
International  Journal  of

Environmental Research

and Public Health

Article

Developing A Sustainable Urban-Environmental
Quality Evaluation System in China Based on A
Hybrid Model

Qigan Shao 1,2, Sung-Shun Weng 3, James J.H. Liou 4,* , Huai-Wei Lo 2 and Hongbo Jiang 1

1 School of Economics & Management, Xiamen University of Technology, Xiamen 361024, China;
qgshao@xmut.edu.cn (Q.S.); hbjiang@xmut.edu.cn (H.J.)

2 Graduate Institute of Industrial and Business Management, National Taipei University of Technology,
Taipei 10608, Taiwan; w110168888@gmail.com

3 Department of Information and Finance Management, National Taipei University of Technology,
Taipei 10608, Taiwan; wengss@ntut.edu.tw

4 Department of Industrial Engineering and Management, National Taipei University of Technology,
Taipei 10608, Taiwan

* Correspondence: jamesjhliou@gmail.com

Received: 19 March 2019; Accepted: 17 April 2019; Published: 22 April 2019
����������
�������

Abstract: In China, with the acceleration of urbanization, people pay more attention to the quality
of urban environment. Air pollution, vegetation destruction, water waste and pollution, and waste
sorting have restricted the sustainable development of urban environment. It is important to evaluate
the impact of these environmental concerns as a prerequisite to implement an effective urban
environmental sustainability policy. The aim of this paper is to establish a system for evaluating
sustainable urban environmental quality in China. We extracted six dimensions and 29 criteria
for assessing urban sustainable environment. Then, a fuzzy technique and the best worst method
were applied to obtain the weights for the dimensions and criteria. Next, grey possibility values
were applied to evaluate the sustainable environmental quality of five cities: Beijing, Shanghai,
Shenzhen, Guangzhou, and Hangzhou in China. A sensitivity analysis was performed to identify
how the ranking of these five cities changed when varying the weights of each criterion. The results
show that pollution control, the natural environment, and water management are the three most
important dimensions for urban environmental quality evaluation. We suggest that controlling
pollutant emissions, strengthening food waste management, improving clean production processes,
and utilizing heat energy are the effective measures to improve the urban environment and achieve
sustainable urban environmental development.

Keywords: sustainable environmental quality; multiple attribute decision-making; fuzzy best worst
method; grey relational analysis

1. Introduction

Under the background of economic growth and urbanization process in China, the urban
environment has been disrupted, and the sustainable development of urban environment has been
threatened [1]. For example, the urban heat island effect and the health problem of urban residents
are the challenges for facing the sustainable development of cities [2]. The urban population in
China has increased too rapidly and they are increasingly devoting their attention to ecological
environment construction. Rapid urbanization and modernization have increased the pressure of urban
environmental development in China. As the largest developing country in the world, China has made
a rapid urbanization and modernization. China’s urbanization rate has increased from less than 20%
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in 1978 to 59.58% in 2018. However, the problem of environmental pollution has become increasingly
prominent, such as China is one of the largest CO2 emitters, and China’s cities are under pressure to
reduce energy consumption and emissions [3]. Concrete environmental construction measures have
thus been proposed in China, where the government is promoting the ideas of an ecological civilization
and devoting more effort toward ecological environmental protection. The Chinese government has
always attached importance to the prevention of urban environment damage. Some measures such
as garbage sorting, shared bicycles, and wastewater treatment have been proposed [4,5]. However,
with rapid urban population growth, the urban environment is facing unprecedented challenges, such
as the aggravation of pollution, resource shortages, and traffic congestion [6]. Moreover, cites have
become a major source of CO2 emissions, accounting for approximately 70% of all such emissions [7].

Worsening of the urban metabolism and its impact on climate change pose challenges to the
sustainable development of urban environments [8]. Hence, the following issues affecting the
sustainable development of urban environments are worthy of attention. Firstly, which indicators affect
the development of urban sustainable environment, and which of these are key indicators? Secondly,
how should the quality of a sustainable environment in a city be evaluated through indicators? Finally,
how can improve a city’s environment quality through its status quo? It is particularly essential to
develop a sustainable urban environmental quality evaluation system that can serve as a reference for
the construction of a sustainable city environment.

