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Abstract: This paper addresses the effect of population urbanization on Fine Particulate (PM2.5) in
the Yangtze River Economic Belt in China from 2006 to 2016 by employing PM2.5 remote sensing data
and using the Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT)
model. The study contributes to the growing empirical literature by addressing heterogeneity,
spillover, and dynamic effects in the dynamic spatial panel modeling process simultaneously.
The empirical results show that population urbanization has a significant impact on PM2.5 with
a positive spillover effect and a dynamic effect being detected and controlled. The heterogeneity
effects of population urbanization on PM2.5 due to geographical positions show evidence of an
obvious inverted U-shaped curve relationship in the upstream area and an increasing function curve
in the midstream and downstream areas. The heterogeneity effects due to population urbanization
levels show that an inverted N-shape curve relationship exists in low and medium urbanization level
areas, while a U-shape curve relationship exists in high urbanization level areas. It is hoped that this
study will inform the local governments about the heterogeneity of population urbanization and
spillover effects of air pollution when addressing air pollution control.

Keywords: population urbanization; PM2.5; heterogeneity effect; spatial econometric; the Yangtze
River Economic Belt

1. Introduction

During the past four decades, urbanization in China has increased rapidly from 17.92% in 1978
to 58.52% in 2017. This rapid urbanization is being accompanied by the agglomeration of the urban
population, the utilization of urban land, and severe industrial emissions leading to high ambient air
pollution [1,2]. The standardized daily value of PM2.5 in China is 75 µg/m3, meaning when the daily
average concentration of PM2.5 higher than 75 µg/m3, the air quality reaches the level of pollution,
which is three times that of the World Health Organization (WHO) standard (25 µg/m3) [3]. According
to the air quality monitoring results of 388 Chinese cities in 2016, only 84 cities reached the air quality
standard, accounting for 24.9% of the cities tested. Of the tested cities, 254 cities, that is, approximately
75.1%, did not reach the standard.

The relationship between urbanization and air pollution has become a crucial issue for
governments, residents, and academics [4]. Regarding this, many extant studies refer to the
Environment Kuznets Curve (EKC) hypothesis analysis framework. In their classic work, Grossman
and Krueger (1991) tested the EKC hypothesis and found that per capita income exhibits an inverted
U-shaped curve relationship on waste emissions [5]. That is, the effect on the environment may worsen
before it gets better as per capita income grows.
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The EKC hypothesis was also utilized to detect the relationship between urbanization and the
environment [6–8]. However, despite the plethora of studies that has examined the influence of rapid
urbanization using various empirical methods and datasets on different spatial scales, the findings have
been inconsistent. Ji et al. examined the impacts of urbanization on PM2.5 based on 79 developing
countries from 2001 to 2010 and found an inverted U-shaped curve, in which low urbanization level
countries have an increase tendency while high urbanization level countries have a decrease tendency [9].
Contrary to these findings, Xu et al. [10] used an extended STIRPAT model from 2005 to 2015 to explore
the heterogeneity effect between urbanization and air pollutants based on provincial panel data in China.
They pointed out there were different relationship curves of PM2.5 and population urbanization in
different regions. There was a U-shaped curve in the eastern region, a linear relationship in the central
region, and a U-shaped or inversed N-shaped curve in the western region of China [10]. Other scholars
such as Lee and Oh obtained findings pointing to a similar U-shaped curve relationship between the
environment and urbanization [11]. Additionally, other types of relationships between urbanization and
pollution were proposed, such as inverse N-shape curve and N-shaped curve [12–14].

Based on the above, this study focuses on the following questions.
First, the heterogeneity impact of urbanization on PM2.5 is one of the research questions

of this study. Heterogeneity includes many aspects. Ji and Chen studied the heterogeneity of
urbanization impact on energy consumption analyzed in different stages of urbanization and the
heterogeneity of the energy-saving effect of urbanization at different income levels [15]. Sun et al.
considered urban traffic infrastructure investment in air pollution due to regional heterogeneity
and city-scale heterogeneity [16]. In our study, we take regional heterogeneity and urbanization
heterogeneity into consideration. The regional heterogeneity of PM2.5 may be correlated to different
geographical conditions and urbanization levels. Considering China’s large geographical area and
complex terrain, the influence of urbanization on PM2.5 in regions with dissimilar urbanization
levels may be significantly different. Most of the urban areas in East and Central China exhibited
population density increases along with PM2.5 decreases, while other areas in China show opposite
tendencies [17]. Due to the significant differences in socioeconomic development, complex terrain
and landforms, a regional heterogeneity effect of urbanization on air pollution should be investigated
and compared [18]. Although many previous studies have focused on the heterogeneous influence
of geographical characteristics [8,19,20], the difference in the urbanization level has been neglected.
However, the associations between urbanization and PM2.5 may show heterogeneous patterns in the
regions with different geographical characteristics and urbanization levels.

