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Abstract: The accurate estimation of patient’s exposure to the radiofrequency (RF) electromagnetic 

field of magnetic resonance imaging (MRI) significantly depends on a precise individual anatomical 

model. In the study, we investigated the applicability of an efficient whole-body individual 

modelling method for the assessment of MRI RF exposure. The individual modelling method 

included a deformable human model and tissue simplification techniques. Besides its remarkable 

efficiency, this approach utilized only a low specific absorption rate (SAR) sequence or even no MRI 

scan to generate the whole-body individual model. Therefore, it substantially reduced the risk of RF 

exposure. The dosimetric difference of the individual modelling method was evaluated using the 

manually segmented human models. In addition, stochastic dosimetry using a surrogate model by 

polynomial chaos presented SAR variability due to body misalignment and tilt in the coil, which 

were frequently occurred in the practical scan. In conclusion, the dosimetric equivalence of the 

individual models was validated by both deterministic and stochastic dosimetry. The proposed 

individual modelling method allowed the physicians to quantify the patient-specific SAR while the 

statistical results enabled them to comprehensively weigh over the exposure risk and get the benefit 

of imaging enhancement by using the high-intensity scanners or the high-SAR sequences. 

Keywords: numerical simulation; transmit coil; deformable human model; stochastic dosimetry; 

specific absorption rate 

 

1. Introduction 

Magnetic resonance imaging (MRI) is a widely used and powerful imaging technique for non-

invasive clinical diagnosis [1]. In order to excite the detectable MR signals, its scanner typically 

includes a transmit (Tx) coil to generate a homogeneous circular polarized B1 field [2]. The induced 

eddy current is the primary radiofrequency (RF) absorption mechanism of the B1 field exposure, 
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which will result in tissue heating. As a consequence, RF electromagnetic field (EMF) power 

deposition and the resulting tissue heating should be carefully managed, which becomes an 

important safety concern in sequence and coil design. Specific absorption rate (SAR) has been used 

to prevent excessive exposure [3]. International Electrotechnical Commission [4] defined the SAR 

averaged over whole body (wbSAR), over the head (hdSAR), over the partial body, and the peak SAR 

averaging over 10 g tissue (pSAR10g) as the limits. 

For MRI exposure, overestimation for SAR may improperly restrict clinical MRI scans with new 

sequences, whereas underestimation of SAR can lead to tissue heating and thermal injury. Accurate 

SAR predication is critical for ensuring regulatory compliance, while completely exploiting the 

potential of the MRI system because of optimizing the imaging quality by repetitive scans or 

increasing the emissions in sequence resulted in higher SAR [5]. 

At present, SAR is usually non-invasively characterized using numerical simulations. A 

representation of the patient-specific SAR depends on the coil model and the individual model [6]. 

To date, accurate individual models are usually reconstructed using MRI [7]. In this case, the high-

intensity scanner and high-SAR sequence were frequently applied to present the precise anatomical 

details. Non-rigid registration using the brain [6] and breast model libraries [8], tissue simplification 

[9,10], or body truncation [5] techniques allowed generating an individual human model by a low-

intensity scan with an SAR-reduced sequence [6,11].  

Nevertheless, the abovementioned methods either focused on partial body modelling or 

obscured the anatomical and physiological details which may influence the SAR. In this case, it is 

desirable to derive the a priori knowledge for the measurable anthropometric parameters (e.g., 

profile, height and weight) and the internal anatomy. However, the relationship was too complicated 

to be quantified [12].  

Our recently developed deformable Chinese phantom [13,14] may help resolve the dilemma. In 

these studies, deformable human torso and head phantoms were constructed by learning the inter-

subject anatomical variation from a segmented computed tomography (CT) dataset of healthy 

Chinese adults. To match the personal anatomy, the deformable phantoms were registered to 

individual body surface, which can be obtained by a 3-D surface optical scan. As a consequence, the 

individual model can be generated in less than 10 minutes using a personal computer and it is free 

of an MRI scan. The applicability of this kind of model in patient-specific SAR assessment could be 

promising but the resulting errors should be investigated, and some further work needs to be 

conducted to finalize the whole-body modelling (e.g., the limbs cannot be generated by the method 

because the CT dataset did not include this part).       

