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Abstract: In the Duliujian River, 12 water environmental parameters corresponding to 45 sampling
sites were analyzed over four seasons. With a statistics test (Spearman correlation coefficient) and
multivariate statistical methods, including cluster analysis (CA) and principal components analysis
(PCA), the river water quality temporal and spatial patterns were analyzed to evaluate the pollution
status and identify the potential pollution sources along the river. CA and PCA results on spatial
scale revealed that the upstream was slightly polluted by domestic sewage, while the upper-middle
reach was highly polluted due to the sewage from feed mills, furniture and pharmaceutical factories.
The middle-lower reach, moderately polluted by sewage from textile, pharmaceutical, petroleum and
oil refinery factories as well as fisheries and livestock activities, demonstrated the water purification
role of wetland reserves. Seawater intrusion caused serious water pollution in the estuary. Through
temporal CA, the four seasons were grouped into three clusters consistent with the hydrological
mean, high and low flow periods. The temporal PCA results suggested that nutrient control was the
primary task in mean flow period and the monitoring of effluents from feed mills, petrochemical
and pharmaceutical factories is more important in the high flow period, while the wastewater from
domestic and livestock should be monitored carefully in low flow periods. The results may provide
some guidance or inspiration for environmental management.

Keywords: river water quality; multivariate statistical analysis; seagoing river; Duliujian River;
environmental management

1. Introduction

River ecosystems have received more attention in recent years because they not only provide
water resources for socioeconomic development, but they also play an important role in ecological
integrity. The surface water quality in rivers plays an important role in the productivity and life of
surrounding human societies. However, water quality deterioration in rivers has been extremely
serious in developing countries due to the intensive anthropogenic activities along the river and lack
of water treatment in the entire basin [1–3]. Nowadays, abundant literature focusing on the water
quality in inland rivers or coastal seas can be easily found, while there is little reported information
on seagoing rivers due to the complexity of their ecosystems and diversity of pollution sources [2,4].
Due to the transition from fresh water to sea water, seagoing rivers not only have the pollution
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characteristics of inland rivers, but also receive marine pollution through seawater intrusion. Due to
their enormous economic value and various ecological functions, more attention should be paid to
spatial and temporal variations of water quality in seagoing rivers.

Long-term water quality monitoring is the most common and effective method to evaluate
eutrophication and other environmental problems since the spatial and temporal variations of these
physicochemical parameters and biological indicators can be presented clearly and can further help
researchers to evaluate the pollution status [5]. Generally, dissolved oxygen (DO), total nitrogen (TN),
total phosphorus (TP) and dissolved inorganic nitrogen (DIN) are monitored as physicochemical
indicators of river water quality [6–8]. Nitrogen pollution, which is related to land use change,
soil nitrogen derived from agriculture, nitrification and denitrification [9,10], is the predominant
factor attributed to the eutrophication problems in water [11,12]. Excessive phosphorus, which stems
from fertilizers, feed, industrial waste and internal sediment release is another leading factor in the
deterioration of water ecosystems [6,7,13,14]. Chlorophyll a (Chla), a biological indicator, reflects the
primary production in aquatic ecosystems [8,15,16]. For a seagoing river, electrical conductivity (EC)
and total dissolved solids (TDS) should be monitored as water salinization indicators reflecting the
influence of seawater intrusion and soil erosion [17,18]. In two studies in Turkey, the pH in inland rivers
(7.88–8.94) was much more stable than in coastal areas (6.53–9.91), and may therefore have an impact on
fresh water during the process of seawater intrusion [18,19]. However, seawater intrusion complicates
the quantitative analyses of the river water quality with simple statistical methods. As such, further
analyses on the long-term water quality monitoring data based on more powerful analysis methods,
which may identify the pollution source contributions more clearly, has become much more important
for managers to implement better treatment measures [20,21].

Spearman correlation coefficient (a statistical test) and multivariate statistical methods, including
cluster analysis (CA) and principal components analysis (PCA) are widely used to assess the seasonal
and spatial variations of the water quality in rivers and coastal areas [22–27]. Many studies have
concluded that natural processes like bedrock weathering, mineral oxidation, buffering processes,
climatic conditions, soil erosion and seawater intrusion also have considerable effects on water
quality [17,20,28]. In addition, the water quality degeneration is contributed to by anthropogenic
activities such as agricultural fertilization and irrigation, domestic wastewater, livestock operation,
over pumping, industrial and municipal effluents [17,22,29]. For coastal areas, water quality is polluted
by excessive organic and inorganic loads, irregular opening of lagoons, as well as municipal wastewater
and fish-farming [5,15,23]. Multivariate statistical analyses can mine potential relationships among
water quality parameters, identify the main sources of pollution, and group the sampling sites into
different clusters without losing important information [30–32].

Multiple water environmental parameters continuously measured in a natural seagoing river were
analyzed to identify the spatial and temporal variation characteristics of water quality for seagoing
rivers. The objective of this study is to find out the main pollutants in different seasons and river
reaches by multivariate statistical methods, which are expected to help managers to understand the
main pollution sources along the river and implement better treatment strategies.