Second, the lack of consideration of dynamic effects and spatial dependence may also lead to a
problematic outcome, causing estimation bias and leading to unreliable results. Wu et al. utilized a
dynamic panel model to confirm the EKC hypothesis in China as a whole, as well as in East, Central,
and West China separately [21]. The fixed effect results show that a significantly negative effect of
population urbanization on PM2.5 appears in West China, and insignificant effcts in East and Central.
However, when the model takes the time-lag effect into consideration, the result of the dynamic system
generalized method of moments (GMM) indicated that population urbanization has a positive impact
on PM2.5 in West China and a significantly negative relationship in Central China. The spatial spillover
effect of urbanization on PM2.5 means urbanization in one area influence PM2.5 in another adjacent
area. In Du et al., the spillover effect was explained as the influence of neighboring urbanization in
terms of the spatial dependence of PM2.5 concentrations [20]. They explored the spillover effect of
urbanization on PM2.5 in the Beijing–Tianjin–Hebei region, the Pearl River Delta, and the Yangtze
River Delta from 2000 to 2010 with a spatial lag model, and claimed that urbanization had different
spatial direct and indirect effects on PM2.5. To our knowledge, few studies have considered these two
problems simultaneously.

Third, each city has its own urbanization process, and therefore using city level data is superior
to provincial data. Existing studies have focused mainly on rural areas or provinces, and few have
investigated prefecture-level cities [21–23]. The research of prefecture-level city could provide more
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detailed information, which help to stimulate a more accurate estimation, whereas national or provincial
data may show bias [24]. Furthermore, previous literature includes mainly cross-sectional data, ignoring
the characteristic of dynamic changes concerning the effect of urbanization on air pollution [25,26].

Fourth, many studies addressing PM2.5 concerntration in China are based on data from air quality
monitoring stations, which have time limitations. As in China, full coverage of monitoring stations
in urban area were built to detect PM2.5 and other atmospheric pollutants after 2013. As a result,
the existing studies in China usually have a tendency to focus on PM2.5 concentrations for short-time
series, such as daily, monthly, and single yearly. Wang and Fang used PM2.5 data obtained from 241
new observation points in 54 cities of the Bohai Rim Urban Agglomeration in 2014 to determine the
spatial–temporal distribution of PM2.5 and its socioeconomic determinants [27]. Guo et al. used the
daily PM2.5 of 35 monitoring sites from April 2013 to March 2015 that were calculated from daily Air
Quality Index data and were collected from the official website of the Beijing Municipal Environmental
Protection Bureau [28]. Wang et al. employed the data from monitoring stations to analyze the spatial
distribution of PM2.5 in 190 cities in China in 2014 [29]. However, short-time data cannot reflect stage
heterogeneity. Additionaly, the monitoring stations are point measurements and it is not clear to
represente the air quality of a given area. Fortunately, remote sensing data we used in the study helps
to overcome the two drawbacks above.

Consequently, this study focuses on the following research highlights. (1) We use prefecture-level
data to discuss the heterogeneity impact of population urbanization on PM2.5 from two perspectives:
regional heterogeneity and urbanization heterogeneity. To address regional heterogeneity, we divide
the Yangtze River Economic Belt (YREB) into three parts: upstream, midstream, and downstream.
For the urbanization heterogeneity, the data sample is divided into three categories based on the annual
growth rate of urbanization from 2006 to 2016: low, medium, and high urbanization levels. (2) To avoid
possible estimation bias caused by spatial interaction effects and the dynamic effect, we address these
two issues using a combination of a dynamic model and a spatial econometric specification. We believe
that this integrated modeling framework provides new insights on the relationship between population
urbanization and PM2.5 in China. (3) Panel data from prefecture-level cities are used for our study.
The data concerning PM2.5 are from a combination of Aerosol Optical Depth retrievals from multiple
satellite instruments.

This study is organized as follows. The next section describes the study area, dataset, and the
empirical methods, while Section 3 presents the empirical results. The final section discusses the
dynamic, spillover, and heterogeneity effects, respectively, and then presents the conclusions.

2. Study area and Method

2.1. Study Area

The YREB is the biggest economic belt in China, covering nine provinces (Jiangsu, Zhejiang,
Anhui, Hubei, Hunan, Jiangxi, Sichuan, Guizhou, and Yunnan) and two municipalities governed
directly by the central government (Shanghai and Chongqing). The YREB stretches across the eastern,
central, and western regions of China, accounting for over 20% of China’s geographical area (Figure 1).

In 2011, the construction of an ecological civilization—especially the green development of the
YREB—became a national strategy. “The outline of Yangtze River Economic Belt Development Plan”
formally became a national development strategy in 2016 aiming to promote new urbanization for the
YREB development [30]. This strategy would provide new opportunities for further development of
the cities in the Yangtze River basin and promote urbanization in China. In 2016, the YREB was home
to more than 40% of China’s population and contributed a similar percentage of the gross domestic
product (GDP). Then, the proportion of urban population in the YREB increased from 42.4% in 2006
to 56.9% in 2016. However, most cities in the YREB are facing more serious air pollution than other
cities in China, especially the cities in the Yangtze River Delta, which have become a focus of public
concern [29].
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2.2. Empirical Method

2.2.1. STIRPAT Model

The STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) model
is a classic theoretical framework for PM2.5 research developed on the basis of the IPAT model [31].
In the early 1980s, Ehrlich and Holdren pioneered the Influence, Population, Affluence, and Technology
(IPAT) model (I = PAT) to analyze the environmental effects of population and economic variables.
In the equation, I represents the environmental impact, P represents the population, A refers to
affluence, and T refers to technology. The IPAT model is widely recognized and applied for its simple
and effective analysis of environmental impact. However, the model has two drawbacks: First, the IPAT
model is a purely mathematical model which cannot be tested directly by empirical data, and the
hypothesis of various factors affecting the environment cannot be obtained [32]. Second, the IPAT
model simply assumes that the elasticity of population, wealth, technology, and environment are
unified. Due to these limitations, Dietz and Rosa improved it to the STIRPAT model. It allows other
explanatory and control variables to be added, which is more flexible [32,33]. The STIRPAT model is
currently widely used to analyze the environmental impact of population and economic factors [34–36].
The expression of STIRPAT can be seen in Equation (1).