Positioning of the patient in the scanner usually involves random misalignment, which is 

inevitable in clinical scans [15]. Among the three directions, the shift along the long-axis of the coil 

(Z-axis) was roughly controlled compared to the other directions which were practically confined by 

padding or spacers. The Z-axis alignment was based on several body landmarks (e.g., shoulder, 

groin) and the shift could introduce substantial SAR change [16]. Besides, the body tilt was frequently 

observed due to the inaccuracy in coil installation (leading to a relative rotation between the 

excitation port and the body) or the slight motion of the patient. The extent of variation has been 

evaluated for the Z-axis shift mainly using the deterministic method [5,16] whilst no report was 

available for the body tilt. In comparison, the stochastic approach addressed the SAR variability 

based on the probability distribution of the input variables [12,17–20]. The statistical results would 

be appropriate for MRI exposure assessment because clinical physicians could manage SAR at 

different risk levels when weighing over the benefit from the SAR-enhanced sequence. 

In this work, we proposed a whole-body individual modelling method, including deformable 

phantom and tissue simplification, to evaluate the patient-specific exposure to B1 field of MRI. For 

this purpose, a commercial Tx coil was numerically reconstructed and verified by measurement. The 

whole-body individual model could be efficiently generated with high accuracy and contained 37 

(male) and 34 (female) different tissues. Stochastic dosimetry was conducted using a surrogate model 

[21] constructed by polynomial chaos [22]. The exposure variability due to the Z-axis misalignment 

and tilt of the subject was quantified. Both the deterministic and stochastic results validated the 
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application of the individual modelling technique in evaluating the RF exposure of Tx coil. The 

statistical results fitted well for the need for exposure risk management in MRIs. The procedures as 

well as the modelling method can be used for efficient patient-specific SAR during MRI assessment.  

2. Materials and Methods  

2.1. Whole-Body Individual Modelling 

The deformable human phantoms were recently generated for the human torso [13] and head 

[14] while representing the physical parameters in a given Chinese population. Statistical shape 

model [23] was used to learn about the inter-subject anatomical variation from a CT dataset 

containing 79 healthy Chinese, whose tissues were either automatically segmented or mapped using 

the anatomical templates [24], depending on the specific imaging contrast. To match the personal 

anatomy for individualized modelling, the deformable phantoms were registered to the individual 

body profile (can be achieved by an optical scanner) using an active shape model [25]. This was an 

efficient method (less than 10-min’s calculation on a personal computer) free of MRI scans. However, 

the abovementioned registration method cannot be applied for limbs because they were not included 

in the CT database. In the experiments, we assumed that the limbs were homogeneous with muscle.  

In order to validate the proposed modelling method, we selected the Chinese adult female and 

male models [26] as references. The models were manually segmented and reconstructed from cryo-

section slices by 10 anatomical experts at the resolution of 1 mm3. Rigorous quality control has been 

ensured in the process [27]. They were assumed to present the individual anatomical structure with 

high confidence. Their profiles were extracted and used for whole-body individual modelling with 

the procedures described in the previous paragraph. The human models reconstructed by manual 

segmentation and by the approach as we introduced in this study are shown in Figure 1. 

    
(a) (b) (c) (d) 

Figure 1. Human models used in the study: (a) Chinese adult male model by manual segmentation; 

(b) individualized adult male model; (c) Chinese adult female model by manual segmentation; (d) 

individualized adult female model. 

The tissues in the abovementioned models are listed in Table 1. The number of the tissues for 

the male models was 66 (manually segmented model) and 37 (individualized model). As for the 

female models, the manually segmented model contained 62 tissues, while the individualized model 

had 34 tissues.  

Table 1. Tissues for the different models. 