2. Materials and Methods

2.1. Study Area

The Duliujian River, a seagoing river within the Haihe River Basin, located in southern Tianjin
City, and flows from the conjunction of the Daqing River and the Ziya River to the Bohai Bay. With a
total length of 70.14 km and a maximum width of 1 km in the upper and middle reaches, the Duliujian
River has a catchment area of 3737 km2. The river basin belongs to the warm temperate zone with a
semi-humid continental monsoon climate. The annual mean rainfall in this region is about 571 mm,
but the rainfall is mainly concentrated from June to September. The monthly mean temperature ranges
from −3.4 ◦C in January to 26.8 ◦C in July, while the average annual sunshine duration and evaporation
are 2471 h and 1732 mm, respectively.
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As the main water source supplying two important coastal wetland ecological environment
conservation areas, namely the Beidagang Wetland Nature Reserve and the Tuanbo Birds and
Nature reserve, the Duliujian River plays an important role in ecological environment protection.
However, the Duliujian River also receives a large number of point and non-point sources pollutants
throughout the year since that the up-middle reaches goes through the urban population living
quarters and the downstream reach crosses some industrial parks that contain many textile, chemical,
pharmaceutical, petroleum chemical, oil refinery, iron-steel and electroplating factories [20,28].
Furthermore, the wastewater from the aquaculture along the river and the surrounding areas also
aggravates the pollution status of the Duliujian River.

2.2. Sampling and Analysis

In order to monitor the temporal and spatial changes of the water quality in the Duliujian River,
15 sampling cross-sections (S1–S15) were set along the whole Duliujian River considering natural
conditions and human activities (Figure 1). Further, three sampling sites on each sampling cross-section
were determined at 1/4, 1/2 and 3/4 across the river width. However, it should be stated that the sites
S1.1–S2.3 on S1 and S2 in spring (May 2017) were not available due to dry up. Therefore, seasonal
water samples from 45 sampling sites were collected in winter (December 2016, based on S1–S15),
summer (July 2017, based on S1–S15) and autumn (September 2017, based on S1–S15), and 39 in spring
(May 2017, based on S3–S15), respectively. During each sampling period, the work was carried out
from S1 to S15 in sequence. In addition, weather forecasts for at least 15 days were checked before
each sampling, and then seasonal sampling was completed in the consecutive days that were most
suitable for sampling, in order to reduce the measurement errors caused by weather. At each sampling
site, some water quality parameters were measured in situ like water temperature (WT), water depth
(WD), and others, and at the same time, 1.5 L water was collected 1.0 m (1/2 of WD when WD < 1 m)
below the water surface using a polymethylmethacrylate sampler and stored in a polyethylene plastic
bottle. These sampling bottles were precleaned with detergent, rinsed three times with deionized
water and dried under 30 ◦C in an oven for 24 h. Then, the water samples were placed in insulated
boxes containing ice bags and transported to the laboratory for further analyses. The preservation
and handling of the samples were all performed according to the Water Quality Sampling—Technical
Regulation of the Preservation and Handing of Samples (HJ493-2009) norms [33]. Due to the normally
closed sluices along the river, the average flow velocity was very slow. As such, in comparison with
the nearest distance between two adjacent sections (3.0 km), the effects of pollutant transfer with water
flow should be very slight and therefore ignored.

Int. J. Environ. Res. Public Health 2019, 16, x FOR PEER REVIEW 3 of 18 

 

reserve, the Duliujian River plays an important role in ecological environment protection. However, 
the Duliujian River also receives a large number of point and non-point sources pollutants 
throughout the year since that the up-middle reaches goes through the urban population living 
quarters and the downstream reach crosses some industrial parks that contain many textile, chemical, 
pharmaceutical, petroleum chemical, oil refinery, iron-steel and electroplating factories [20,28]. 
Furthermore, the wastewater from the aquaculture along the river and the surrounding areas also 
aggravates the pollution status of the Duliujian River. 

2.2. Sampling and Analysis 

In order to monitor the temporal and spatial changes of the water quality in the Duliujian River, 
15 sampling cross-sections (S1–S15) were set along the whole Duliujian River considering natural 
conditions and human activities (Figure 1). Further, three sampling sites on each sampling cross-
section were determined at 1/4, 1/2 and 3/4 across the river width. However, it should be stated that 
the sites S1.1–S2.3 on S1 and S2 in spring (May 2017) were not available due to dry up. Therefore, 
seasonal water samples from 45 sampling sites were collected in winter (December 2016, based on 
S1–S15), summer (July 2017, based on S1–S15) and autumn (September 2017, based on S1–S15), and 
39 in spring (May 2017, based on S3–S15), respectively. During each sampling period, the work was 
carried out from S1 to S15 in sequence. In addition, weather forecasts for at least 15 days were checked 
before each sampling, and then seasonal sampling was completed in the consecutive days that were 
most suitable for sampling, in order to reduce the measurement errors caused by weather. At each 
sampling site, some water quality parameters were measured in situ like water temperature (WT), 
water depth (WD), and others, and at the same time, 1.5 L water was collected 1.0 m (1/2 of WD when 
WD < 1 m) below the water surface using a polymethylmethacrylate sampler and stored in a 
polyethylene plastic bottle. These sampling bottles were precleaned with detergent, rinsed three 
times with deionized water and dried under 30 °C in an oven for 24 h. Then, the water samples were 
placed in insulated boxes containing ice bags and transported to the laboratory for further analyses. 
The preservation and handling of the samples were all performed according to the Water Quality 
Sampling—Technical Regulation of the Preservation and Handing of Samples (HJ493-2009) norms 
[33]. Due to the normally closed sluices along the river, the average flow velocity was very slow. As 
such, in comparison with the nearest distance between two adjacent sections (3.0 km), the effects of 
pollutant transfer with water flow should be very slight and therefore ignored. 

 
Figure 1. The sampling sections and sites in the study area. 

In Table 1, the monitored water quality parameters and their abbreviations, analytical methods 
and units are summarized. All parameters were measured or analyzed in accordance with relevant 

Figure 1. The sampling sections and sites in the study area.