The aim of this paper is the development of a sustainable urban-environmental quality evaluation
system in order to solve the above problems. The concept of sustainability mainly involves sustainable
development and sustainable assessment [9]. Researchers have already made some contributions to
the study of sustainable urban environments. Ahvenniemi et al. [10] proposed critical indicators for the
sustainable development of a city environment and established a framework for its evaluation. Aldairi
and Tawalbeh [11] provided a detailed overview of the main security problems in sustainable cities
and their current solutions. They also proposed key indicators for the evaluation of intelligent urban
environments. Alencar et al. [12] noted that natural resources, artificial environments, and energy
management are the three pillars of sustainable environmental development. Although these studies
have proposed some essential factors that influence environmental quality, specific indicators such as
water management or pollution control have rarely been considered. Thus, evaluating the sustainable
quality framework of a city is a multi-dimensional challenge involving water resources, environmental
pollution, energy management, and other factors. Because it is difficult to collect actual data, this
study uses the multiple attribute decision-making (MADM) method to evaluate environmental
quality. MADM models are proposed to evaluate sustainable urban environmental quality and to
help decision makers make sound decisions with limited information. Obviously, this paper mainly
deals with the sustainability assessment problems, and sustainability assessment is related to the
strong and weak sustainability paradigms. Ziemba (2019) argued that compensatory methods are
used to solve the problem of weak sustainability, while the non-compensation method is suitable
for solving the decision-making problem with strong sustainability [9]. In this paper, the criteria for
evaluating the urban environmental sustainability is partially-compensatory. Therefore, we have a
strong sustainability and weak sustainability. And the fuzzy best and worst method which improved
in AHP are suitable to address this problem [9].

Only a few scholars have examined intelligent cities and environmental sustainability by applying
MADM models. Anand et al. [13] evaluated the sustainability of India’s cities based on a fuzzy analytic
hierarchy process (AHP) and data envelopment analysis. Wang et al. [14] assessed the impact of air
pollution on urban sustainability by combining an artificial neutral network (ANN) with “the technique
for order preference by similarity to an ideal solution” (TOPSIS). However, conventional methods
such as AHP and the analytic network process (ANP) are difficult to implement when a considerable
number of indicators are being examined. It is also difficult to obtain the accurate judgements of
decision makers in the process of evaluation because their ideas are in the form of linguistic terms and
are thus vague and subjective [15]. In addition, from the algorithm of these two methods, they have
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the problem of rank reversal. The rank reversal problem assumes that there is an alternative ranking
determined for a decision problem with the use of the preferences aggregation method. For example,
a right eigenvector method is used in the computational algorithm of AHP method, a left eigenvector
method should use to solve a reversal problem. As a result, a reverse sequence of elements was
produced to be pairwise-compared in matrix. However, this is not always true, in particular in the case
of some inconsistencies in the pairwise comparison matrix [16]. Additionally, we have differences in
the weights of criteria obtained by means of the ANP method with the considered cluster of alternatives
or without it. Namely, taking into consideration the cluster of alternatives in the decision model
influences the result of criteria weights. The effect of weight changes takes also place in the case of
criteria which are not mutually dependent on each other [17].

To address these limitations, we applied a fuzzy best and worst model to obtain weights for
the dimensions and criteria. The fuzzy set used in the proposed method can solve the problems
related to the ambiguity and uncertainty of experts’ opinions [18]. The best worst method (BWM)
developed by Rezaei has been applied in many fields because of its fast comparison times and consistent
results [19–22]. The fuzzy BWM (FBWM), combining fuzzy theory with BWM, can reduce the subjective
uncertainty of experts, as well as improve the accuracy of the results [23,24]. Grey relational analysis
(GRA) can measure the degree of correlation between factors according to their difference or similarity.
It requires a small sample size and little computation, improves the accuracy of the results, and can
be used to solve MADM problems [25]. Therefore, this study also used the GRA method to assess
sustainable urban environmental performance.

