monitoring platform
and a source estimation method to estimate contaminant sources in a chemical cluster. This research
work falls through providing practical and efficient patrolling routes for mobile inspection resources
hereafter. Fortunately, game theory has the advantage on modeling limited resource deployment in a
multiple stakeholders’ situation through a sound mathematical approach, according to Tambe et al. [7].
Namely, one of the applications of game theory in the security domain is to schedule patrolling
(i.e., an act of traveling of mobile resources at different locations and intervals) [8] and this kind of
patrol is also introduced in some other domains.

The security games have been successfully deployed in many areas (airports [9], ports [10],
and trains [11]) to protect infrastructures for randomizing schedules for patrolling and monitoring.
Also, a game-theoretic concept is deployed by Aguirre et al. [12] to define a multi-agent patrolling
strategy on a national border to achieve a safer country. Similar works can be found in these
references, such as Basilico et al. [13] and Gatti [14]. The zero-sum graph patrolling games defined
by Alpern et al. [15,16] and Papadaki et al. [17] can perfectly solve the game on some special graphs,
such as the line graph, etc. However, the defined zero-sum graph patrolling games are unreasonable
in many situations and in their line graph patrolling game, the quantitative risk assessment of the line
was absent [18]. Subsequently, to solve this problem, the Pipeline Patrolling Game (PPG) was proposed
by Amirali et al. [19] in the Bayesian Stackelberg game form based on security risk assessment. Other
than in security domain, scheduling patrol also sprung up in environmental protection domain in
recent years. Green Security Games (GSGs) are typical representatives, applications of which mainly
focused on scheduling patrols to protect the forests, fish, wildlife, etc. [20]. However, few works
have realized the importance of scheduling patrols in a chemical cluster to detect the spontaneous or
anthropogenic industrial production emission activities intelligently.

Different from the above mentioned game-theoretic applications in the security domain [7,21]
and in the environment domain [22–25], Zhu et al. [26,27] proposed the Chemical Plant Environmental
Protection (CPEP) game and the extended CPEP game in succession, which were the first works for
optimizing audits and detections of illegal release of atmospheric contaminants in chemical clusters.
In these models, the game-theoretic model in conjunction with source estimation methods was utilized
to better schedule the static inspection resources (i.e., high-accuracy monitoring stations and gas sensor
modules) for detecting the irregularities of chemical plants. Besides the static monitoring resources,
mobile inspection resources are highly recommended to monitor the chemical production process for
their flexibility and mobility. In this paper, the Stackelberg game is therefore applied for scheduling
the patrol of mobile inspection resources in a chemical cluster. For analyzing the patrolling in a
chemical cluster, the patrolling object is modeled as a graph, in which the nodes are different chemical
sites in the cluster. The game-theoretic model involves intelligent interactions between patrol teams
(i.e., the defender) and chemical plants (i.e., many attackers). To model this interaction precisely and
practically, several challenges and uncertainties remain to be solved. (i) It is unavoidable to face the
challenge of large state space to represent strategies for the players since the game takes place on a road
network. (ii) The patroller would travel in the graph and stay inside some nodes for a certain period of
time and implement inspections to detect illegal releases of chemical plants through source estimation
methods. However, the strategy generated by our model cannot guarantee the 100% success rate of
catching the violations of chemical plants. (iii) Due to traffic delays or some other cognitive reasons,
the patroller may not follow the patrolling schedules precisely. Thus, the present paper proposes a
Chemical Cluster Environmental Protection Patrolling (CCEPP) game, answering the question of how
to optimally randomize patrolling in a chemical cluster and deal with the aforementioned challenges
and uncertainties. In this way, the proposed method not only facilitates the decision-making process
of a patrolling route for the patroller team, but also addresses the atmospheric pollutants controlling
problem, as well as reduces the risk of accidental gaseous pollutant leaks.
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The remainder of the paper is organized as follows: Section 2 deals with the road network
modeling problem, the CCEPP game and its corresponding game solver are proposed in Section 3,
Section 4 involves an illustrative case study and experimental results, and conclusions and future
directions are drawn in Section 5.

2. Road Network Modeling

A typical patrolling scenario can be demonstrated as follows: Patrol teams drive the inspection
vehicles randomly, patrolling inside each of the chemical sites or travelling on the public road to another
chemical site. During patrolling inside a chemical site, the team would utilize the monitoring facilities
to collect atmospheric data for source estimation. Besides monitoring data from static inspection
resources (i.e., monitoring stations and gas sensor modules), if the patrol team is patrolling inside
this chemical site when some of the emission sources in this site are releasing excessive atmospheric
contaminants, then the emission sources certainly have a probability of being detected by the patrol
team. After staying for a period of time, the patrol team would travel to another site via the connected
road. Therefore, to depict such a patrolling process, which is changing with space-time, road network
is definitely modeled first.

2.1. Graphic Modeling

Several criteria are provided to determine the nodes and edges in a graph based on the practical
road network: (i) If a chemical site only has one chemical plant, it usually owns one vehicle entrance;
(ii) if a chemical site has several chemical plants and each chemical plant has several emission sources,
we can assume that each chemical plant in this site has a vehicle entrance, all of which are assumed
to be fully connected as well; (iii) the vehicle entrances are usually located on the side of public road;
(iv) if two entrances belonging to different sites cannot be connected through a straight segment,
a crossroad has to be added. Therefore, we model the road network as a graph G(V,E), where V denotes
the number of nodes of the graph (i.e., the vehicle entrances of each site and the crossroads), and E is
the number of edges of the graph (i.e., the roads between different nodes).