Int. J. Environ. Res. Public Health 2019, 16, 1020 4 of 18

In Table 1, the monitored water quality parameters and their abbreviations, analytical methods
and units are summarized. All parameters were measured or analyzed in accordance with relevant
standard methods [34]. After filtering through 0.7 µm glass fiber filter and extraction for 12 h using 90%
(v/v) acetone by a freeze-thaw method, the absorbance of the water samples was measured using a
UV spectrophotometer, by which, the concentration of Chla could be calculated according to a relevant
standard [35]. NH4

+-N, NO3
−-N, NO2

−-N and PO4
3−-P were determined from adequate samples

filtered through 0.45 µm cellulose ester membranes. DIN was employed to represent the concentration
of inorganic nitrogen and it was calculated using Equation (1):

DIN = NH4
+-N + NO3

−-N + NO2
−-N. (1)

Table 1. The water quality parameters and their abbreviation, analytical method and units.

Parameters Abbreviation Analytical Method Unit

Water temperature WT YSI ProPlus ◦C
Water transparency SD Secchi disk cm

Water depth WD Meter stick m
pH pH YSI ProPlus

Dissolved oxygen DO YSI ProPlus mg/L
Electrical conductivity EC YSI ProPlus µs/cm
Total dissolved solids TDS YSI ProPlus mg/L

Total nitrogen TN Alkaline potassium persulfate digestion UV
spectrophotometric method mg/L

Total phosphorus TP Ammonium molybdate spectrophotometric method mg/L
Ammonia nitrogen NH4

+-N Nessler’s reagent spectrophotometric method mg/L
Nitrate NO3

−-N Gas phase molecular Absorption spectrum method mg/L
Nitrite NO2

−-N Gas phase molecular Absorption spectrum method mg/L
Orthophosphate PO4

3−-P molybdenum-antimony anti-spectrophotometric method mg/L
Chlorophyll a Chla spectrophotometric method µg/L

Dissolved inorganic
nitrogen DIN NH4

+-N + NO3
−-N + NO2

−-N mg/L

In order to ensure the quality of the experimental data, quality control procedures were performed
throughout the sampling and analysis processes. In addition, two replicates of the parameters tested
in laboratory for each sampling site were measured to minimize the experimental error and enhance
the reliability of the measured results. Key statistics of these water quality parameters measured in
this study are listed in Table 2.

Table 2. Key statistics of the water quality parameters in the Duliujian River.

Parameters n Min. Max. Mean S.D. Median

WT (◦C) 174 1.90 32.10 20.78 10.16 25.75
SD (cm) 174 14.20 105.50 52.76 16.63 50.00
WD (m) 174 0.70 6.94 2.68 1.02 2.66

pH 174 7.80 9.93 8.74 0.42 8.69
DO (mg/L) 174 0.05 21.10 10.38 4.90 9.86
EC (µs/cm) 174 1900.00 56,066.00 20,841.12 16,582.06 17,039.50
TDS (mg/L) 174 2008.50 34,515.00 13,765.38 10,449.19 10,374.00
TN (mg/L) 174 1.30 9.73 3.57 1.91 2.90
TP (mg/L) 174 0.05 1.12 0.38 0.24 0.36

PO4
3−-P (mg/L) 174 0.00 0.81 0.15 0.20 0.08

Chla (µg/L) 174 2.22 326.01 68.92 62.34 50.45
DIN (mg/L) 174 0.00 4.68 0.83 1.00 0.43

2.3. Data Processing and Statistical Analyses

Prior to statistical analyses, the missing values were filled with the mean values of each quarter
sequence. Then, logarithmic transformations were performed to standardize the environment variables
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so that the data could meet the assumptions of normality and homoscedasticity for statistical analyses
(except for pH). Logarithmic transformation is a kind of standardization which can eliminate the
influence of different units and scales of the measurements, make the data dimensionless and tends to
reduce the effect of outliers [15,36]. The logarithmic transformation equation can be expressed as:

Sij = Log10(xij + 1), I = 1, . . . , 12, j = 1, . . . , 45, (2)

where xij is the i-th variable of the j-th sample; Sij is the standardized value of xij. Whether the data
obeyed a normal distribution could be determined by the standardized skewness and standardized
kurtosis. The environmental variables, whose values of standardized skewness and standardized
kurtosis were outside the range of −2 to +2, were considered to correspond to a non-normal
distribution [23]. With this method, only 12 parameters with proper distribution were selected
although more than 20 water environmental parameters were available. For example, chemical oxygen
demand (COD) was not chosen for further analyses due to its low confidence in the log-normal
distribution test.

Spearman correlations (a statistical test) were employed to reveal the relationships among the
water quality parameters. A correlation coefficient near −1 or 1 means a strong negative or positive
linear relationship between two variables, while one closes to 0 demonstrates a weak relationship.
In this study, the relationships with correlation coefficients greater than 0.5 at the significant level of
p < 0.01 were chosen for further detailed analysis.

Cluster analysis (CA) is a multivariate statistical technique that can investigate the similarities and
dissimilarities between sampling sites, which groups the relevant objects into different aggregations
based on their interdependent variables or characteristics [29,37]. Hierarchical agglomerative cluster
analysis (HACA), the most common approach used in CA, was chosen to provide intuitive similarity
relationships between temporal and spatial patterns [2,23]. HACA analysis was employed on the
standardized dataset by the Ward’s method using squared Euclidean distances without any prior
knowledge of the number of clusters [22,23]. The cases in each group clustered by this method have
the smallest sum of squares deviation, and the clustering processes are presented in a dendrogram.
The categories were based on the linkage distance Dlink/Dmax × 100, where Dlink is the distance
between two clusters or objects, and Dmax is the maximum Dlink.