The objectives of this study are as follows: (i) exploring an evaluation structure for urban
sustainable environmental quality, (ii) investigating the importance of environmental quality indicators
for urban sustainability, and (iii) providing suggestions for improving the performance of an urban
sustainable environment. The rest of the paper is organized as follows. Section 2 presents a review
of the relevant literature. Section 3 describes the FBWM and GRA method. Section 4 discusses the
questionnaire that was designed and implemented, as well as the analysis of the data. Section 5
discusses the results, and concluding remarks are presented in Section 6.

2. Literature Review

Few researchers have discussed smart or sustainable environments, and few well-recognized
sustainable urban environmental evaluation systems have been developed at the national level [26–28].
Cicirelli et al. [29] argue that a sustainable environment is one capable of sensing, driving, communicating,
and computing. The aim is to acquire and utilize environmental knowledge to meet the preferences
and requirements of residents. Ahvenniemi et al. [10] proposed five dimensions to reflect sustainable
environmental quality: natural environments, built environments, transportation, water management,
and waste management. Aldairi et al. [11] proposed energy management, water management, waste
management, clean environment, and pollution control as the five factors of a sustainable environmental
assessment system. These dimensions are frequently cited and supplemented in studies of sustainable
urban environments. However, the dimensions or indicators should reflect the actual environment in
different countries.

Unfortunately, research on the sustainable urban environment in China is rare. Many studies
have focused on analyzing the overall index of sustainable cities, but few focuses on the importance of
the environmental indicators of sustainable cities. Based on a review of the literature and discussions
with researchers, urban planners, and environmental experts, this study establishes a sustainable
urban environmental evaluation system based on the FBWM to address this research gap in China.
The sustainable urban-environmental quality-evaluation system constructed in this study comprises
six dimensions and 29 criteria, as detailed in the following sections.
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2.1. Natural Environment (D1)

The natural environment refers to the environment formed by natural things, such as soil, water,
and climate. The urban natural environment is the foundation of urban economic and cultural
development, and undoubtedly represents a crucial indicator of urban environmental sustainability.
Ahvenniemi et al. [10] defined the natural environment as one element of a sustainable environmental
assessment framework. Giffinge et al. [30] indicated that the attractiveness of the natural environment
is a significant factor for assessing sustainable environmental quality.

The natural environment dimension comprises five major indicators: air quality, wetland area,
green coverage, biodiversity, and land use. Schirnding [31] proposed an organizational framework for
health, environment, and development, with air quality as a major indicator within this framework.
Qian [32] emphasized that wetlands are part of the natural ecosystem and should be increased to
protect the natural ecosystem. Strzelecka et al. [33] found that when assessing the quality of European
smart environments, low green coverage would result in an obvious urban heat-island effect. Nader et
al. [34] discussed establishing a monitoring network for environmentally sustainable development by
integrating the views of government ministries, universities, research centers, and social organizations.
They divided the index system into four categories: population and social-economic, economic
activities, environment and sustainable development activities and policies. The green coverage rate
and biodiversity were important indicators under the category of environment.

Rudden et al. [35] noted that the “European Green Capital Awards” provide a platform for cities
to showcase their environmental features, and biodiversity is one of the basic criteria for this award.
Land use in the territorial adjustment index system is used to measure the environmental statuses
of nature reserves [36]. Serbanica and Constantin [37] observed that sustainable innovation and
intelligent specialization in energy efficiency, effective land use, and waste management contributed
to the sustainable development of Eastern European cities. In summary, these indicators reflect
the extent to which factor in the natural environment dimension affect the quality of sustainable
urban environments.

2.2. Artificial Environment (D2)

The artificial environment refers to the environment built by people in the process of natural
transformation and represents a common dimension when analyzing sustainable urban environmental
quality. Ahvenniemi et al. [10] observed that the artificial environment is an essential criterion for
assessing the sustainability and livability of an urban environment because of its prominent role in
urban environmental pollution. This study regards the artificial environment as a dimension of the
sustainable urban environmental quality evaluation system.