For the sake of illustration, an example of a small part of the Shanghai chemical cluster is given.
There are six chemical sites in this picture, indexed as site ‘A’, site ‘B’, and so forth. As we may notice,
chemical sites ‘A’ and ‘D’ have two vehicle entrances, while other chemical sites have only one entrance.
Moreover, three crossroads are added to link two sites which cannot be connected through a straight
segment. We used black dotted lines in this figure to demonstrate the traffic roads in reality for the
patroller to drive. Meanwhile, based on above mentioned criteria, the graphic model of this cluster
shown in Figure 1 was displayed in Figure 2. As we can notice in this picture, nodes in Figure 2 are
represented by the sites’ entrances (i.e., ‘A1’, ‘A2’, ‘B1’, ‘C1’, ‘D1’, ‘D2’, ‘E1’, ‘F1’) and the crossroads
(i.e., ‘Cr1’, ‘Cr2’, ‘Cr3’). Further, edges ‘e1’ to ‘e12’ are constructed to reflect the vehicle roads based on
actual connection relationships of these nodes.
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Based on the graphic model, we illustrate the graphic patrolling problem of mobile vehicles as
follows: (i) A patroller (or several patrol teams) starts her patrolling from a node (i.e., the dummy
source node); (ii) she moves on the nodes and edges in the graph; (iii) when arriving at a node
(a chemical site), she may decide whether to stay at the node for a specific period of time tp

i (inspect
inside the site), or move to another site instantly with a period of time tm

e , without patrolling the
current site; (iv) after the maximum travelling time budget of a patrol T is expended, the patroller
terminates the patrolling and goes back to the dummy source node.
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In the above statement, tp
i denotes the inspection time in a site i; tm

e represents the travelling
time on an edge e; and T denotes the maximum travelling time budget of a patrol. For the sake of
simplicity, the periods of time tp

i and tm
e are assumed to be fixed values in this paper, though they can

be influenced by different entrances from the same site and multiple patrolling intensities.
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With the definitions of inspecting time tp
i and travelling time tm

e , we can define a superior
connection matrix sC of graph G. Based on the superior connection matrix, an algorithm is proposed
in Section 2.3 to construct a transition graph. An entry sC(i, j) in matrix sC represents the time cost
through moving from node i to node j (of graph G). There are two possible scenarios regarding the
relationship of nodes i and j: (i) The two nodes belong to different chemical sites or at least one of
them is a crossroad node. In this case, sC(i, j) is equal to the travelling time tm

e that the patroller needs
to move from node i and node j; or (ii) the two nodes belong to different entrances of a chemical site,
or are the same. In this situation, sC(i, j) is equal to the inspection time tp

i of the site.
Then, for the cluster and graph illustrated in Figures 1 and 2, if we set tm

1 = 4, tm
2 = 2, tm

3 = 3, tm
4 = 1,

tm
5 = 1, tm

6 = 2, tm
7 = 2, tm

8 = 2, tm
9 = 2, tm

10 = 3, tm
11 = 3, tm

12 = 6, and further set tp
A = 10, tp

B = 6, tp
C = 5, tp

D = 7,
tp
E = 6, tp

F = 7 (the exact values are determined by road distance and driving speed), Table 1 shows
an example of this matrix by using the values mentioned above. For instance, tm

1 is the driving time
from node ‘A1’ to ‘B1’ and tp

A denotes the time needed to inspect inside the chemical site ‘A’. All the
time-related data are unified in minutes.

Table 1. Superior connection matrix for Figure 2 with the practical numbers.

Nodes A1 A2 B C Cr1 Cr2 Cr3 D1 D2 E F

A1 10 10 4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
A2 10 10 ∞ ∞ ∞ ∞ 2 ∞ ∞ ∞ ∞
B 4 ∞ 6 ∞ 2 ∞ ∞ ∞ ∞ ∞ ∞
C ∞ ∞ ∞ 5 ∞ 2 2 ∞ ∞ ∞ ∞

Cr1 ∞ ∞ 2 ∞ ∞ ∞ ∞ 3 1 ∞ ∞
Cr2 ∞ ∞ ∞ 2 ∞ ∞ ∞ ∞ 1 2 ∞
Cr3 ∞ 2 ∞ 2 ∞ ∞ ∞ ∞ ∞ ∞ 3
D1 ∞ ∞ ∞ ∞ 3 ∞ ∞ 7 7 ∞ ∞
D2 ∞ ∞ ∞ ∞ 1 1 ∞ 7 7 ∞ ∞
E ∞ ∞ ∞ ∞ ∞ 2 ∞ ∞ ∞ 6 ∞
F ∞ ∞ ∞ ∞ ∞ ∞ 3 ∞ ∞ ∞ 7

2.2. Time Discretization

To simplify the transition graph model, a discretization of the time is necessary. We discretize
time into an equal granularity of h minutes (i.e., the time slice is determined by practical conditions
and is denoted as one minute in this study, however, it can also be one second or one hour as well).
In this way, a time vertex is added every h-minute until the maximum inspection time budget T has
been expended. Moreover, if the time dimension of the transition graph is continuous, the patroller’s
travelling time, the patroller’s patrolling time, and the attacker’s attack period are not necessarily
integers. Thus, these time-related parameters should be rounded to their closest integer numbers of
time slice in order to discretize the time dimension. Consequently, any actions of the patroller and the
attacker would happen at the beginning of the vertex of each time slice.

Although the time dimension of the transition graph is continuous in reality, such a discretization
mentioned above is also reasonable and feasible. For one thing, the attacker’s actions can be
enumerated by discretizing the time, as seen in Section 3.1. For another thing, if the length of a
time slice is short enough, the discretization model can also describe the reality well.

2.3. Transition Graph Modeling

A transition graph tG(tV, tE) is defined based on the graphic model of a chemical cluster and the
time discretization. A node (or state) in tG is denoted by a tuple of (t, i), wherein t ∈ [0, T) represents
the current time step and i ∈ {1, 2, . . . , |V|} denotes the site that the patroller is located (it is also
denoted as a node in graph G(V, E)). After choosing an action and moving to another site i2 at time
t2 from current site i1 at time t1, a directed edge in tG is connected between the two node (t1, i1) and
(t2, i2).
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In the transition graph, we need only enumerate a polynomial number of nodes (or states) and
edges instead of enumerating an exponential number of pure strategies. The goal of this paper is to
compute the optimal probability flow (i.e., marginal coverage vector) and sample from this vector to
create inspection schedules for the inspection agency. However, due to traffic delays or some other
cognitive reasons, the patroller may not follow the patrolling schedules precisely. We therefore have to
incorporate this uncertainty into the transition graph. Fortunately, Markov decision processes (MDPs)
provide a mathematical paradigm for modeling decision making in situations where outcomes are
partly random and partly under the control of a decision maker. In our situation, a discrete MDP can
model the discrete time stochastic control process of the actions and states. To be specific, the process is
in a state s at each time step, and the decision maker may choose any available action a in state s. At the
next time step, the process would move into a new state e randomly at a certain probability Pa(s, e),
giving a reward Ra(s, e) correspondingly. Therefore, a discrete MDP in this paper is represented by a
3-tuple (S, A, Pa(s, e)) without considering the discount factor γ and the immediate reward Ra(s, e).