One-way analysis of variance (ANOVA) was performed to compare the differences of water
quality variables in different seasons or sampling sites (p < 0.05; least-significance difference, LSD of
assuming homogeneity of variance; Tamhane’s T2 of non-homogeneity of variance). ANOVA results
were employed to show the reliability of CA results.

Principal component analysis (PCA) is another multivariate statistical technique that can reduce
dimensionality of the original data set to extract the information about correlation among variables
analyzed in the water samples with a minimum loss of the original information [30,38]. PCA was
carried out to explore the main parameters that can explain the data variance in the groups divided by
CA. The Kaiser-Meyer-Olkin (KMO) and Barlett’s tests were performed to test the suitability of the
data. All the data calculations and statistical analyses in this study were performed by IBM SPSS 19
(SPSS Inc., Chicago, IL, USA) and Statistica 10 (Statsoft Inc, Tulsa, OK, USA).

3. Results and Discussion

3.1. Physicochemical Characteristics and Correlation Analyses

In order to analyze the spatial variations and the correlations of these water quality parameters
monitored in this research, the values of these 12 water quality parameters were plotted in Figure 2
corresponding to four different seasons. The Spearman correlation coefficients between these 12
physicochemical parameters were also calculated and are shown in Table 3.

As can be seen in Figure 2, WT, with a range of 1.9 ◦C to 32.1 ◦C across the study period, varied
due to the season. It was also noticeable that WT had significant positive correlations with EC and
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TDS, which may rely on the enhancement of irons activity due to increasing WT. In addition, seawater
intrusion due to the opening of estuarine sluices in summer and autumn (with higher WT) may also
be responsible to the much higher EC (with an annual value of 20841.1 µs/cm) and TDS (with an
annual value of 13,765.4 mg/L) than that of fresh water (TDS of drinking water is no more than
1000 mg/L [39]). As such, the correlations of WT with EC and TDS observed in this research were
different from some other studies due to the effects of seawater intrusion [31,40].
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Figure 2. Spatial and temporal variability of water quality in the Duliujian River. Note: The major ticks
of the x-axis are the third site at each section, and the minor ticks before each major ticks are the first
and second site. i.e., the major tick number 1 means S1.3, two minor ticks before number 1 means S1.1,
S1.2. The major tick labels are also corresponding to their section number.

With an average of 8.7, pH varied from 7.8 to 9.9 and indicated the slightly alkaline characteristic of
water. The effects of pH on PO4

3−-P adsorption should be responsible for strong positive correlations
between TP and PO4

3−-P. Under alkaline conditions, phosphorus was mainly released by ion exchange,
by which, metal cations combined with phosphate are replaced by OH− therefore leading to a higher
dissolved PO4

3−-P concentration [41,42]. Meanwhile, the negative charges on the surface sediment
increased gradually with the increase of pH value [20], and the increased repulsion between the
more negatively charged phosphate species and negatively charged surface sediment resulted in the
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lower adsorption of PO4
3−-P [43]. PO4

3−-P, therefore, was released into water and raised the TP
concentration. The correlations between pH and TN, DIN (Table 3) indicated that the increase of pH
might have a negative impact on biochemical processes related to dissolved organic nitrogen (DON)
such as phytoplankton secretion, nitrogen fixation and absorption of aquatic plants [5,6,44].

The relationship between EC and TDS is well known and they had similar spatial trends in this
study as the values increased along the river with significant increases at the last three sites in summer,
autumn and winter, while a sharp growth from S6.3 (EC: 6940.0 µs/cm, TDS: 4251.0 mg/L) to S7.1 (EC:
42,128.0 µs/cm, TDS: 27,618.5 mg/L) was seen in spring. Besides, the correlation between DIN and EC
might be attributed to microbial activity.

SD and WD also had similar spatial variation tendencies except for spring when a rubber dam
under construction led to artificial effects on WD (S6.3, S7.1). The minimum values of SD and WD
were 14.2 cm (winter, S4.1) and 0.7 m (spring, S15.3), respectively. Specifically, there were no strong
correlations between SD/WD and other factors.

DO, an important index in water quality, exhibited a higher concentration in winter and a lower
concentration in summer with a minimum value of 0.05 mg/L at S7.1. The physical processes of water
should be responsible to the moderate negative correlations between DO and EC, TDS. Furthermore,
the changes of aquatic plants and plankton and therefore their production ability of oxygen may also
be another important factor influencing the DO concentration.

Chla displayed a large temporal variation with a lowest concentration of 2.2 µg/L at S13.2
in spring. As an important index representing the phytoplankton biomass, Chla did not exhibit
a significant correlation with TN indicating that phytoplankton were affected by other limiting
environmental factors rather than TN, which required more further study.

TP and PO4
3−-P showed significant downtrend along the river across the seasons, varying from

0.05 to 1.12 mg/L and 0.00 to 0.81 mg/L, respectively. TP and PO4
3−-P were associated well with WT,

which indicated that these correlations might be caused by sediment release or aquatic life absorption,
or the frequent anthropogenic activities such as agricultural land fertilized or aquaculture waste water
discharge in spring and summer.

Table 3. Correlation analysis of water quality parameters (Spearman correlation coefficients(r)).