Chinese Adult Male 

Model 

Individualized Adult Male 

Model 

Chinese Adult Female 

Model 

Individualized Adult 

Female Model 

Aqueous humor 
Eyes 

Aqueous humor 
Eyes 

Cornea Cornea 
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Cortex_of_lens Cortex_of_lens 

Sclera Sclera 

Retina Retina 

Vitreous_body Vitreous_body 

Lens_nucleus Lens_nucleus 

Iris Iris 

Lacrimal_apparatus Lacrimal_apparatus 

Brain_stem 

Brain 

 

Brain_stem 

Brain 

Cerebral_dura_mater Cerebral_dura_mater 

Cerebral_grey_matter Cerebral_grey_matter 

Cerebral_white_matter Cerebral_white_matter 

Hippocampus Hippocampus 

Hypophysis Hypophysis 

Hypothalamus Hypothalamus 

Cerebellum Cerebellum 

Cerebrospinal_fluid Cerebrospinal_fluid 

Cartilage 

Cartilage 

Cartilage 

Cartilage 

Large_artery_wall Large_artery_wall 

Large_vein_wall Large_vein_wall 

Laryngeal_cartilages Laryngeal_cartilages 

Nerve Nerve 

Vestibulocochlear_nerve Vestibulocochlear_nerve 

Diploe 
Skull 

Diploe 
Skull 

Teeth Teeth 

Bile — Bile — 

Bladder Bladder Bladder Bladder 

Blood Blood Blood Blood 

Cholecyst — Cholecyst — 

Cortical_bone Cortical_bone Cortical_bone Cortical_bone 

Fat Fat Fat Fat 

Heart Heart Heart Heart 

Internal_ear Internal_ear Internal_ear Internal_ear 

Intervertebral_disc Intervertebral_disc Intervertebral_disc Intervertebral_disc 

Kidney Kidney Kidney Kidney 

Large_intestine 
Intestines 

Large_intestine 
Intestines 

Enteric_cavity Enteric_cavity 

Ligament Ligament Ligament Ligament 

Liver Liver Liver Liver 

Lung Lung Lung Lung 

Lymph_node Lymph_node Lymph_node Lymph_node 

— — Mammary_gland Mammary_gland 

Intrinsic_laryngeal_muscl

e 

Muscle 

Intrinsic_laryngeal_muscle 

Muscle Muscle_belly Muscle_belly 

Tongue Tongue 

Muscle_tendon Muscle_tendon 

Nucleus Nucleus Nucleus Nucleus 

Optical_nerve Optical_nerve Optical_nerve Optical_nerve 

Pancreas Pancreas Pancreas Pancreas 

Pineal_gland Pineal_gland Pineal_gland Pineal_gland 

Prostate Prostate — — 

Red_bone_marrow Red_bone_marrow Red_bone_marrow Red_bone_marrow 

Salivary_gland Salivary_gland Salivary_gland Salivary_gland 

Skin Skin Skin Skin 

Spinal_cord Spinal_cord Spinal_cord Spinal_cord 

Spinal_dura_mater Spinal_dura_mater Spinal_dura_mater Spinal_dura_mater 

Spleen Spleen Spleen Spleen 

Spongy_bone Spongy_bone Spongy_bone Spongy_bone 

Stomach 
Stomach 

Stomach 
Stomach 

Stomach lumen Stomach lumen 

Testis Testis — — 

Thoracic_gland Thoracic_gland — — 

Thyroid Thyroid Thyroid Thyroid 
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Trachea Trachea Trachea Trachea 

Ureter Ureter Ureter Ureter 

Vessel Vessel — — 

2.2. Computational Method 

2.2.1. Deterministic Simulations 

Finite-Difference Time-Domain (FDTD) is commonly used for electromagnetic dosimetry [28]. 

It works in time domain and is capable of solving the time response of a pulse for heterogeneous 

tissues. In contrast, the method has difficulty to handle the large-scale problem with a fine resolution, 

which introduces huge memory cost. In addition, the steady-state solutions are obtained by 

simulating the whole transient time response of the system and this can result in very long simulation 

times for strong resonators. To overcome the drawbacks, we used the equivalent source [29] and the 

adaptive voxels [28] to reduce the simulation volume.  

Taking the coil used in the experiments for an example, a generic 1.5 T 16-rung Tx coil fabricated 

by XGY Medical Equipment Co. Ltd, (Ningbo, Zhejiang, China) was used in the study (Figure 2a). 

The dimensions of the coil are shown in Figure 2b. The coil model was tuned to 64 MHz by adjusting 

the between-rung capacitors. By the method, the calculated return loss (S11) was −12.7 dB, close to the 

measured one (−13.3 dB).  