S is a finite set of states. Each state s ∈ S is a tuple (t, i). Each vertex tv ∈ tV in the transition
graph corresponds to a state s and thus S is equal to tV;

A is a finite set of actions which corresponds to the set of actions available from current state s,
i.e., the set of sites connected by site i;

Pa(s, e) = pro(st+1 = e|st = s, at = a) represents the probability that the patroller takes action a
in state s, leading to state e.

Table 2 shows an iterative algorithm for generating the transition graph tG(tV, tE). The essence
of this algorithm is to find all the connective nodes of each node in the graphic model. In this table,
dis(dsn, nd) denotes the shortest distance in graph G from the dummy source node dsn to node nd.
An example of the patrolling graph tG for the chemical cluster with the data of patrolling and inspecting
time in Table 2 is shown in Figure 3 to further illustrate how the algorithm works. We further assume
the inspection time budget T = 30 and dummy source node close to the ‘Cr2’.

Table 2. An algorithm of generating the transition graph.

Algorithm: Generating the Transition Graph

Construct an empty temporary node list tNL, an empty node list tV, and an empty edge set tE;
Construct node tv = (0, dsn), in which dsn is the patrolling source node in graph G;
Initialize tNL← tv, tV← tv;
While tNL is not empty, do;
Get the first node in tNL, denoted as the current node cv = (ct, cn);
Construct the follow-up nodes of cv;
In graph G, find all the connected nodes of cn, representing as ccn = {nd ∈ V|sC(cn, nd) < ∞};
For each node nd that belongs to ccn, if ct + sC(cn, nd) ≤ T + dis(dsn, nd) holds, construct a new node nv =
(ct + sC(cn, nd), nd) and a directed edge ne from cv to nv should also be constructed (the state transition should
also be considered);
Add edge ne to list tE;
If nv is already in tV, continue; otherwise, insert nv into tNL, add nv to tV;
Remove cv from tNL;
End.

In Figure 3, the x axis and the y axis denote the time dimension and the nodes in graphic model,
respectively. Therefore, a possible node for tG can be any coordinates in this figure. As we may notice,
node 1 (at the left-hand side of this figure) is (0, ‘Cr2’), which means that at time 0, the patroller starts
from her source node (i.e., ‘Cr2’). Thereafter she has three choices: (i) To come to site ‘C’ with a driving
time tm

6 and reach node 2 (i.e., (2, ‘C’)); (ii) to come to site ‘D’ (more accurately, entrance ‘D2’) with
a driving time tm

5 and reach node 3 (i.e., (1, ‘D2’)); (iii) to come to site ‘E’ with a driving time tm
7 and

reach node 4 (i.e., (2, ‘E’)). Subsequently, at these new nodes (e.g., 2, 3, or 4), the patroller has to face
the same choice problem (i.e., to patrol the current chemical site or to come to the adjacent chemical
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sites). Finally, when the total patrol time satisfies, the patroller terminates the patrol and comes back to
her source node. In Figure 3, indexes of some nodes are marked to clarify this patrolling problem.
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In Figure 3, a fixed patrolling route can be demonstrated as a series of edges (te1, te2, . . . , telen)

satisfying the following three conditions in the transition graph: (i) The in-degree of the start node of
te1 is 0; (ii) the out-degree of the end node of telen is 0; (iii) the edges tej and tej+1 (j = 1, 2, . . . , len− 1)
are linked, which means that the end node of tej is the start node of tej+1. For instance, the bold and
black line in Figure 3 refers to a fixed patrolling route, and it is: ‘Cr2’→ ‘C’→ ‘Cr3’→ ‘C’→ patrol
chemical site ‘C’→ ‘Cr2’→ ‘D2’→ patrol chemical site ‘D’→ back to ‘Cr2’. A purely randomized
patrolling route can be defined as: “At any node of the transition graph, the patrol team goes to each
edge outgoing from the node with an equal probability.” For example, in this figure, when the patroller
is at node 1 (0, ‘Cr2’), she would go to node 2, 3 or 4 with an equal probability of 1/3, and so forth.

In this paper, the patroller is required to prolong her patrolling in the chemical site to keep the
continuity of coverage on each chemical site until the next patroller might be able to arrive at the
site (see step 4.2.2 in Table 2). For instance, in Figure 3, the maximum patrolling time budget is set
as 30 min, however, the patrolling in chemical site ‘A’ is not stopped until 38 min. The idea is that
the shortest time in which the next patrolling team can arrive at chemical site ‘A’ from source node
‘Cr2’ is 8 min. However, if the current patroller does not prolong her patrolling in this chemical site
and the next patrol team starts at time 30 from the source node ‘Cr2’, then chemical site ‘A’ would
definitely not be inspected during that time interval between 30 and 38. This method may increase the
patroller’s workload. However, the problem can be solved if we set the value of T slightly smaller than
the patroller’s real workload.

3. Chemical Cluster Environmental Protection Patrolling Game

The CCEPP game is proposed in this section to model practical interactions between the patroller
and the chemical plants. Then, we introduce the game from four aspects in succession, including
players modeling, strategy modeling, payoff modeling, and the solutions of the game.