Parameters WT DO EC TDS pH SD WD TN TP PO4
3−-P Chla DIN

WT 1
DO −0.38 a 1
EC 0.35 a −0.69 a 1

TDS 0.26 a −0.68 a 0.99 a 1
pH 0.48 a 0.32 a −0.26 a −0.30 a 1
SD 0.16 b −0.41 a 0.25 a 0.27 a −0.04 1
WD −0.06 0.13 −0.06 −0.02 0.25 a 0.10 1
TN −0.19 a −0.18 b 0.39 a 0.38 a −0.55 a 0.09 0.02 1
TP 0.68 a −0.17 b 0.10 0.02 0.65 a 0.03 0.23 a −0.12 1

PO4
3−-P 0.69 a −0.19 b −0.01 −0.06 0.69 a 0.25 a 0.28 a −0.28 a 0.86 a 1

Chla −0.03 0.39 a −0.28 a −0.29 a 0.33 a −0.47 a 0.45 a −0.01 0.35 a 0.24 a 1
DIN −0.18 b 0.46 a −0.51 a −0.48 a 0.08 −0.10 0.33 a −0.00 0.02 0.15 b 0.47 a 1

Note: Bold, the most significant values at 0.01 level. a correlation is significant at the 0.01 level (2-tailed). b correlation
is significant at the 0.05 level (2-tailed). Shading background, correlation coefficient is greater than 0.5 at the level
of 0.01.

TN displayed the highest concentrations (9.7 mg/L) at S11.1 in spring and lowest concentration
(1.3 mg/L) at S7.2 in autumn. DIN exhibited almost same variation trends with TN in four seasons,
varying from 0.00 to 4.68 mg/L with an average of 0.83 mg/L.

3.2. Spatial Sites Grouping and Source Identification

CA was used to categorize the spatial similarity groups of all the monitored sites according to
their water quality similarities. EC and PO4

3−-P, highly correlated with TDS and TP, respectively, were



Int. J. Environ. Res. Public Health 2019, 16, 1020 8 of 18

not used in CA to avoid repeated counting of the contribution rates of similar water quality parameters.
As can be seen in Figure 3, the 45 sampling sites were categorized into four clusters at (Dlink/Dmax) ×
100 < 32, and these sampling sites showed a reasonable consistency in their cross sections. Besides,
ANOVA was performed to demonstrate the significance and reliability of the grouping result (Table 4).
It was illustrated that the results of CA were effective for the significant differences of each water
quality parameter among each cluster at p-value < 0.05 level. As shown in Table 5 and Figure 4, PCA
was employed to find out the potential factors corresponding to these four clusters. In Table 5, it can
be seen that four, two, four and four principal components for the water quality parameters were
extracted in cluster 1, cluster 2, cluster 3 and cluster 4, respectively. In order to identify the main
pollution source of each river reach, the spatial CA and PCA results can be comprehensively analyzed.

Table 4. The results of ANOVA of spatial CA.

WT DO EC TDS pH SD WD TN TP PO4
3−-P Chla DIN

df 44 44 44 44 44 44 44 44 44 44 44 44
F-statistics 54.27 8.07 152.18 142.51 40.30 4.73 4.49 4.65 88.07 73.35 28.94 61.10

p-value <0.001 <0.001 <0.001 <0.001 <0.001 0.006 0.008 0.007 <0.001 <0.001 <0.001 <0.001

Note: df is the degree of freedom.

These clusters were determined by judging their water quality, which was primarily influenced
by land use. Sites within each cluster have similar features and pollution source types. Cluster 1
contained S1.1–S2.3 (S1–S2) which were located in the upstream part of the Duliujian River. A large
number of villages and fewer factories in this area indicated that these sampling sites were polluted by
domestic waste water and agricultural activities. Cluster 1 was perceived as a relatively low pollution
region because, as Figure 2 shows, the concentrations of nutrient like TN, TP of the S1.1–S2.3 were
relatively lower in the sampling sites, especially in comparison with the following three sections. PCA
shows that PC1 including WT, DO, EC, TDS, WD, TP, PO4

3−-P and DIN, which explained 44.75% of
the total variance, was the dominant component and attributed to the soil erosion, domestic sewage
and agricultural activities. Soil erosion may increase the ion concentration leading to a significant
effect on DO, EC and TDS. The high loadings of TP, PO4

3−-P and DIN might be attributed to domestic
sewage and surface runoff from farmland containing a large amount of nutrients [45]. PC2 explaining
27.57% of the total variance was attributed to the physicochemical indexes related to phytoplankton
growth for the moderate and high loadings of TDS, pH, WD, TN and Chla.

Cluster 2 contained S15.1–S15.3 (S15) located on the last cross-section at the estuary. It mainly
contributed to the exceptional EC and TDS due to the sea water intrusion (PC1, 51.44%) [17]. Because of
the groundwater overpumping, land subsidence and natural geological conditions, the hydrodynamic
balance between seawater and fresh water was destroyed and resulted in sea water intrusion. River
and soil were therefore degenerated as a result of serious sea water intrusion.

Cluster 3 included S7.1–S14.3 (S7–S14) located on the middle and lower reaches of the investigated
river. PC1, which accounts for 38.34% of the total variance, was attributed to the frequent intrusions of
effluents from fisheries and livestock activities and mixing of seawater and river water. Due to the
thriving fisheries [23], excessive fish feed and large amounts of fish waste containing a large number
of nutrients were directly dumped into the river. As for livestock, sewage from washing farming sites
and untreated poultry manure and urine were dissolved in rainfall runoff and then discharged into
the river. Hence, DIN, as the dominant component of fish feed and poultry manure, was noticeable in
PC1. Besides, from the textile, pharmaceutical, petroleum chemical and oil refinery factories, etc. along
the river reach, a large number of industrial effluents containing acidic pollutants and phosphorus
were discharged into the river, and became significant point contamination sources. As the PC2 shows,
28.10% of the total variance was explained by this component with moderate and high loadings of WT,
pH, TN, TP and PO4