I = αPβ AγTλµ (1)

where I, P, and A have the same meanings as in the model; α is the constant term; β, γ and λ are index
parameters for each variable and µ is the random error term. STIRPAT is a nonlinear model containing
multiple independent variables, and can therefore be converted to logarithmic form:

ln I= lnα + β ln P + γ ln A + λ ln T + ln µ (2)

where β, γ, and λ can be seen as the elasticity coefficients, which means that every 1% change in ln P,
ln A, or ln T would lead to a β%, γ%, or λ% change in lnI.
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2.2.2. Model Specification

Based on the STIRPAT model, our econometric model adopts a reduced form analysis to estimate
the coefficients that reveal the relationships between population urbanization and PM2.5. The classical
EKC hypothesis posits that environmental quality tends to at first deteriorate and then improve in
line with urbanization in an inverted U-shaped curve. However, existing studies have shown that
there may be U, N, and inverted N-shaped curves between environmental variables and urbanization.
Therefore, the primary, quadratic, and cubic terms are decomposed to analyze and verify the nonlinear
relationship between PM2.5 and population urbanization [37,38]. The model can be specified as follows

ln PM2.5i,t = β0 + β1 ln Urbani,t + β2 ln Urbani,t
2 + β3 ln Urbani,t

3 + β4 ln Pi,t
+β5 ln Ai,t + β6 ln Techi,t + β7 ln ISi,t + εi,t

(3)

where cities are denoted by the subscript i (i = 1, . . . , N) and the subscript t (t = 1, . . . , N) denotes
the time period. β0 is the intercept term for all individuals. β1 to β7 represent coefficients of the
corresponding variable and εi,t represents the random error term.

PM2.5 is our dependent variable. A series of annual average grids (2006–2016) of PM2.5

were obtained from the Battelle Memorial Institute and the Center for International Earth Science
Information Network at Columbia University. The Global Annual PM2.5 Grids from MODIS, MISR,
and SeaWiFS AOD with geographically weighted regression for the time period of 1998 to 2016
consist of annual concentrations (micrograms per cubic meter) of PM2.5, with dust and sea-salt
removed [39]. Data for the YREB region were extracted from the global dataset and transformed into
the GCS_WGS_1984 system using ArcGIS software (Esri, Redlands, CA, USA).

Population urbanization (ln Urban) is our explanatory variable. Since urbanization refers to
the process of transforming agricultural population into urban population, the percentage of urban
population relative to the total population can be used to represent city’s urbanization level. The
population urbanization data were mainly collected from the statistical yearbooks of the nine provinces
and two municipalities provided in Section 2.1. Additional data for several cities that are not
available from this source were gathered from The Statistics Communique on National Economy
and Social Development.

The other four control variables are as follows.
P represents population density. Considering the difference in administrative division areas

between the cities, it is more appropriate to apply population density (population per unit area)
to represent the impact of population concentration on PM2.5, rather than applying the total
population [15].

A refers to the GDP per capita, which is a commonly used indicator representing urban economic
development [26].

T is divided into two parts: technological progress Tech and industrial structure IS. First,
technological progress is the main indicator for knowledge and ability and is also an important
factor in controlling environmental pollution and alleviating PM2.5. We use the proportion of financial
expenditure for science and education to denote this factor [40]. Second, fossil fuel combustion in
secondary industries—including mining, manufacturing, electricity supply, and construction—may
have an impact on air pollution [6]. Therefore, the proportion of secondary industry in the GDP is
commonly used to represent the influence of industrial structure [41].

The data concerning these control variables were collected from Chinese Urban Statistical
Yearbook [42]. Table 1 shows the statistical descriptions for all the variables.
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Table 1. Summary statistics.

Variable Type of Variables Units of
Measurement Mean Standard

Deviation Min Max

PM2.5 Dependent variable µg/m3 40.15 14.883 2.41 74.04
Urban Explanatory variable % 48.45 13.535 14.58 91.24

P Control variable person/km2 898.58 632.360 53.16 3934.35
A Control variable Yuan 49,110.74 34,216.63 4490 43,9321

Tech Control variable % 0.17 0.05 0.05 0.36
IS Control variable % 50.55 10.50 15.89 79.14

2.2.3. Dynamic Spatial Econometric Model

Many existing empirical analyses show that environmental pollution often shows certain path
dependence characteristics. Therefore, it is of great importance to investigate the time-lag effect of
PM2.5 changes [21]. The lagged item of PM2.5 is introduced into the STIRPAT model, by considering
the dynamic cumulative effect of PM2.5.

ln PM2.5 = αi,t + τ ln PM2.5i,t−1 + β1 ln Urbani,t + β2(ln Urbani,t)
2 + β3(ln Urbani,t)

3 + β4Xi,t + εi,t (4)

where εit is the error term, i represents the different regions, and t indicates time. X represents a vector
of the control variables.