  

(a) (b) 

Figure 2. Structure of the MRI Tx coil: (a) Tx coil used in the experiment; (b) CAD model of the coil, 

the red dot indicates the positions of the capacitors. 

The incident field was obtained for this Tx coil model which was discretized with an adaptive 

grid schema (496 × 496 × 411 = 101.52 MCells). The result was used as input for the Huygens Box 

simulations [28] with the anatomical model at a uniform grid resolution of 2 mm3. 

All simulations have been performed with SEMCAD V17.2.1 (SPEAG, Zurich, Switzerland). For 

the approximate 36.8 MVoxel of the entire simulation space for the human model, the calculation 

time was around 0.5 h per simulation on a hardware accelerated cluster (CPU: 2 × Xeon E5-2630, 2.2 

GHz; Memory on board: 256 GB; GPU: 2 × NVIDIA Tesla K40c with 24 GB memory in total). Two 

quadrature feeding ports were located in the upper-end ring. The numerical simulations were 

performed in a multi-port simulation mode with E-field data superimposed from the results of the 



Int. J. Environ. Res. Public Health 2019, 16, 1069 6 of 15 

 

two quadrature feeds. Frequency-dependent dielectric properties were adopted from the databases 

of Gabriel et al [30] and Hasgall et al [31]. The values were directly used for the manually segmented 

models. In contrast, we need to homogenize the dielectric properties of the tissues for the individual 

models as shown in Table 1. The homogenization was based on the mass as shown in (1): 

N

i i
i 1

homogenized N

i
i 1

ε m

ε σ jω '

m





  






  (1) 

Where, homogenizedε  is the complex dielectric properties of the homogenized tissue; iε and im denote 

the complex dielectric properties and mass of the ith tissue contained in the homogenized tissue; σ 

is the conductivity; and ε’ is the relative permittivity.  

The homogenized results are shown in Table 2. 

Table 2. Dielectric properties for the homogenized tissues of the individual models. 

Homogenized Tissues Conductivity (S/m) Relative Permittivity 

Eyes 1.24  70.96  

Brain 0.69  72.35  

Cartilage 0.60  66.76  

skull 0.13  26.38  

Muscle 0.69  72.24  

Stomach 0.88  85.81  

The human models were positioned in the coil with their long axis aligning with the Z-axis of 

the coil. The middle level of the coil along the Z-axis was aligned to the central heart level of the 

human models. This was defined as the standard position for the human model in the coil. To 

evaluate the variability due to the body motion in the coil, the models can move along the Z-axis for 

±10 cm and rotate for ±5o. The configurations are shown in Figure 3. The minimum distance between 

the arms and the coil was 7 cm for the adult female model and 6 cm for the adult male model. 

  

Figure 3. Positioning of the human models in the coil. 
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2.2.2. Stochastic dosimetry on Z-axis shift and body tilt 

Stochastic methods are capable of evaluating the exposure in realistic conditions [12]. The system 

output (i.e., the dosimetric quantity under assessment) is acquired on the basis of a few observations 

of the system output obtained by deterministic simulations. Recently, spectral method, in particular, 

polynomial chaos (PC), has been widely used in the variability analysis of bioelectromagnetic 

dosimetry at a lower computational cost [32]. It approximates the system outputs by a surrogate 

model using a series of orthogonal polynomial basis ( Ψ(X)) as in (2). 

1

0

(X) (X)
P

j jSAR M a e


  
 

(2) 

where X is the random input vectors made of the variables under assessment (Z-axis shift and body 

tilt in our case), (X)j  are the polynomials from Ψ(X) , ja  are the coefficients to be estimated, 

and e is the truncation error. P is the size of the polynomial basis and is calculated as (3): 

=Cp
p K

K p
P

p


 
  
   

(3) 

where p is the maximum order of (X)  and K is the number of input variables. If the input variables 

are independent, ψ(X) can be represented as (4): 

 
1

K

1
1

= ( ) .....
j Kj K

j

x x x     


  X （ ） （ ）

 

(4) 

where
j  is a family of polynomial orthogonals with respect to the probability density function 

(PDF) of each input variable 
ix , and ,1j j K    represents the maximum degree of the polynomials 

in 
j [22,33]. Practically, the probability density of the Z-axis shift and rotation were assumed to 

follow Gaussian distribution, respectively. Therefore, Hermite polynomials were selected.  