3−-P. Although there are a lot of point and non-point source pollutions, this reach
was grouped as moderate pollution, this must significantly rely on that all these sampling sites were
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located in the Beidagang wetland nature reserve where the self-purification ability and assimilative
capacity were reasonably strong.
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Cluster 4 comprising S3.1–S6.3 (S3–S6) was perceived as highly polluted because of the high
nutrient concentration (PC1, 41.20% and PC2, 26.79%). In this region, there are many small factories
producing feed, furniture and pharmaceuticals. High loading values of TP and PO4

3−-P in this reach
should be attributed to the effluents from feed mills which contained a lot of nutrient, and high loading
values of DO was attributed to the effluents from furniture and pharmaceutical factories containing
rich organic substance (as seen in Table 6, high emission of COD), which may consume a large amount
of oxygen and resulted in low-oxygen environment [1] and therefore were the mainly point pollution
sources in this region. The relatively intensive residential population surrounding the up-middle
reaches of the investigated river also made that the domestic wastewater became an important point
pollution source. Besides, livestock activities were a notable contributor to the non-point pollution
sources since there are many poultry farms. PC2 with high loading values of TN, Chla and DIN was
attributed to point pollution sources and nutrients related to phytoplankton. As shown in Table 6,
this cluster has a high emission of NH4

+-N which increased the TN and provided important nutrients
for phytoplankton growth.
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Table 5. Component loadings of each parameters and cumulative variance of the principal components.

C1 WT DO EC TDS pH SD WD TN TP PO4
3−-P Chla DIN Eige. Cum.%

PC1 −0.99 0.68 −0.88 −0.80 −0.24 0.30 −0.55 −0.23 −0.82 −0.73 −0.36 0.81 5.37 44.75
PC2 −0.04 −0.41 0.44 0.57 −0.90 −0.14 −0.76 0.79 −0.34 −0.33 −0.62 −0.09 3.31 72.32
PC3 0.06 −0.46 0.04 0.04 −0.01 0.88 0.17 −0.53 −0.06 0.03 −0.67 −0.16 1.78 87.19
PC4 −0.07 −0.21 −0.11 −0.13 −0.31 0.01 −0.26 −0.07 0.45 0.59 0.00 0.52 1.07 96.11

C2 WT DO EC TDS pH SD WD TN TP PO4
3−-P Chla DIN Eige. Cum.%

PC1 0.45 −0.95 0.84 0.90 −0.76 0.99 −0.36 0.85 −0.26 −0.48 −0.75 −0.53 6.17 51.44
PC2 −0.88 0.17 −0.38 0.12 −0.63 0.05 0.50 −0.08 −0.88 −0.82 −0.39 0.80 3.85 83.52

C3 WT DO EC TDS pH SD WD TN TP PO4
3−-P Chla DIN Eige. Cum.%

PC1 0.82 −0.74 0.92 0.91 −0.23 0.45 −0.23 0.62 0.23 0.10 −0.49 −0.83 4.60 38.34
PC2 −0.54 −0.01 −0.19 −0.06 −0.88 0.07 −0.28 0.62 −0.93 −0.89 −0.34 −0.14 3.37 66.44
PC3 0.05 0.14 0.29 0.36 −0.07 −0.67 0.26 0.34 0.14 −0.37 0.69 0.06 1.51 79.02
PC4 0.03 0.11 −0.01 −0.03 0.11 −0.47 −0.85 −0.21 0.03 −0.02 −0.03 −0.28 1.08 88.05

C4 WT DO EC TDS pH SD WD TN TP PO4
3−-P Chla DIN Eige. Cum.%

PC1 0.69 −0.76 0.97 0.93 0.35 0.62 0.51 −0.20 0.76 0.83 0.03 −0.07 4.94 41.20
PC2 0.63 0.16 0.06 −0.16 0.46 −0.27 −0.52 −0.89 −0.02 −0.21 −0.72 −0.92 3.22 67.99
PC3 0.25 −0.27 −0.02 −0.12 −0.44 −0.52 −0.54 0.28 0.49 0.24 −0.12 0.14 1.33 79.06
PC4 −0.06 0.49 −0.17 −0.19 0.59 0.13 −0.14 0.19 0.35 0.41 −0.13 0.22 1.09 88.14

Note: CX means cluster X; Eige. means Eigen values; Cum. means Cumulative.

Table 6. Number of sewage draining outlets and annual emissions of NH4 and COD in each cluster.

Cluster Number Number of Sewage
Draining Outlets NH4 (t/a) COD (t/a)

1 2 33.1 250.07
2 0 0.00 0.00
3 6 157.25 1308.94
4 17 369.18 3458.81

3.3. Temporal Periodic Grouping and Source Identification

The temporal similarity grouping results are shown in Figure 5. The 45 sampling sites in four
seasons were grouped into three clusters at (Dlink/Dmax) × 100 < 60. EC and PO4

3−-P were not
includedin CA for the same reason as 3.2. The ANOVA was performed to demonstrate the significance
and reliability of the grouping result (Table 7). All parameters contributed to the CA results since the
differences of these water quality parameters among three clusters were significant at the p-value <
0.05 level. Hence, the grouping results of CA were proved to be effective. It was noteworthy that
the temporal samples were grouped into three different clusters rather than four (seasons). These
clusters can be explained by the hydrological characteristics of mean, high and low flow periods which
were divided by the mean precipitation in 1980–2010 [46], consistent with [28]. In the Duliujian River
watershed, spring and autumn with the seasonal precipitations of 0.17 × 108 m3, 0.21 × 108 m3 were
classified as mean flow period, while summer (0.82 × 108 m3) and winter (0.03 × 108 m3) were the high
and low flow periods, respectively. Sampling data, anthropogenic activities and natural conditions
may provide some explanations for the grouping results.