3.1. Players Modeling

Players of the CCEPP game are the patrol teams (i.e., mobile inspection resources, such as vehicles,
helicopters, or drones) on the one hand and the chemical plants on the other. Hereafter, patrol teams
are referred to as “leader” or “defender” and the chemical plants are referred to as “follower” or
“attacker”. The aim of the defender is to optimize the patrolling plans of mobile vehicles to detect
more irregularities of chemical plants and to improve her payoff in the meantime. After observing
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the actions taken by the defender, the attacker attempts to release excessive air pollutants to optimize
his profits. Moreover, both players in this game are assumed with perfect rationality based on two
basic reasons: One is that both players in the CCEPP game are able to perceive their situation and the
opposite player’s actions accurately, and the other is that the players tend to maximize their payoffs
through intelligently planning their strategies. Future work can be devoted to extend the model to
deal with boundedly rational attackers.

3.2. Strategy Modeling

3.2.1. Attacker’s Strategy

To simplify the modeling of the attacker’s strategy, several reasonable assumptions are made:
(i) The number of working release spots differs from those in different release scenarios; (ii) in a
chemical site, i, the release spots have the same working start time and the same working duration; (iii)
the working duration of the release spots from different chemical sites are usually different because
the categories of atmospheric contaminants are different within different chemical sites. Therefore,
three parts are involved in an attacker’s strategy: (i) Determine a time to start the release; (ii) determine
a release scenario to use (denoted by the working duration of release spots); and (iii) determine the
number of release spots to use.

Specifically, the formulation of the attacker’s pure strategy is listed in Formula (1).

si
a = (t, ki, rsi), (1)

where t represents the releasing start time, ki denotes the working duration of release spots
(e.g., five minutes), and rsi is the number of working release spots (this number is a positive integer
between 1 and the total number of release spots in a site). As can be noticed in Figure 3, there is a
red and bold line in each chemical site representing one attack scenario of attackers. For instance,
the red and bold line in chemical site ‘F’ represents a release of site ‘F’ starting at time 2, with a release
duration of 10 min.

Formula (1) implies that each chemical site would choose one attack scenario to implement.
Moreover, we can compute the number of pure strategies for a site i through Formula (2) based on
the above definitions, in which

∣∣Si
a
∣∣ is the number of pure strategies owned by the attacker; T denotes

the total time slices based on the segment of the maximum inspection budget; Sce is the number of
different release scenarios; and RSi represents the total number of release spots owned by a site i.∣∣∣Si

a

∣∣∣= T · Sce · (2RSi − 1), (2)

3.2.2. Defender’s Strategy

As illustrated in the definition of transition graph, a flow through the graph corresponds to
a specific defender patrolling strategy and that flow is represented by a marginal coverage vector
Π(s,e)∈tEca(s, e). To be specific, two different states in the transition graph are connected by an edge.
Thus, the marginal probability means that the inspection resources may go that edge. Moreover, once
the optimal flow is computed, we can sample from which to generate the random patrol schedules.
Here, the defender’s strategy is denoted as Formula (3).

sd = Π(s,e)∈tEca(s, e), (3)

where ca(s, e) denotes the marginal coverage probability of the patroller assigned to the edge from
node s to node e (reach state s, execute action a, and end up in state e); and Π is the Cartesian product
of all edges in tG (i.e., all (s, e) ∈ tE).

Further, the marginal probability of the inspection resources reaching state s and executing action
a is defined as ωa(s). We then define a dummy source node s+ to represent a root node which has
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no income edges, while a dummy sink node s− is defined to represent a terminal node end at the
maximum inspection time budget T with only income edges. An intermediate node of tG is a node
that has both income edges and outcome edges. Moreover, two properties should be satisfied based
on the graphic flow theory: (i) For each intermediate node, the sum of all the income probabilities
must equal the sum of all the outcome probabilities (i.e., the flow into a state s is equal to the flow out
of the state); (ii) the sum of probabilities coming out from the root node or coming into the terminal
node corresponds to the quantity of mobile inspection resources. Formulas (4) and (5) illustrate the
abovementioned two equalities.

∑in∈{e∈tV|(e,s)∈tE} ca′(in, s) = ∑ ωa(s) = ∑out∈{o∈tV|(s,o)∈tE} ca(s, out), (4)

∑out∈{o∈tV|(s+ ,o)∈tE} ca′(s
+, out) = ∑ ωa′(s

+) = ∑in∈{e∈tV|(e,s−)∈tE} ca(in, s−) = r, (5)

Moreover, due to actual traffic delays or a patroller’s bounded cognition on patrolling plans,
the same action a taken by a patroller from a state s may not lead to a fixed state e. The following
equation is used to explain the relationship between the marginal probabilities and state transition
probabilities. It defines that marginal coverage probability ca(s, e) equals to the multiplication of the
marginal probability ωa(s) and the probability of successfully transitioning to state e.

ca(s, e) = ωa(s)Pa(s, e)∀s, e ∈ tV, (6)

3.3. Payoff Modeling

In this paper, the owner of a chemical site is assumed to choose an attack scenario to perform.
Further, there will be two possible results when he chooses to attack, being: (i) The attack fails,
or (ii) the attack is successfully implemented. In case the attack succeeds, the patroller will suffer
a loss Li

d (from the pressure of public opinion and authorities) and the attacker will obtain a gain
Gi

a (from releasing excessive air contaminants without purification treatment). If the attack fails,
the patroller will acquire a reward Ri

d and the attacker will suffer a penalty Pi
a. Both reward Ri

d and
penalty Pi

a come from forfeit of attackers. Also, an expenditure r · Cd is defined to represent the cost for
conducting a patrolling through the chemical cluster. Values used in this paper of all these parameters
are determined by experts from the environmental protection authorities of Shanghai’s chemical cluster.
Then, the defender’s and attacker’s payoff are formulated in Formulas (7) and (8), wherein f ( f̃ ) is
the probability that the attack would fail from the defender’s (the attacker’s) perspective and ρi is the
prior probability.

ud = ∑
i=1

{
ρi · [Ri

d · f − Li
d · (1− f )]

}
− r · Cd, (7)

ui
a = [Gi

a(1− f̃ )− Pi
a · f̃ ], (8)

In Formulas (7) and (8), f ( f̃ ) is a variant related to the attacker’s strategy and defender’s strategy
modeled in Section 3.2. In the following paragraphs, the calculation of the probability f ( f̃ ) is studied.