Besides the dynamic cumulative effect, PM2.5 may have inevitable spatial autocorrelation and
may be influenced by the consequent spatial spillover effects. That is, PM2.5 of city i may also be
affected by its surrounding areas. The specification can be seen in the following equation.

ln PM2.5i,t = δW ∗ PM2.5i,t + β1 ln Urbani,t + β2(ln Urbani,t)
2 + β3(ln Urbani,t)

3 + β4Xi,t + vt (5)

where W denotes the spatial weight matrix. In this analysis we use the distance between cities to
establish the geographical weight matrix (Wij = 1/d2

ij), which is obtained from the China Geographic
Database of National Bureau of Measurement. δ, as the coefficient of W ∗ PM2.5, represents the spatial
dependence of the sample observation.vt is a normally distributed disturbance term with a diagonal
covariance matrix.

To perform a comprehensive analysis of the time-lag effect and spatial interaction effect, we adopt
a dynamic spatial panel model, which controls the interference of the above factors to model estimation.
This helps us avoid any estimation bias [43]. Combining Equations (4) and (5), the dynamic spatial
panel model is set as follows

ln PM2.5i,t = τ ln PM2.5i,t−1 + δW∗ lnPM2.5i,t + β1 ln Urbani,t + β2(ln Urbani,t)
2 + β3(ln Urbani,t)

3 + β4Xi,t + εi,t + vt (6)

where τ represents the first-order lag regression coefficient of PM2.5 that reflects the influence of
previous related factors on this period. δ represents the spatial lag regression coefficient, which in turn
reflects the spatial spillover effect of air pollution.

3. Results

3.1. Spatial Distribution of PM2.5

Figure 2 describes the spatial evolution pattern of the annual PM2.5 concentration in the study
area for each city in the YREB in 2006, 2008, 2010, 2012, 2014, and 2016. The grid PM2.5 concentration
data set combined AOD retrievals from multiple satellite instruments was provided by Aaron Van
Donkelaar Professor of the Department of Physics and Atmospheric Science, Dalhousie University
in Canada [38]. According to the natural fracture point classification, five concentration levels
are established, ranging from high to low: low concentration level (2–20 µg/m3), medium–low
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concentration level (20–40 µg/m3), medium concentration level (40–50 µg/m3), medium–high
concentration level (50–60 µg/m3), and high concentration level (60–70 µg/m3) [36].

The PM2.5 gradually increases along the Yangtze River from upstream to downstream (Figure 2).
The spatial pattern of PM2.5 in YREB shows obvious spatial agglomeration. For example, the high
concentration level is concentrated in the downstream area of the Yangtze River, especially in Shanghai
and Jiangsu Provinces. PM2.5 in the upstream area of the YREB is lower than that in the downstream
area. Generally, the number of hot spots shows an increasing trend during 2006, 2008, and 2010. That
is, PM2.5 in YREB continues to deteriorate. Then, cities in the high concentration level of PM2.5 show a
downward trend in the downstream area. Based on the spatial distribution of PM2.5, the regional and
the temporal differences of PM2.5 pollution were found to be significant [44]. Therefore, it is of great
importance to understand the regional differences when considering possible trends in the impact of
urbanization on PM2.5 in different regions. Additionally, the economic and the overall urbanization
level of the Yangtze River Delta all take precedence over the other areas in the YREB. Simultaneously,
high urbanization cities, such as Shanghai, are currently experiencing high PM2.5 caused by population
agglomeration. We therefore consider urbanization levels to explore the effect of different urbanization
levels on PM2.5.
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3.2. Spatial Autocorrelation Test

As described above, there might be spatial correlations in PM2.5 concentrations among adjacent
cities [20]. We adopted the Global Moran’s I index in order to test the spatial autocorrelation of
PM2.5 [45,46]. This commonly used index helps to measure the degree of overall spatial autocorrelation
of the variables. It can be expressed as follows

I =

n
n
∑

i=1

n
∑

j=1
ωij(xi − x)(xj − x)

n
∑

i=1

n
∑

j=1
ωij

n
∑

i=1
(xi − x)2

(7)

where n is the number of cities, which equals 108 in this study. xi and xj are the values of PM2.5 at
location i and location j, respectively; x is the mean of PM2.5 and ωij is the element of the spatial weight
matrix. The global Moran’s I value range from −1 to 1. A larger value of indicates a stronger spatial
connection, while a smaller value indicates weaker spatial connection; if the Moran’s I value equals
zero, then random spatial distributions exists, indicating no spatial correlation.

Table 2 presents the global Moran’s I statistics from 2006 to 2016. All values are positive at
reasonable significance levels, indicating a positive spatial interdependence in PM2.5 in the YREB.
Furthermore, cities with similar PM2.5 tend to be concentrated geographically. Over time, the overall
trend of spatial integration of PM2.5 is intensified as the global Moran’s I value increased from 0.609
to 0.743.

Table 2. Global Moran’s I results.