Usually, Least Angle Regression (LAR) algorithm [34] is used to estimate the coefficient of PC. 

This algorithm is based on least-square regression with respect to the series of observations of the 

system output  1 2, ,...,o NSAR sar sar sar . The validation of the surrogate model was based on 

a leave-one-out cross validation approach (LOOCV) [35]. This technique can reduce the size of the 

experimental design. By this way, the observation set, obtained with deterministic dosimetry from 

the experimental design to an experimental design  1 2, ,...,o NX x x x , is recursively divided into 

two subsets, the learning set to build the surrogate model and the testing set to calculate the resultant 

errors. The best PC expansion among the ones generated by LAR is then chosen through LOOCVs, 

using the corrected relative leave-one-out error (
LOO [36]. 

LOO  is based on the estimation of the 

mean square error of the model as shown in (5) 

2
LOO

1

1 ˆ( ( ) ( ))
N

J i i
i

M x M x
N

 


 
 

(5) 

where, ˆ
JM 

 is the model based on N-1 simulated SAR values,    1 2, ,..., N Jsar sar sar sar . 

The PC procedure should be repeated by increasing the size N of the experimental design and 

changing the maximum degree p of the polynomials ψ(X) until the achieved error is below a given 

threshold 
2

2
1 LOO

sar

Q



  , where 

2
sar  is the variance of the output SAR values. 

We used Latin Hypercube Sampling (LHS, [37]) to generate the input variable vectors. The LHS 

technique is a multidimensional version of the stratified sampling method. It has the advantage of 
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generating a set of samples that more precisely reflect and explore all the distributions with 

substantially fewer samples. 

2.3. E-Field Measurement in the Empty Coil 

To confirm the field distribution by numerical modelling of the coil, we measured the E-field 

strength on 27 points distributing on three cross-sections perpendicular to the Z-axis of the coil using 

E-field probe (ER3DV6) and H-field probe (H3DV7) with Easy4MRI system (SPEAG, Zurich, 

Switzerland). The measurement configuration is shown in Figure 4. We performed the E-field 

measurement with the sequence of the modulated rectangular pulse for comparison. The validation 

measurement and simulation were conducted in the empty coil. 

Figure 4. Field measurement for the Tx coil. CS_i (i = 1,2,3) indicates the three measurement surfaces 

in the coil, which were separated by 90 mm. “x” indicates the position of the measurement point. 

3. Results 

3.1. Whole-Body Individual Models 

We compared the total mass of the different models as well as some major tissues/organs in the 

human models in Table 3. Their registration accuracy is also compared in the table. 

The deviation of mass for the entire body, skin, fat, muscle, bones, and brain were less than 10%. 

The deviation of mass for the major organs was generally less than 20% but the registration error 

(Dice) was rather large, ranging from 61% to 81%.  

Table 3. Comparison for the major tissue/organs of the different models. 

Tissues 

Chinese 

Adult Male 

Model (kg) 

Individual 

Male Model 

(kg) 

Weight 

Deviation 

(%) 

Dice 1 

(%) 

Chinese 

Adult 

Female 

Model (kg) 

Individual 

Female 

Model (kg) 

Weight 

Deviatio

n (%) 

Dice 

(%) 

Total 

weight 
63.26 66.70 5.44 / 53.47 54.99 2.84 / 

Fat 21.54 23.32 8.26 / 17.10 18.81 10.00 / 

Muscle 22.37 24.23 8.31 / 16.23 16.03 −1.20 / 

Skin 3.79 3.77 −0.57 / 3.14 3.15 0.27 / 

Bones 8.42 9.01 7.00 / 5.96 6.22 4.36 / 

Brain 1.38 1.39 −1.49 81.08 1.30 1.26 −2.67 78.75 

Heart 0.42 0.35 −17.00 69.49 0.27 0.30 11.11 69.98 

Kidney 0.26 0.29 11.53 69.55 0.22 0.19 −13.63 63.83 
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Liver 2.05 1.84 −10.24 63.17 1.17 1.02 −12.80 61.76 

Lung 1.02 0.90 −11.76 63.39 0.93 0.86 −7.76 68.87 

Spleen 0.19 0.16 −15.79 61.18 0.18 0.14 −16.67 63.22 

Stomach 0.76 0.74 −2.63 72.32 0.59 0.67 13.55 69.70 

1 Dice (%) is calculated by 
2 X Y

100%
X + Y  , where X and Y are the voxels of the organ belonging to the 

manually segmented model and the individual model, respectively. 