The probability that the irregularities of chemical sites would be detected by the static inspection
resources (i.e., monitoring stations and gas sensor modules) is denoted by parameter fcpep and can be
computed through the Chemical Plant Environmental Protection (CPEP) game or can be assessed by
environmental experts as well. Moreover, we represent the probability that the patroller would detect
the irregularities of chemical sites successfully as parameter fp. Considering the case that an excessive
release can be detected by mobile resources and static resources at meantime, we therefore formulate
the probability f ( f̃ ) as Formula (9).

f = fp + fcpep − fp · fcpep = 1− (1− fcpep) · (1− fp), (9)
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In Formula (9), fcpep is a site-specific constant. Taking into the characteristics of source estimation
methods [28–31], we selected two main factors to model the probability fp. A release in site i starts at
time t and lasts for ki time slices with rsi release spots. If a selected patrol of a defender has certain
marginal coverage probabilities assigned in site i after the release time t, the inspection resources have a
certain amount of time to collect the release date used for source estimation. Moreover, the quantity of
working release spots in an attack scenario significantly influences the detection probabilities. Generally
speaking, the probability fp would decrease when the quantity of working release spots increases.

Furthermore, we define an effective data collecting time as te f f , which is constituted of two
components: toverlap and ta f ter. The time toverlap means that the data collecting time is located on
the overlaps between the release procedure of chemical sites and the patrollers staying in the site.
Meanwhile, the time ta f ter represents that the data collecting time is located after the release finishing
time. Based on the characteristic of source estimation method, pollution data collected during the
overlap time is more useful than that collected after the release finishing time. Therefore, the effective
data collecting time can be formulated as Formula (10).

te f f = ε · toverlap + ta f ter, (10)

in which ε is a real number larger than 1 and toverlap can be represented by

[max{t, st}, min
{

t + ki, st + tp
i

}
]. If we denote the start time that the patroller stays in a site i

as st, the staying behavior of the patroller can be represented by a tuple of starting time and staying
duration (st, tp

i ). There are five situations classified to calculate the effective data collecting time te f f .

Situation 1: If st + tp
i ≤ t holds, it means that the release scenario has not started. In this situation, the effective

data collecting time te f f equals 0.

Situation 2: If st < tandst + tp
i > tandst + tp

i ≤ t + ki holds, it means that only the overlap time is the data
collecting time. In this situation, the effective data collecting time te f f equals ε · toverlap.

Situation 3: If st > tandst + tp
i ≤ t + ki holds, it also means that only the overlap time is the data collecting

time. In this situation, the effective data collecting time te f f equals ε · toverlap.

Situation 4: If st > tandst + tp
i > t + ki holds, it means that the total data collecting is patrolling time tp

i in
this site. In this situation, the effective data collecting time te f f equals te f f = ε · toverlap + ta f ter, in which ta f ter
equals tp

i − toverlap.

Situation 5: If st > t + ki holds, it also means that the total data collecting is patrolling time tp
i in this site.

But in this situation, the effective data collecting time te f f equals ta f ter.

After listing these situations, the probability, fp, can be formulated through Formula (11).

fp = ∑sit=1 σsit ·∑s∈Ssit
i

ωa(s), (11)

in which σsit is a parameter with respect to effective data collecting time te f f and working release
spots rsi, denoted by Formula (12). In Formula (12), σi is a positive, real number related to detection
probability. Ssit

i represents the states set satisfying the specific situation (the states set relates to all time
steps associated with site i). Based on Formula (4), ∑s∈Ssit

i
ωs(a) can be represented by a polynomial

summation of marginal coverage vector
→
c .

σsit = σi · (te f f /td
i ) · (RSi/rsi), (12)

3.4. Game Solver and Solution Definition

In the CCEPP game, it is assumed that the attacker can collect information about the patroller’s
patrolling routes. For instance, the attackers would acquire the information regarding the patrolling
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route through long-term observation on patrolling teams or stealing the patrolling plans. Therefore,
we assume that the CCEPP game is played sequentially by the patroller and the attacker. Firstly,
the patroller (being the game leader) will commence a patrolling strategy

→
c (see Formula (13), and

subsequently, the attacker (being the game follower) responds with his optimal strategy accordingly
(see Formula (14)). It is worth mentioning that the patrolling team is able to compute the optimal
strategy of the attackers and then schedule her optimal strategy correspondingly. A Stackelberg

equilibrium (SE) (s∗d, si∗
a ) = (

→
c∗, (t∗, k∗i , rs∗i )) for the CCEPP game is a patroller-attacker strategy pair

that satisfies the following conditions:

(t∗, k∗i , rs∗i ) = argmax(t,ki ,rsi)∈Sa

{
ui

a(
→
c , (t, ki, rsi))

}
, (13)

→
c∗ = argmax→

c∗∈Sd

{
ud(
→
c , (t∗, k∗i , rs∗i ))

}
, (14)

By discretizing the time dimension, the finite number of strategies of attackers can be enumerated.
For a given patroller-attacker strategy pair, payoff functions ud and ui

a would both be linear polynomials
of
→
c . Therefore, a multiple linear programming (LP) algorithm [32] can be introduced to calculate the

Stackelberg equilibrium for the CCEPP game, as shown in Table 3.

Table 3. MultiLPs algorithm for calculating the Stackelberg equilibrium for the Chemical Cluster
Environmental Protection (CCEPP) game.

MultiLPs

1. Initialization
For each attacker strategy (t, ki, rsi), calculate ui

a and ud, where are linear polynomials of
→
c ;

2. Linear Programming (LP)
Suppose that the attacker strategy (t#, k#

i , rs#
i ) is the attacker’s best response, which means:

ua(t#, k#
i , rs#

i ,
→
c ) ≥ ua(t, ki, rsi,

→
c )∀(t, ki, rsi) ∈ Sa

The defender would then aim at:

Po fd(t#, k#
i , rs#

i ,
→
c#) = max→c∈Sd

ud(t#, k#
i , rs#

i ,
→
c )

3. Summary
The Stackelberg equilibrium achieves:

(
→
c∗, (t∗, k∗i , rs∗i )) = argmax(t#,k#

i ,rs#
i )∈Sa

Po fd(t#, k#
i , rs#

i ,
→
c#)

In the linear programming step, the game assists the defender to solve an LP problem. In this
LP problem, the cost function is Formula (16) and the constraints are Formulas (15), (4), (5) and (6).
Furthermore, the MultiLPs algorithm implements the LP step for each attacker strategy. To be specific,
if the value of ca(s, e) is constrained to be either 0 or 1, then the optimal fixed patrolling route for the
patrol team would be generated.