Year Moran’s I Standard Deviation p-Value

2006 0.609 0.0624 0.001
2007 0.721 0.0631 0.001
2008 0.698 0.0651 0.001
2009 0.706 0.0617 0.001
2010 0.657 0.0664 0.001
2011 0.661 0.0637 0.001
2012 0.622 0.0644 0.001
2013 0.663 0.0658 0.001
2014 0.670 0.0640 0.001
2015 0.778 0.0635 0.001
2016 0.743 0.0627 0.001

To further distinguish the spatial agglomeration patterns, a Moran scatter plot was used to
test the average PM2.5 in the selected years. The Moran scatter plot and the Local Indicators of
Spatial Association (LISA) cluster map of PM2.5 at the 0.05 significance level are presented in Figure 3.
According to the analysis results, the sample areas can be divided into four agglomeration pattern
types. The first quadrant is the H-H aggregation type, which indicates that the highly polluted areas
are adjacent to each other. H-H regions mainly encompass the city of Shanghai and several cities in the
Jiangsu, Zhejiang, and Anhui provinces in the downstream area of the Yangtze River. Similarly, L-L
agglomeration regions in the third quadrant are concentrated in the upstream area and include the
Sichuan and Yunnan provinces, as well as Chongqing. These regions tend to exhibit relatively lower
levels of industrial development and low economic outputs per unit of construction [47]. Observably,
regions in the L-L type agglomeration show an increasing tendency, extending from the upstream to
midstream areas. The cluster map also shows that the range of H-L and L-H aggregations have not
changed significantly from 2006 to 2016.
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3.3. Full Sample Results

The estimation results employing different model specifications are shown in Table 3.
The second column shows the results of Equation (3). Before estimating a panel data model,

a fixed effect model or random effect model should be chosen using the Hausman test [48]. The result
of the Hausman test implies that it is reasonable to employ a fixed effect model. Based on this model,
the coefficients of ln Urban, (ln Urban)2 and (ln Urban)3 are 3.992, −1.137, and 0.104, respectively.
All the coefficients are insignificantly positive at the 10% level across the second column, which
indicates that there is not obvious relationship exists between urbanization and PM2.5 without
considering spatial correlation and the time lag effect of the dependent variable.

With the time-lag effect of the independent variable included, the system GMM result in the
third column shows a strong time-lag effect for PM2.5. The estimated coefficient of W∗ lnPM2.5i,t is
significantly positive (p < 0.01), that is, a high PM2.5 in the current period indicates a probability of
the next period’s PM2.5 to continue increasing, pointing to an obvious lag effect. The global Moran
value and local scatter plot show that PM2.5 among cities in the YREB has a stable positive spatial
correlation, confirming the suitability of the spatial econometric model. Column 4 in Table 3 shows
the spatial panel model result with spatial interaction effects based on Equation (5). The coefficient
of W∗ lnPM2.5i,t is positive at the 1% significance test, which shows that there are significant spatial
spillover effects for PM2.5. This means that a local PM2.5 change affects geographically neighboring
regions. The result serves as a reminder that governmental efforts toward reducing environmental
pollution should take a global view. As Table 3 shows, the lag effect of PM2.5 and the spatial interaction
effect both exist. The urbanization effect on PM2.5 shown in columns 3 and 4 appears to be insignificant.

Most importantly, considering the spatial correlation and time-lag effect of PM2.5, next we
implemented the dynamic spatial panel model. There are two important tests pertaining dynamic
spatial panel data. First, the Sargan statistic of overidentification test is used to examine effectiveness
and feasibility of instrumental variables. If the Sargan value fails to pass the significance test, the
instrumental variables can be regarded as reliable. Second, the Arellano–Bond estimator is used to
test the existence of sequence-dependent errors [49,50]. If the p-values of AR(2) are higher than 0.05,
the disturbance term of the dynamic model does not exist with respect to the problem of sequence
correlation. All the tests confirm that using a dynamic spatial model to detect the relationship between
urbanization and PM2.5 is the most suitable. The estimated results of the dynamic spatial model can
be seen in column 5 of Table 3, where the coefficients of ln PM2.5i,t−1 and W∗ lnPM2.5i,t are 0.356 and
0.797, respectively, and statistically significant at the 1% level. Compared with the results of the system
GMM and the spatial panel model, a difference occurs in the coefficients of ln Urban, (ln Urban)2,
and (ln Urban)3. In the system GMM model, the primary, quadratic, and cubic terms of ln Urban are
significant at the 10% level, while there is not an obvious association between population urbanization
and PM2.5 in the spatial panel model. However, in dynamic spatial model, population urbanization
has an obvious N-shaped effect on PM2.5 with two inflection points: 27% and 70%, respectively. Thus
PM2.5 will continue to decrease as population urbanization increases from 27% to 70% during the
second stage of the N-shaped curve. The result can be explained as the improvement of technology and
sufficient capital conducted by government, which helps to control PM2.5 [21]. Additionally, people
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require healthier living conditions nowadays than before. Thereby PM2.5 begins to decrease with the
agglomeration of population.

Table 3. Regression results of full sample.