3.2. Comparison for the Simulation and the Measurement Results in the Empty Coil 

The calculated and the measured E and B1 field results are shown in Figure 5.  

E-field 

distribution 

    

B1-field 

Distribution 

   
 

 CS_1 CS_2 CS_3  

Figure 5. The simulated and the measured RMS field values on the three selected slices. The values 

were presented by “simulated result/ measured result”. The measured points were indicated by red 

x. The power to the coil was 6 kW (in measurement) and 3.5 kW (in simulation). 

The incident power was not identical for the simulation and measurement due to the inaccuracy 

in modelling. The discrepancy could be adjusted and compensated in simulations. In fact, the 

similarity of field distribution was a much more important factor. The mean deviation of the 

amplitude on these points was 6.13%, with a standard deviation of 3.92%. The maximum deviation 

was 14.42%.  

3.3. Deterministic Results 

The SAR distribution on the coronal slices is shown in Figure 6. 

    

 

(a) (b) (c) (d) 
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(e) (f) (g) (h)  

Figure 6. SAR results for the models at the standard position in the coil. (a)–(d) SAR distribution at 

the central coronal slice for the manually segmented Chinese adult male model, individual male 

model, manually segmented Chinese adult female model, and individual female model, respectively; 

(e)–(f) SAR distribution at the coronal slice which includes pSAR10g for the manually segmented 

Chinese adult male model, individual male model, manually segmented Chinese adult female model, 

and individual female model, respectively. The positions of pSAR10g are indicated in the figures. The 

results were normalized to a net incident power of 1 W. 

wbSAR and pSAR10g for the standard position are shown in Table 4. 

Table 4. Deterministic simulation results for the models at the standard position in the coil. 

Human 

Models 
wbSAR 1 

Deviation  

(% ) 2 
hdSAR 3 

Deviation 

(%) 
pSAR10g  

Deviation 

(%) 

Location 

of 

pSAR10g 

Manually 

segmented 

male 

model 

0.48 

mW/kg 

−2.62 

0.27 

mW/kg 

3.20 

8.39 mW/kg 

−7.55 

(86, 85, 

489) 

Individual 

male 

model 

0.47 

mW/kg 

0.28 

mW/kg 
7.76 mW/kg 

(101, 86, 

492) 

Manually 

segmented 

female 

model 

0.31 

mW/kg 

−3.06 

0.21 

mW/kg 

4.53 

4.24 mW/kg 

−9.09 

(93, 79, 

461) 

Individual 

female 

model 

0.30 

mW/kg 

0.22 

mW/kg 
3.85 mW/kg 

(96, 82, 

463) 

1 wbSAR is the SAR averaged over the entire body. 2 Deviation is calculated by the difference of the 

two models divided by the value from the manually segmented model. 3 hdSAR is the SAR averaged 

over the entire head. The results were normalized to net incident power of 1 W. 

The difference for wbSAR between the manually segmented models and the individual models 

was below 4% whilst the difference for pSAR10g between these models was less than 10%. The 

location of pSAR10g was very close between the manually segmented and the individual models. 

3.4. Statistical Results 

By LOOCV, a total of 100 experiments introduced the errors of less than 2% for the wbSAR 

results (1.12% for the Chinese adult male model, 0.2% for the individual male model, 0.5% for the 

Chinese adult female model, and 0.1% for individual female model). In comparison, the errors were 

less than 5% in terms of pSAR10g (4.2% for the Chinese adult male model, 1.2% for the individual 

male model, 4.8% for the Chinese adult female model, and 1.8% for the individual female model). 
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Based on the obtained surrogate model, the distribution of wbSAR and pSAR10g due to body 

motion in the coil is plotted in Figure 7. 