4. An Illustrative Case Study of the CCEPP Game

4.1. Experimental Settings

In the illustrative case, experiments are conducted in the Shanghai chemical cluster to explain
how the CCEPP game works in a real industrial scene. The part areas, graphic model, and transition
graph of the Shanghai chemical cluster are shown in Section 2 (i.e., Figures 1–3). Further, the maximum
patrolling time budget T is assumed to be 30 minutes, as the energy on the mobile patrolling vehicles is
limited to a maximum of 40 minutes for driving and inspecting. Table 1 shows the patroller’s moving
time between different chemical sites and inspecting time inside each site. It is assumed that patroller’s
source beginning node is set to the ‘Cr2’, which means a patrol team starts her patrolling plan from
this node. Some more parameters and simplification assumptions of this case are given hereafter.
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For the sake of clarity, we assume that the attacker has only one release scenario to perform and
this attack scenario lasts for 10 minutes with all release spots working during that period and the patrol
team is assumed to follow the patrolling schedules precisely. Table 4 gives the model inputs related
to the case study. They are the defender’s reward Ri

d and loss (Li
d) of detecting and not detecting the

attacker’s irregularities; the attacker’s gain Gi
a and penalty (Pi

a) from a successful release and from a
failed release, respectively; the cost for sending a patrol team (i.e., Cd = 2); and the probability fcpep

that the release can be detected by static inspection resources. The probability that the patroller can
catch the release (i.e., σi) should be provided by environmental protection authorities. However, for the
sake of simplicity, we assume that if the patroller is patrolling in the ith chemical site and the attacker
is releasing atmospheric contaminants at meantime, there is a probability of 0.05 that the attacker’s
behavior would be detected by the patroller in each time slice. Moreover, the parameter ε is assumed
to be 3 in this paper. The unit of all the monetary parameters can be, for instance, k¥.

Table 4. Model inputs of this case study.

Nodes
Parameter

Ri
d Li

d Gi
a Pi

a fcpep

‘A’ 6 96 60 18 0.45
‘B’ 6 67.2 36 18 0.3
‘C’ 6 84 49.8 18 0.42
‘D’ 6 72 42.6 18 0.45
‘E’ 6 90 60 18 0.5
‘F’ 6 78 54 18 0.4

It is worth mentioning that all these data concern estimations from the environmental protection
authorities in the Shanghai chemical cluster. In general, the numbers of rewards (Ri

d), losses (Li
d),

and the detection probability ( fcpep) are accurate, as they are from the estimations of their own data.
The amounts of rewards (Gi

a) and losses (Pi
a) for the attacker may present uncertainties because they

are estimations of attackers’ data from the perspective of the defender. For instance, “The gain of a
successful release in chemical site ‘A’ is 60” means that the patroller thinks the attacker will receive a
value of 60 from this release. However, the study of these parameters will not be covered in this paper.
For one thing, future research will consider the unknown adversaries (i.e., exact values of parameters
related to the opponents are unknown). Future research can also focus on the sensitivity of the model
to the values selected for parameters Ri

d, Li
d, Gi

a, Pi
a and ε.

4.2. Game Modeling

In this illustrative case study game, there are seven players, namely a patrol team and six chemical
sites. Meanwhile, the six chemical sites are independent and thus the game follows the standard
paradigm of a Bayesian Stackelberg game. It is further assumed that the six chemical sites share the
same prior probability (i.e., 1/6). Since only one attack scenario is considered, each attacker therefore
has only m = 1 × 30 × 1 = 30 pure strategies, being releasing excessive air pollutants at a time
(i.e., at a time t ∈ {0, 1, . . . , 29}). The patroller has 764 possible actions, shown as edges in Figure 3.
This means that the patroller’s strategy can be formed as a vector of 764 entries and each entry denotes
the marginal coverage probability of the edge in the transition graph.

According to Formula (7) and (8), the patroller’s and the attacker’s payoffs can be computed.
Payoffs will be represented as linear polynomials of the patroller’s strategy (i.e.,

→
c ), while the attacker’s

strategy decides the coefficients of polynomials.