In addition, PCA was employed to find out the main factors for these three clusters. PCA
extracted four, three and four principal components for the water quality parameters in the mean,
high and low flow periods, respectively. Further, these PCs with eigenvalues larger than 1 explained
82.40%, 79.13% and 82.49% of the total variance according to the relevant data sets (Table 8, Figure 6).
All the significances of Bartlett’s sphericity test were below 0.001 and the corresponding results of
Kaiser-Meyer-Olkin (KMO) were 0.53, 0.60 and 0.51, which indicated the reliability of the PCA results.
In this study, the loadings were classified as ‘strong’, ‘moderate’, and ‘weak’ according to the loading
values of >0.70, 0.70–0.50, and 0.50–0.30, respectively [47,48].



Int. J. Environ. Res. Public Health 2019, 16, 1020 12 of 18

Table 7. The results of ANOVA of temporal CA.

WT DO EC TDS pH SD WD TN TP PO4
3−-P Chla DIN

df 179 179 179 179 179 179 179 179 179 179 179 179
F-statistics 2671.44 48.16 263.96 123.02 133.02 5.81 7.23 80.90 127.59 61.97 40.99 48.39

p-value <0.001 <0.001 <0.001 <0.001 <0.001 0.004 0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Note: df is the degree of freedom.

In detail, Cluster 1 consisted of almost all the sampling sites in May 2017 which corresponding to
the mean flow period. Except that, some of the results that not divided into this cluster were mainly
affected by the construction of water conservancy project. During the sampling period, a rubber
dam was being built between the cross S6 (S6.1, S6.2 and S6.3) and S7 (S7.1, S7.2 and S7.3). Hence,
the samplings S3.1–S6.3 were taken from a lake-like area with no water supply and discharge, which
resulted in the fact that the S3.1–S6.3 with relatively lower EC, TDS and higher nutrient were grouped
into Cluster 2. Besides, S7.1–S15.3 showed higher EC and TDS due to the seawater intrusion in
comparison with the other three seasons. In PCA results for mean flow period (corresponding to
Cluster 1), the first principal component (PC1) explained 38.96% of the total variance and exhibited
strong positive loadings on EC, TDS and TN, while a strong negative loading on PO4

3−-P and
moderate negative loadings on DO, pH, TP and Chla. PC1 was mainly attributed to natural processes
and nutrient pollution. Seawater intrusion brought a large number of ions such as Na+, Mg2+, Ca+ as
well as Cl− into the river, which significantly increased the values of EC and TDS [17]. The positive
loading with pH was attributed to the seawater intrusion exacerbated the soil erosion, which improved
the dissolved CO3

2− and HCO3− from rock dissolution [28,40]. Besides, nutrients like TN, TP, and
PO4

3−-P were mainly from domestic wastewater, agricultural and livestock activities [20]. PC2, which
explained 24.69% of the total variance, had high negative loadings on WT and moderate negative
loadings on SD and TN DIN, while high positive loadings on DIN. This component may represent
the metabolism of microorganisms since DIN was associated with nitrification and denitrification
closely [7]. PC3, accounting for 11.66% of the total variance showed moderate negative loading on DO
and positive loading on SD. This component was regarded as the oxidation process since the effluents
from furniture factories and pharmaceutical factories contained a lot of organic substance, whose
oxidation process consumed a large amount of DO, and reduce the SD. PC4 was interpreted as the
physical process component and may be associated with the seasonal effect of the flow.

Cluster 2 consisted of almost all the sampling sites in December 2016, which corresponds to the
low flow period. In this cluster, DO was relatively high and the content of TN and TP were moderate.
PC1 for this cluster had strong positive loadings on EC and TDS, while strong negative loadings on
DO, TN, PO4

3−-P, and DIN and moderate loadings on WT, pH, TP and Chla. This component was
attributed to natural processes (seawater intrusion), metabolic process of microorganisms (anaerobic
fermentation processes [36], nitrification and denitrification) and anthropogenic activities (effluents
from factories, wastewater from livestock and domestic). PC2 had strong loading on Chla, moderate
loadings on WT, EC, TDS SD, and TP. This component was considered as phytoplankton growth
processes. Compared to the high flow period, EC and TDS became important factors, and TP became
the limited factor for phytoplankton. PC3, explaining 10.87% of the total variance with the negative
loadings on DO and pH, representing the oxidation of wastewater.

Cluster 3 included almost all the sampling sites in July 2017 and September 2017 corresponding
to the high flow period. It can be seen from the PCA results for this cluster (corresponding to high
flow period), PC1 accounting for 31.53% of the total variance, had strong negative loadings on TN,
TP, PO4

3−-P and DIN, moderate loadings on WT and WD. This component was interpreted as due
to anthropogenic processes [19]. Effluents from factories, waste water from domestic, fisheries and
livestock activities containing a lot of nutrients were probably the mainly reason. In this period,
the average NH4

+-N and TP emission concentrations of the 24 swage outlets along the river were
2.49 mg/L and 0.47 mg/L according to the data from Tianjin Eco-environmental monitoring center,
which demonstrated high nutrients input. PC2 had strong positive loadings on EC, TDS, while
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moderate negative loadings on TP and PO4
3−-P, representing the natural processes such as seawater

intrusion and sediment absorption. PC3 explaining 16.40% of the total variance, had strong loadings
on SD and Chla, moderate loading on TN, reflecting the phytoplankton growth process. Chl a was an
index represented phytoplankton biomass, and SD and TN were the important factors for plankton
growth [36]. PC4, accounted for 13.84% of the total variance, had strong positive loading on pH,
moderate loadings on WT, DO and WD, reflecting the oxidation processes. Effluents from feed mills,
petrochemical and pharmaceutical factories may contain carbohydrates which hydrolyze to produce
acids or organic acids, thus decreasing the pH values.
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Table 8. Component loadings of each parameters and cumulative variance of the principal components.