 

(a) 

 

(b) 

  

(c) (d) 

Figure 7. SAR occurrence calculated by surrogate model: (a) wbSAR for the male models; (b) pSAR10g 

for the male models; (c) wbSAR for the female models; and (d) pSAR10g for the female models. 

The results indicated that the individual models yielded similar SAR results even for various 

percentiles. For example, at the 50th percentile, the deviation for wbSAR from the male models is 2.07% 

and 4.54% for the female models. At the 95th percentile, the deviation is 5.04 % for the male models 

and 3.82% for the female models. Deviation for pSAR10g ranged from 7% to 13% at the 50th and 95th 

percentile. 

4. Discussion 

The models generated by the proposed modelling technique gave satisfactory accuracy of SAR 

estimation compared to the available fast individual modelling methods which demonstrated a 

deviation of 10–30% for pSAR10g [6,9]. The advantage of accurate SAR representation could be 

attributed to the anatomical details preserved by the proposed modelling technique. As known, the 

tissue distribution is essential to the local SAR. In total, more than 30 different tissues/organs were 

included in the individual model, which thus benefited for an accurate local SAR estimation. Another 

advantage of the proposed methodology is also obvious: The variables could be eventually traced to 

several anthropometry parameters (e.g., height and weight), which were dosimetrically important. 

This is a prospective method for individual modelling even without an optical or low-SAR MRI scan. 

The proposed modelling technique learned the inter-subject anatomical variation from the 

medical image dataset consisting of 79 healthy Chinese individuals (41 males and 38 females). The 

representation of the database could be enhanced by the inclusion of more subjects. To note, since the 

CT dataset was from the healthy subjects, the modelling method cannot be directly applied to the 

subjects with internal abnormalities, e.g., tumors. Another point that underpinned the modelling 

technique was the representation of the anatomical templates used for the registration of the low-

contrast organs. The current templates were created mainly for demonstrative visualization so that 

the shapes of the organs were stylized with their profiles being significantly smoothed. Although we 

have achieved good SAR accuracy, the organ’s registration accuracy as well as the SAR results could 

be potentially improved by choosing the confirmed anatomically correct templates. To note, 

including the individual information from other anatomical datasets, even for partial body, can help 
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refine the deformable models. For example, Li et al. [8] provided a feasible approach to fuse the 

individual breast to the whole-body model.  

The limbs were simplified with homogeneous muscle due to the lack of the data for this part. 

Admittedly, change for the tissue composition can modify the wave propagation inside the body. 

Muscle was selected as the tissue for the limbs because it had a higher conductivity and permittivity 

compared to fat. Hence, it may indicate that very significant RF power absorption and conservative 

results were expected. By numerical comparison, the errors for wbSAR, pSAR10g and the locations 

were usually less than 10%, which was superior to the existing individual modeling methods [6,9]. 

Moreover, we analyzed the application of the simplification method to the limbs of the Virtual Family 

models [38]. Very similar results are presented as well (resulting pSAR10g deviation for less than 5% 

when the hands and the body were separated). The results were consistent with the previous studies 

indicating the simplification of the heterogeneous whole-body models using muscle–fat–lung tissues 

[9]. So, we concluded that limbs had much simpler tissue distribution and our simplification would 

not pose significant errors. Upper limbs have an important influence on the formation of RF loops 

when the hands contacted the wrist or hip. In practice, an electrical isolation has been recommended 

to insert between the arms and the torso as well as between the legs to avoid conducting loops [15,39]. 

Our study used the similar posture and prevented the first hotspots on the contacting parts. The 

optical scan can obtain the profile of the individual limbs. By this way, the real distance between the 

arms and the coils was kept. This case was very similar to cerebrospinal fluid (CSF). We cannot 

identify CSF from the CT dataset although its dielectric properties were very different compared to 

the other brain tissues. However, from Table 4, we found that the simplification resulted in less than 

5% (in terms of errors of hdSAR) for the simulations. 