Determinants Fixed Effect Model System GMM Spatial Panel Model Dynamic Spatial Model

ln PM2.5i,t−1
0.798 *** 0.356 ***
(0.029) (0.012)

W∗ lnPM2.5i,t
0.833 *** 0.797 ***
(0.031) (0.019)

ln Urban
3.992 −10.473 * 0.361 5.231 *

(2.691) (5.495) (1.877) (2.934)

(ln Urban)2 −1.137 2.873 * −0.124 −1.406 *
(0.760) (1.545) (0.527) (0.799)

(ln Urban)3 0.104 −0.263 * 0.013 0.124 **
(0.071) (0.143) (0.049) (0.072)

ln P
0.010 0.098 ** −0.011 0.120 ***

(0.015) (0.042) (0.010) (0.019)

ln A
−0.087 *** −0.024 *** −0.018 * 0.013 **

(0.012) (0.021) (0.010) (0.007)

ln Tech
−0.015 −0.017 −0.003 −0.019 *
(0.014) (0.034) (0.010) (0.012)

ln IS
0.151 *** 0.392 *** 0.054 * 0.053 ***
(0.014) (0.074) (0.030) (0.014)

Constant
−0.622 11.536* −8.086 **
(3.176) (6.503) (3.579)

Observations 1188 1080 1188 1080

R-squared 0.231 0.251 0.9456

Note: There are no inflection points, because the functions are monotonically decreasing. *, **, and *** represent
significant differences at the 10%, 5%, and 1% levels, respectively. The dynamic spatial model passes the AR(2) test
for serial correlation and the Sargan test for overidentification.

3.4. The Heterogeneous Effects of Upstream, Midstream, and Downstream Cities

The YREB is a vast area that is affected by numerous different natural, social, and economic.
It thus displays significant diversity in urbanization and PM2.5. Considering the long-existing
socioeconomic gap and watershed division among areas in the YREB, we split the sample according to
upstream (31 cities), midstream (52 cities), and downstream (25 cities) areas to account for potential
regional heterogeneities. The regression results for upstream, midstream, and downstream cities are
shown in Table 4. Figure 4 shows the relationship trajectory between ln Urban and ln PM2.5 in the
different regions.

In both upstream and downstream areas, regressions pass the AR(2) test for serial correlation and
the Sargan test for overidentification. In the upstream area, the coefficients of the primary term of
urbanization are significantly positive, while the coefficients of the squared term are negative. That is
population urbanization shows an inverted U-shaped effect on PM2.5. Accordingly, the inflection point
shown in Figure 4a is 43%, which demonstrates that urbanization increases PM2.5 below the inflection
point, while increasing population urbanization restrains PM2.5 when goes over the 43% level. In the
midstream area, when we add the primary term, the quadratic term, and the cubic term of to the model,
the p-value of the AR(2) test is less than 0.05. That is, the model rejects the null hypothesis and that the
two-order autocorrelation coefficient of the disturbance term is not different. Therefore, we dropped
(ln Urban)2 and (ln Urban)3, and found that the coefficient of in this region is 0.039, indicating that a
1% increase in ln Urban would lead to a decrease in ln PM2.5 of 3.9% for the midstream region. A linear
relationship exists between PM2.5 and urbanization, which can be seen in Figure 4b. In the downstream
area, the coefficients of the ln Urban and (ln Urban)3 terms of population urbanization are both positive
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and the coefficient of (ln Urban)2 is negative. Thus, the relationship between PM2.5 and population
urbanization is a monotonically increasing function in Figure 4c. This is similar to the full sample result.
That is, population urbanization will promote PM2.5 in the downstream area. In sum, the increase of
the population urbanization rate in the downstream and midstream regions will accelerate PM2.5 in the
future [51]. Furthermore, the coefficient of the lagged dependent variable (ln PM2.5t−1) for the upstream
area is significantly greater than that of the midstream and downstream areas. This implies that the
lag-effect of air quality in the upstream region is more significant than in other areas.

Table 4. Heterogeneity results by upstream, midstream, and downstream cities.

Variables
Regional Heterogeneity

Upstream Midstream Downstream

ln PM2.5i,t−1
0.545 *** 0.148 *** 0.149 *** 0.164 *** 0.146 ***
(0.037) (0.007) (0.007) (0.009) (0.036)

W∗ lnPM2.5i,t
0.996 *** 1.093 *** 1.097 *** 1.051 *** 1.273 ***
(0.038) (0.010) (0.008) (0.008) (0.021)

ln Urban
0.522 ** 0.130 0.289 *** 0.039 *** 164.259 ***
(0.235) (0.089) (0.022) (0.005) (63.064)

(ln Urban)2 −0.069 * 0.009 −0.023 *** −41.521 ***
(0.036) (0.017) (0.002) (15.772)

(ln Urban)3 0.003 −0.002 ** 3.499 ***
(0.002) (0.001) (1.313)

ln P
0.171 *** −0.001 −0.001 −0.001 −0.011
(0.028) (0.001) (0.001) (0.002) (0.007)

ln A
0.107 *** 0.006 *** 0.007 *** 0.009 *** 0.008
(0.018) (0.002) (0.001) (0.002) (0.010)

ln Tech
−0.024* 0.018 *** 0.019 *** 0.020 *** −0.005
(0.015) (0.003) (0.002) (0.002) (0.011)

ln IS
−0.493 *** 0.071 *** 0.064 *** 0.093 *** 0.221 ***

(0.068) (0.011) (0.010) (0.010) (0.073)