4.3. Results and Discussions

Figure 4 shows the SE of the game developed for this case, computed by the MultiLPs algorithm
shown in Table 3. As we can notice, the patroller’s optimal patrolling strategy is represented by the
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black (and bold) lines. The associated number on the line denotes the probability that the defender
will take this action. For instance, c1 = 0.3546 means that the patrol team should drive from the start
node ‘Cr2’ to chemical site ‘C’ at a probability of 0.3546 at time 0. Similarly, c2 = 0.5637 denotes
that at time 0, the patrol team should drive from the start node ‘Cr2’ to chemical site ‘D2’ at a
probability of 0.5637. Moreover, when the patrol team is at node 1 (0, ‘Cr2’), the patroller would
have three possible actions (i.e., move to chemical site ‘C’, or ‘D’, or ‘E’). The marginal coverage
probabilities on the edge ‘1–2’, ‘1–3’, and ‘1–4’ are equal to the conditional probabilities of taking
these actions, for the total probability in node one is 1. Furthermore, in patrolling practice, if the
patroller arrives at a node in the figure, the conditional probabilities of the following actions can be
calculated by the formula ca(s, out)/∑ ωa(s). For instance, the probability that the patroller would
arrive at the node (1, ‘D2’) in Figure 4 is ∑ ωa(s) = 0.5637, and the conditional probabilities that the
patroller should take the three actions (i.e., either patrolling in site ‘D’, or driving to crossroad ‘Cr2’,
or crossroad ‘Cr1’) are ca1(D2, D2) = 0.47155/0.5637 = 0.8365, ca2(D2, Cr2) = 0.091165/0.5637 = 0.1617, and
ca3(D2, Cr1) = 0.000987/0.5637 = 0.0018, respectively. Under this optimal patrolling strategy, the payoffs
for the patroller and attacker are –6.616 and 3.188 (on average), respectively. The detailed information
of this optimal patrolling strategy is listed in Table A1.
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Next, let us compare the SE generated by CCEPP game with the purely randomized route strategy.
In real patrolling practice, patrollers often randomly schedule the patrolling route. This situation, as
demonstrated in Figure 3, is simply assigning equal probabilities to edges that start from the same
node. For example, when the patrol team arrives at node 1 (0, ‘Cr2’), he would move to site ‘C’,
or ‘D2’, or ‘E’ with the same probability, being 1/3. However, the purely randomized patrolling
strategy does not take into consideration the hazardousness level that each chemical site holds and,
if this is the case, an intelligent attacker would take his preference to attack, since all the chemical
sites are equally patrolled. Under this purely randomized patrolling strategy, we can firstly calculate
the marginal coverage probabilities on each edge, then compute the probabilities in each overlap
situation, and finally compute the payoffs of patroller and attacker. According to Formulas (7) and (8),
the corresponding payoff for the patroller and attacker are –8.254 and 4.054 (on average), respectively.
Compared to the SE of the CCEPP game, the defender’s payoff reduces from –6.616 to –8.254. This
result reveals that the CCEPP SE strategy is characterized with a higher probability that the attacker is
more possible to be discovered of his illegal behaviors.
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Moreover, in current patrolling practice, some patrollers may follow a fixed route strategy rather
than choosing the purely randomized strategy. This scenario has been explained in detail as a black
(and bold) line, as demonstrated in Figure 3. However, if a fixed patrolling route is scheduled,
the patroller’s real-time location is deterministic to intelligent attackers, since intelligent attackers
would collect useful information before an attack. In the transition graph, if the probability of an
action being taken is further constrained to be either 0 or 1 (i.e., c ∈ {0, 1} instead of c ∈ [0, 1]), then a
vector of that satisfies Formula (4) and (5), representing a fixed route strategy. By solving the MultiLPs
algorithm, the optimal fixed route strategy is obtained, shown in Figure 5. The fixed patrolling route
can be further demonstrated as: The patroller starts from ‘Cr2’; she goes to chemical site ‘D2’ and then
she moves back to ‘Cr2’; she further goes to chemical site ‘E’ and then moves back to ‘Cr2’; she goes to
chemical site ‘D2’ and back to ‘Cr2’ again; subsequently, she drives to chemical site ‘C’ and then moves
to ‘Cr3’; she goes to chemical site ‘A2’ and moves back to ‘Cr3’; then she goes to chemical site ‘C’,
crossroad ‘Cr2’, chemical site ‘D2’, crossroad ‘Cr1’, chemical site ‘B’, and chemical site ‘A1’ in sequence;
finally, she patrols site ‘A’. If the patroller follows the fixed patrolling route and the attacker plays his
best response, the corresponding payoff for the patroller and attacker are –8.35 and 4.15 (on average),
respectively. It is worth mentioning that neither the patroller’s optimal fixed patrolling route and
the attacker’s best response are unique. For instance, given the patroller’s fixed route, it would be
indifferent for the attacker to start his attack at any time. However, the player’s payoff would not be
different. Therefore, only one optimal fixed patrolling route is shown in this paper.

Int. J. Environ. Res. Public Health 2019, 16, 15 of 19 

 

would be indifferent for the attacker to start his attack at any time. However, the player’s payoff 
would not be different. Therefore, only one optimal fixed patrolling route is shown in this paper. 

 
Figure 5. Optimal fixed patrolling route for a patrol team. 

Through comparing these three strategies, the SE generated by CCEPP game obviously 
outperforms the purely randomized route strategy and the fixed route strategy, shown in Table 5. By 
implementing the SE strategy, the defender will decrease her loss and the defender’s payoff increases 
from –8.254 (or –8.35) to –6.616. The result reveals that the SE strategy has a higher probability of 
detecting attacker’s illegal releases and brings a higher reward to the defender. To be specific, higher 
marginal coverage probabilities would be accompanied in the more hazardous chemical sites, which 
implies that the holder of hazardous chemical sites is highly likely to obey air regulations and conduct 
permitted emissions after being caught several times. Therefore, playing a CCEPP game is essential 
for the patrolling team in her daily management work because the game not only improves her 
payoffs and detects the illegal discharge behaviors of chemical sites, but also reduces the risk of 
hazardous gas leakage incidents. 

Table 5. Players’ payoffs under three different patrolling strategies. 

       Strategy 
Payoff 

Stackelberg 
Equilibrium 

Purely Randomized Route 
Strategy 

Fixed Route 
Strategy 

Defender’s 
payoff 

–6.616 –8.254 –8.35 

Attacker’s payoff 3.188 4.054 4.15 

5. Conclusions 

The atmospheric pollution prevention problem in a chemical cluster has drawn a great concern 
around the world. Though some works have been done to schedule the utilization of static inspection 
resources in a chemical cluster, mobile inspection resources are highly recommended to monitor the 
chemical production process for their flexibility and mobility. However, the current widely used 
patrolling strategies (i.e., purely randomized route strategy and fixed route strategy) have obvious 
drawbacks. To this end, a so-called chemical cluster environmental protection patrolling (CCEPP) 
game was developed and proposed to aid the inspection agency in effectively scheduling patrols on 
different chemical sites. In this game, the intelligent interactions between the patroller and the holders 
of chemical plants were considered. Practical road network constraints and reasonable time 

Figure 5. Optimal fixed patrolling route for a patrol team.