The results demonstrated the SAR equivalence between the individual models and referenced 

models. Statistical results also demonstrated that the whole-body individual models could represent 

the SAR variation due to Z-axis misalignment and body tilt. Statistical results on Z-axis misalignment 

and the body tilt presented the SAR values for various percentiles. The reasonable safety margin 

rather than an overestimation factor can be determined upon SAR statistics. Setting the SAR limit to 

various percentiles covered different number of cases. The much more accurate SAR management 

can be performed and the physician can decide on the application of the novel sequence depending 

on the expectation of risk. 

Two independent factors for body positioning in the coil were studied. Other sources also 

contributed to SAR variability including the ones from the dielectric properties and coil models. 

However, it was difficult to simultaneously take them into consideration due to the curse of 

dimensionality in high-dimensional problems [40]. The possible solutions may include sensitivity 

analysis and principle component analysis to determine the factors with dosimetric importance. In 

reality, the physical variables, such as body size and weight, influenced SAR as well. Researchers 

attempted to characterise the relationship so as to estimate the subject-specific exposure dose or to 

determine the conservative exposure dose for a population. For example, Murbach et al. discussed 

the relationship between the RF absorption and anatomy, but only using five human models [16]. 

Shao et al. statistically discussed the SAR variability due to the variation of the head volume using 

the unscented transform method [12]. In their work, the different head models were simply scaled 

from the head model of Duke [7], and the anatomical validity of the derived models was not 

addressed. By our method, the individual models were generated and, its resultant SAR difference 

was demonstrated to be less than 5% (wbSAR) and 10% (pSAR10g). So, we assumed that the 

individual models well-represented the reference models. Then, we focused our research on 

variability analysis for the body motion in the coil. In effect, the proposed modeling method can 

generate the human models representing some pre-defined physical and anatomical features, which 

is essential for statically evaluating the dosimetric results over a specific population. This is another 

important issue in MRI RF exposure assessment and we will discuss it in future studies. 

The uncertainty for assessing the patient–subject SAR has multiple contributors in addition to 

human modelling. The model of the Tx coil and the numerical method are also important for accurate 

SAR prediction. In our experiments, we verified the simulated E-field strength in the empty coil using 
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the measurement data from several points with the RMS value. The purpose was to confirm the Tx 

model rather than a rigorous uncertainty analysis. In general, the uncertainty for the measurement 

positioning was about 6–7%. According to the calibration documents, the uncertainty of the probes 

(with the experimental sequence) was 9.6% (k=2). The uncertainty was around 50% for coil modelling 

[41,42]. Different numerical methods contributed approximately 6–15% of the uncertainty [43,44]. The 

information could be referred to for uncertainty estimation. 

The deformable model was generated based on the dataset from the Chinese population. A 

similar method could be applied to other ethnicities when the relevant dataset is available. The body 

coil was a common commercial product without special optimization. The individual modelling did 

not use the tissue cluster based on the dielectric similarity [9], thus it is not frequency dependent. 

Therefore, the methodology as well as the results could be expected to be applied to the coils working 

at other Larmor frequencies.  

In the study, we removed the RF shield of the coil. The simplification was to facilitate the 

experiments for probe positioning as well as numerical modelling. The purpose of the study was to 

investigate the applicability of the human modelling method to the evaluation of the individual MRI 

RF exposure. The MRI coil model presented in the study acted as a source for exposure. Therefore, 

the detailed structure was not an influential factor on the conclusion. In practice, researchers can 

adopt any commercial coil in analysis.  

5. Conclusions 

In this study, the efficient and low-SAR method to evaluate the patient-specific SAR during MRI 

scan was presented. We utilized a deformable atlas to render the individual trunk and head model 

based on the inter-subject anatomical variation learned from the CT dataset. The tissues in the upper 

and lower limbs were simplified to muscle. In that case, an optical scan or low-SAR MRI scan to 

obtain the individual profile was sufficient for an accurate patient–subject SAR evaluation compared 

with the current methods because a lot of individual anatomical and physical details were preserved. 

Since misalignment and body tilt were almost inevitable in the clinical scan, we statistically analyzed 

the dosimetric influence of the two factors. The results demonstrated that the proposed modelling 

method can yield similar statistical results compared with the reference models. SAR values for 

different percentiles were given using surrogate models reconstructed by polynomial chaos. The 

statistical results provided useful information when weighing over the exposure risk and the benefit 

of an SAR-enhancing coil/sequence. 
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