Constant
−3.128 *** −1.761 *** −2.006 *** −1.404 *** −219.2 ***

(0.564) (0.162) (0.068) (0.076) (83.73)

Observations 310 520 520 520 250

AR(1) 0.000 0.000 0.000 0.000 0.000

AR(2) 0.558 0.009 0.009 0.316 0.079

Sargan 1.000 0.870 0.832 0.873 1.000

Trajectory Inversed U — — Line Line

Inflection point 43%

Note: There are no inflection points, because the functions are monotonically decreasing. *, **, and *** represent
significant differences at the 10%, 5%, and 1% levels respectively. Column 2, 5, and 6 pass the AR(2) test for serial
correlation (marked in bold) and the Sargan test for overidentification.
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The heterogeneity results can be explained from the perspectives of geographical conditions and
the current development of the YREB region. First, the downstream and midstream regions have a
relatively higher living standard and industrialization than the upstream region, which leads to a large
population transfer, not only from local agricultural sectors, but also due to interregional migration [52].
Because of increasing population urbanization, as well as an increase in urban employment density,
city sprawl is accompanied with an increase in building height and density, which is not beneficial
to the rapid dispersion of PM2.5 concentration. Additionally, the population and labor force increase
leads to a related increase in the number of vehicles, as well as energy consumption and infrastructure
construction. All these factors will directly affect PM2.5 concentration. Secondly, the decrease of
PM2.5 with the increase of population urbanization in the upstream area can be explained by the
economic development and national policy. Economic development of upstream areas in the YREB
are relatively lagging behind midstream and downstream, which lead to serious labor outflow and
slow development of secondary industry. Furthermore, the national policy of “protecting the Yangtze
River” prevents the upstream areas from investing in highly polluting industries. Over time more and
more cities’ urbanization levels are higher than the inflection point of 43%, which reduces the impact
of PM2.5.

3.5. The Heterogeneous Effects of Cities on Different Urbanization Levels

The PM2.5 effect of urbanization might also differ according to cities’ urbanization levels.
This needs to be investigated further. To accomplish this, we divide the panel data of 108 cities
into three groups according to the average urbanization level division for the study period of 2006 to
2016. Specifically, (1) the regions with an average urbanization ratio of 29.00% to 40.00% belong to
low urbanization group; (2) the regions with average urbanization ratio of 40.01% to 50.00% belong
to medium urbanization group; (3) and the regions with average urbanization ratio of 50.01% to 90%
belong to high urbanization group.

The results on the heterogeneous effects according to different urbanization levels are listed
in Table 5. Figure 5 shows a diagram representing the relationship between ln Urban and ln PM2.5

for different urbanization levels. In columns 2 and 3, the coefficient of ln Urban and (ln Urban)3 are
negative, the term of (ln Urban)2 is positive, and the p-values are all less than 5%. Therefore, an inverted
N-shaped relationship exists in the low and medium urbanization level groups in Figure 5a,b. For the
cities in the low urbanization level group, the first inflection point is 24%, and the second is 38%.
For the medium urbanization level group, the two inflection points are 33% and 46% respectively.
To further explore the dynamic impacts of urbanization on PM2.5, we calculate the number of cities
located in the different stages of the three curves. Considering the urbanization ratio, the two groups
are nearly between the two inflection points and pass over the second inflection points. Therefore,
increased urbanization first raised PM2.5 in regions with low urbanization and medium urbanization
and then reduced the PM2.5.

In column 4, the coefficients of the primary, squared, and cubic terms of urbanization are
statistically insignificant. We therefore excluded (ln Urban)3 and reestimated the model (column 5).
Judging from the coefficients in column 5, a U-shaped curve exists in the high urbanization group,
with an inflection point of 49% in Figure 5c. Generally, the urbanization growth would first reduce
PM2.5 in this region and then increase the PM2.5 again. Table 6 shows that all the cities in the high
urbanization level group have passed over the inflection point of the U-shaped curve since 2010, which
indicates that the PM2.5 is aggravated with the increasing urban population.
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Table 5. Heterogeneity results according to cities on different population urbanization levels.

Variables
Urbanization Heterogeneity

Low Urbanization Level Medium Urbanization Level High Urbanization Level

ln PM2.5i,t−1
0.585 *** 0.412 *** 0.190 *** 0.189 ***
(0.043) (0.021) (0.017) (0.017)

W∗ lnPM2.5i,t
0.535 *** 0.766 *** 1.191 *** 1.198 ***
(0.080) (0.025) (0.021) (0.023)

ln Urban
−63.703 *** −81.670 *** 45.997 −3.488 **

(21.886) (26.471) (32.127) (1.570)

(ln Urban)2 18.806 *** 22.383 *** −11.637 0.448 **
(6.454) (7.133) (7.915) (0.194)

(ln Urban)3 −1.842 *** −2.040 *** 0.983
(0.631) (0.640) (0.650)

ln P
0.0594 * 0.017 *** 0.004 0.001
(0.033) (0.006) (0.006) (0.006)

ln A
−0.021 0.017 *** 0.007 ** 0.006 **
(0.022) (0.005) (0.003) (0.003)

ln Tech
−0.021 * 0.013 ** 0.016 *** 0.016 ***
(0.011) (0.0062) (0.004) (0.004)

ln IS
−0.050 0.115 *** 0.149 *** 0.147 ***
(0.071) (0.029) (0.047) (0.045)