Through comparing these three strategies, the SE generated by CCEPP game obviously
outperforms the purely randomized route strategy and the fixed route strategy, shown in Table 5.
By implementing the SE strategy, the defender will decrease her loss and the defender’s payoff increases
from −8.254 (or −8.35) to −6.616. The result reveals that the SE strategy has a higher probability of
detecting attacker’s illegal releases and brings a higher reward to the defender. To be specific, higher
marginal coverage probabilities would be accompanied in the more hazardous chemical sites, which
implies that the holder of hazardous chemical sites is highly likely to obey air regulations and conduct
permitted emissions after being caught several times. Therefore, playing a CCEPP game is essential for
the patrolling team in her daily management work because the game not only improves her payoffs
and detects the illegal discharge behaviors of chemical sites, but also reduces the risk of hazardous gas
leakage incidents.



Int. J. Environ. Res. Public Health 2019, 16, 612 15 of 18

Table 5. Players’ payoffs under three different patrolling strategies.

Payoff
Strategy Stackelberg

Equilibrium
Purely Randomized

Route Strategy
Fixed Route

Strategy

Defender’s payoff −6.616 −8.254 −8.35
Attacker’s payoff 3.188 4.054 4.15

5. Conclusions

The atmospheric pollution prevention problem in a chemical cluster has drawn a great concern
around the world. Though some works have been done to schedule the utilization of static inspection
resources in a chemical cluster, mobile inspection resources are highly recommended to monitor the
chemical production process for their flexibility and mobility. However, the current widely used
patrolling strategies (i.e., purely randomized route strategy and fixed route strategy) have obvious
drawbacks. To this end, a so-called chemical cluster environmental protection patrolling (CCEPP)
game was developed and proposed to aid the inspection agency in effectively scheduling patrols
on different chemical sites. In this game, the intelligent interactions between the patroller and the
holders of chemical plants were considered. Practical road network constraints and reasonable time
discretization were modeled in this game as well. Moreover, simple source estimation process in
each chemical site was also considered. Finally, the MultiLPs algorithm was introduced to solve this
game correspondingly.

An illustrative case study was implemented to demonstrate how our proposed CCEPP game
works in the Shanghai chemical cluster. Results of the case study show that the patroller would have
higher expected payoffs by strategically randomizing patrolling routes, indicating that patrolling more
potential releasing chemical plants would be more likely. These chemical sites are accompanied by
higher marginal coverage probabilities. Performance of the patrolling strategy from the Stackelberg
equilibrium outperforms the performances of any fixed patrolling routes and the performance of
the purely randomized routes. Further, higher marginal coverage probabilities are accompanied in
the more hazardous chemical sites signifying that it is more possible for the holder of hazardous
chemical sites to choose to obey air regulations after several punishments. In other words, the
surrounding ecosystem and residential environment will be largely improved on the one hand; the
risks of hazardous gas leakage incidents will be considerably reduced by strategically scheduling the
patrols on the other hand.

The proposed CCEPP game can be further modified from several directions. Firstly, the current
model assumes that the estimation of the attackers’ data from the defender is correct. In reality, the
model should be extended to consider unknown opponents. Secondly, the attacker is assumed to only
know the probability of each action that the patroller would take. But the more realistic situation is
that the intelligent adversary not only knows the probability, but also observes the current location of
the patroller. To model this situation, a stochastic game is recommended. Thirdly, the patrolling inside
the chemical sites is modeled simply. In reality, it is better for the patroller to determine the locations
of releasing spots through source estimation methods. Therefore, future work should also focus on the
application of source tracing algorithm in the CCEPP game. It would assist the patroller in tracing the
releasing source and verifing this irregularity.
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Appendix A

Table A1. Defender’s strategy generated by the CCEPP game.

Edge
Number Probability Edge

Number Probability Edge
Number Probability Edge

Number Probability

1 0.35459 87 0.081704 334 0.02735 525 0.072912
2 0.5637 88 0.023407 342 0.019765 526 0.20611
3 0.081704 89 0.08403 343 0.06621 532 0.095759
4 0.47155 101 0.043936 350 0.019765 554 0.042508
5 0.091165 103 0.002519 357 0.000987 560 0.068729
7 0.000987 109 0.03989 358 0.12208 561 0.077698
8 0.25294 120 0.12024 359 0.010622 569 0.01157
10 0.10165 123 0.000987 378 0.023407 571 0.008337
12 0.081704 138 0.028038 383 0.08403 574 0.095759
13 0.13548 141 0.048756 393 0.033422 586 0.025925
15 0.33607 142 0.062431 394 0.025925 587 0.043588
16 0.042409 143 0.095759 396 0.012146 592 0.00899
18 0.048756 160 0.001831 397 0.004238 606 0.13706
19 0.21851 162 0.059361 398 0.068729 616 0.035621
20 0.11756 179 0.042544 409 0.029031 619 0.01157
25 0.11756 180 0.077698 424 0.00899 626 0.068729
26 0.040461 183 0.000987 425 0.0309 633 0.040461
27 0.061192 196 0.058217 432 0.000987 646 0.077222
29 0.10744 197 0.059346 437 0.010622 648 0.015833
30 0.028038 199 0.016384 442 0.030989 650 0.01578
32 0.03989 201 0.1327 444 0.031442 656 0.00899
34 0.002519 221 0.002519 447 0.095759 664 0.068729
36 0.048756 235 0.059361 454 0.011609 676 0.20611
37 0.17457 259 0.033514 458 0.077222 688 0.066995
39 0.043936 260 0.048191 459 0.008337 690 0.00899
43 0.043936 262 0.02417 460 0.015833 699 0.032276
47 0.061192 263 0.019765 465 0.004238 701 0.072912
51 0.11756 264 0.03989 469 0.08403 731 0.030989
52 0.040461 276 0.02552 473 0.033422 744 0.072912
55 0.043936 277 0.032697 474 0.006923 750 0.035621
62 0.002519 286 0.032697 476 0.035621 751 0.01578
64 0.15819 312 0.059361 479 0.077698 756 0.015833
65 0.016384 314 0.040461 494 0.01578 757 0.27902
67 0.1327 330 0.028038 495 0.01157 762 0.01578
69 0.12024 332 0.009266 505 0.042508 763 0.063265
82 0.000987 333 0.03949 522 0.032276 764 0.27902
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