MFP WT DO EC TDS pH SD WD TN TP PO4
3−-P Chla DIN Eige. Cum.%

PC1 0.20 −0.51 0.95 0.94 −0.63 0.30 −0.02 0.82 −0.57 −0.85 −0.53 −0.32 4.68 38.96
PC2 −0.86 0.41 0.03 0.22 −0.23 −0.52 0.31 −0.35 −0.69 −0.43 0.05 0.89 2.96 63.65
PC3 −0.22 −0.69 −0.18 −0.14 −0.41 0.55 0.34 −0.22 −0.07 0.04 0.41 0.09 1.40 75.31
PC4 0.17 −0.08 0.11 0.06 −0.30 −0.19 −0.79 −0.20 −0.11 −0.01 0.49 0.07 1.09 84.40

LFP WT DO EC TDS pH SD WD TN TP PO4
3−-P Chla DIN Eige. Cum.%

PC1 −0.58 −0.75 0.74 0.74 −0.52 0.10 −0.28 −0.96 −0.60 −0.82 −0.52 −0.91 5.40 45.01
PC2 0.51 −0.29 −0.63 −0.63 −0.19 0.69 −0.47 −0.07 −0.59 0.00 −0.74 0.12 2.79 68.26
PC3 0.22 −0.57 −0.04 −0.05 −0.79 −0.17 0.36 0.13 0.14 0.27 0.16 0.01 1.30 79.13

HFP WT DO EC TDS pH SD WD TN TP PO4
3−-P Chla DIN Eige. Cum.%

PC1 −0.52 0.37 −0.49 −0.47 0.23 −0.34 −0.51 −0.71 −0.73 −0.75 −0.38 −0.86 3.78 31.53
PC2 −0.39 −0.36 0.78 0.80 −0.30 0.10 0.31 −0.14 −0.59 −0.50 0.32 −0.19 2.49 52.26
PC3 −0.26 0.26 −0.14 −0.13 −0.28 −0.80 −0.12 0.63 0.11 −0.34 0.73 0.08 1.97 68.65
PC4 −0.50 0.45 −0.07 −0.04 0.77 0.31 0.62 0.02 0.04 0.04 0.37 0.02 1.66 82.49

Note: CX means cluster X; Eige. means Eigen values; Cum. means Cumulative.

Overall, PCA indicated the temporal variations of water pollutants. TN, TP and PO4
3−-P, were

always in PC1 which indicated that nitrogen and phosphorus were the main basic factors in all
periods, should therefore more attention be paid to nutrient control and effluents from sewage
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outlets. For the high flow period, microbes and phytoplankton metabolized and reproduced quickly
with the high nutrient concentration. According to the algal measurements in the study period,
the density of Microcystis, which can reflect the condition of algal bloom, was much higher in summer
(3.69 × 106 ind./L) and autumn (57.79 × 106 ind./L) than the spring (0.03 × 106 ind./L) and winter
(0.17 × 106 ind./L). More attention should be paid to the potential risk of algal blooms. Significant
loadings of EC and TDS in PC1 except for the high flow period indicated that a natural process
(seawater intrusion) was the main basic factors influencing water quality in mean and low flow
periods, and large flows can reduce the impacts of seawater intrusion.

4. Conclusions

In this study, the spatial and temporal variations in water quality of Duliujian River were identified
using statistical techniques (Spearman correlation, CA, ANOVA and PCA). This study revealed that
the water quality parameters varied reasonably with season and spatial position.

The results of spatial CA and PCA revealed that the most polluted reach was the up-middle
reaches, including S3.1–S6.3. This reach was mainly polluted by nutrients from feed mills, furniture
and pharmaceutical factories as well as livestock activities. The middle and lower reaches of the
river, S7.1–S14.3, were moderately polluted. Though it was contaminated by complex pollutants from
up-middle reaches as well as surrounding factories, it showed good self-purification ability since
the river crosses some wetlands. The upstream of the river including S1.1–S2.3 was lightly polluted,
since it was only polluted by domestic wastewater and agricultural activities. The estuary of the river,
S15.1–S15.3, was influenced significantly by seawater intrusion.

The results of temporal CA showed that the temporal samples were grouped according to
their hydrological characteristics into mean, low and high flow periods rather than the four seasons.
Temporal PCA indicated that nitrogen and phosphorus were mainly the basic factors in all periods, and
nutrient control and effluents from sewage outlets should therefore be paid more attention. Specially
to the high flow period, more attention should be paid to the potential risk of algal blooms since
that phytoplankton metabolized nutrients and reproduced quickly with high concentration nutrient.
Significant loadings of EC and TDS in PC1 indicated that seawater intrusion was the mainly basic
factors influencing water quality in mean and low flow periods.

Proper treatment for domestic and livestock wastes as well as polluted surface runoff should be
undertaken to reduce the nutrient concentration. Management needs to be carried out to minimize
effluent pollution from factories. These results can help managers gain insights into the temporal
and spatial variations in water quality of a seagoing river ecosystem and consequently make better
ecological management decisions.
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