Constant
71.151 *** 97.662 *** −62.866 4.620
(24.639) (32.798) (43.379) (3.094)

Observations 320 350 410 410

Sargan test 1.000 0.999 0.995 0.996

AR(1) 0.001 0.000 0.000 0.000

AR(2) 0.352 0.707 0.846 0.854

Trajectory Inverted N Inverted N — U

Inflection point 24%, 38% 33%, 46% — 49%

Note: There are no inflection points, because of the functions are monotonically decreased. *, **, and *** represent
significant differences at the 10%, 5%, and 1% levels, respectively. Columns 2, 3, and 5 pass the AR(2) test for serial
correlation and the Sargan test for overidentification.
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Table 6. Number of cities located in different population urbanization levels.

Year
Low Urbanization Level Medium Urbanization Level High Urbanization Level

<24 24–38 >38 <33 33–46 >46 <49 >49

2006 7 25 0 11 24 0 17 24
2007 4 28 0 2 33 0 13 28
2008 1 31 0 0 34 1 5 36
2009 1 30 1 0 29 6 2 39
2010 1 29 2 0 26 9 0 41
2011 1 24 7 0 22 13 0 41
2012 0 18 14 0 16 19 0 41
2013 0 14 18 0 14 21 0 41
2014 0 10 22 0 8 27 0 41
2015 0 7 25 0 3 32 0 41
2016 0 4 28 0 0 35 0 41

Section 3.5 (listed above) confirms that for cities with low or medium urbanization level,
population urbanization showed a positive impact on PM2.5 in the past. However, due to the rapid
growth of urbanization, population urbanization has passed the second inflection point and will have
a long-term negative effect on PM2.5. These cities are mostly remote cities with relatively low overall
urbanization levels, which will not promote PM2.5 because of their safe and comfortable development
mode. For cities with a high urbanization level, population urbanization has surpassed the inflection
point of the U-shape curve and will maintain a positive impact on PM2.5 for a long time. Many cities
in the high urbanization group such as Shanghai, Nanjing, Hangzhou, Wuxi, Suzhou, and other
developed areas are eager to pursue economic and industrial development, which will inevitably lead
to a long-term increase in population urbanization. This is similar to the results of the downstream
area of YREB. This pursuit of development of these regions—that have already reached a certain
urbanization level—will lead to a further continuous increase of population urbanization. With the
urban population extremely inflated, these cities will face increased traffic congestion, accelerated real
estate construction, and industrial development caused by population agglomeration, and PM2.5 will
eventually increase.

4. Discussion

Despite the rising interest in understanding the impact of urbanization on air quality, few empirical
studies have been able to fully explain this impact. This is partly due to the complicated nature of
statistical analysis in such a case, given the presence of factors such as heterogeneous effects, dynamic
effects, and spatial dependence. Our study aims to fill this gap in existing research by using a more
comprehensive econometric model and focusing on the heterogeneous effect. Considering the time-lag
effect and spatial interaction of PM2.5, the study used a STIRPAT model to analyze the nonlinear
relationship between population urbanization and PM2.5 based on panel data of 108 prefecture-level cities
in the YREB from 2006 to 2016. The results indicate that the relationship shows an N-shaped curve for
the YREB. The traditional EKC inverted U curve is not applicable to PM2.5 and population urbanization
in different models, which indicates that population urbanization has obvious stage heterogeneity from
the perspective of regional heterogeneity and urbanization level heterogeneity on PM2.5.

Based on the above statements concerning regional heterogeneity and urbanization level
heterogeneity, we find that (1) for cities in the downstream and midstream areas, as well as those
with high urbanization levels, there was a significantly positive trend proving that urbanization will
increase PM2.5. More attention should be paid to the rapid economic development of cities that
have exceeded the inflection point or will soon exceed the urbanization inflection point of 49%, and
thus have a positive impact on PM2.5. (2) Regarding the upstream areas of the YREB and the small
and medium-sized cities with low urbanization level: although urbanization has passed through
the increasing stage in relation to PM2.5, these areas have passed the second inflection point of the
N-shaped curve and have begun to reduce PM2.5. Thus, when addressing PM2.5, the government
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cannot simply blame air pollution purely on factors related to population agglomeration. For cities
with different urbanization levels, the impact of future urbanization development on PM2.5 also differs.
Therefore, solutions should be found that suit specific circumstances, especially for the areas with a
low level of economic development, the source of PM2.5 should be determined and controlled suitably.

5. Conclusions

In conclusion, PM2.5 remains a serious environmental challenge in the YREB, especially in most
downstream and midstream regions. Considering the entire YREB, PM2.5 showed a trend of firstly
decreasing and then increasing with the increasing of urbanization from 2006 to 2016. In the upstream
area, population urbanization shows an inverted U-shaped effect on PM2.5, while presenting an
increasingly linear relationship with midstream and downstream. From the perspective of urbanization
levels, a similar inverted N-shaped curve exists in the medium and low urbanization level groups, and
a U-shaped relationship exists in the high level of urbanization.
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