The artificial environment comprises five major evaluation indicators: green belt area, public
health, sustainable transportation, green infrastructure, and green building. Rudden et al. [35]
highlighted the beautifying effect of green belts on the urban environment through the example of
Vitoria, which won the United Nations Habitat Best Practice Award for improving its living environment
by restoring wetlands and increasing green belt areas. Kylili [38] measured the sustainability of an
artificial environment using the key performance indicator (KPI) method and emphasized public
health as a major environmental performance indicator. Farizkha et al. [39] observed that green
and low-carbon urban infrastructure and sustainable public transport are indicators of artificial
environmental dimensions. Yi et al. [40] proposed zero-energy green buildings as an ideal choice for
achieving sustainable environmental development, ensuring the symbiotic development of buildings
and other environmental systems and enhancing the comfort of human settlements.

2.3. Energy Management (D3)

Energy management mainly refers to management of the processes of energy production and
consumption. Energy management is used frequently when analyzing sustainable urban environmental
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quality. Causone et al. [41] argued that reducing energy use and improving energy efficiency should be
major aspects of smart city planning. Alencar et al. [12] regarded energy management as the pillar of
sustainable urban environmental development. Wang et al. [14] noted the great benefits of improving
energy management for an intelligent urban environment. Therefore, this paper employs energy
management as a dimension of the intelligent urban environmental quality evaluation system.

Energy consumption, clean energy, heat energy management, and energy efficiency are the four
indicators in the energy management dimension. Global energy consumption represents approximately
8920 trillion tons of oil per year and may rise to 14,000 trillion tons per year by 2020 [42]. Reducing
energy consumption is the first principle of sustainable development [43]. Kwatra et al. [44] observed
that effective and clean energy use is an essential feature of sustainable society and a major indicator of
regional sustainability. Kylili [38] identified heat energy management as the key performance index of
economic sustainability. Allouhi et al. [42] argued that energy efficiency will become a global energy
challenge in the 21st Century, and that various policies and measures should be adopted to improve it.

2.4. Water Management (D4)

The quality of water resource use and treatment is among the major criteria for measuring
environmental sustainability. Water resources represent the core of the sustainable development of
smart cities [44]. Alencar et al. [12] regarded water management as one of the three basic objectives
for achieving sustainable environmental development, and the storage and reuse of rainwater are
essential parts of this objective. Wastewater treatment is a vital dimension of the sustainable water
resource development blueprint in smart cities [33]. Kylili [38] observed that recycling water is a key
performance indicator of water management. Schirnding [31] suggested that water quality can reflect
a city’s health and environmental conditions. Therefore, wastewater treatment, water quality, reuse of
reclaimed water, and rainwater use are the four criteria under the water management dimension.

2.5. Waste Management (D5)

Waste management primarily refers to the management of solid waste. Waste management has
become an indispensable dimension in assessing intelligent urban environmental quality because of its
major role in maintaining a city’s image and environmental health [28,33,45,46]. Liu et al. [47] observed
that with population growth and ongoing urbanization, waste management has become a key global
problem, and waste disposal facility selection is closely related to the environment.

Alencar et al. [12] argued that improving waste management quality is a basic goal for achieving
sustainable environmental development and that the production and treatment of recoverable materials
is the primary guarantee of waste management. Eriksson et al. [48] emphasized that food waste
represents a large proportion of organic waste and that food waste management should be strengthened.
Moreover, food waste is likely to rot during collection and transportation, thus producing harmful
compounds that can cause environmental hazards [49]. Mapar et al. [50] ranked hazardous waste
management among the 80 sustainable development performance indicators for megacities. Kılkış [28]
evaluated the environmental sustainability performance of 12 cities in Southeastern Europe and found
that urban garbage management was one of the most important assessment criteria. Based on this
analysis, recoverable material treatment, food waste management, hazardous waste management,
and the management of other waste are the four waste management indicators in this study.

2.6. Pollution Control (D6)

Pollution control refers to the adoption of technical, economic, legal, and other means and methods
for eliminating and reducing environmental pollution. It is an essential aspect that cannot be neglected
in any study of sustainable urban environment. Nader et al. [34] established a monitoring network
for environmentally sustainable development and created an index system that is divided into four
major categories. Destruction of the ozone layer and acoustical environmental quality were the major
indicators under the environmental category. Girardi and Temporelli [51] evaluated the environmental
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sustainability of smart cities through qualitative and quantitative indicators, such as greenhouse gas
emissions and SO2 concentrations. Kılkış [38] proposed the annual mean PM10 concentrations as
an index for the environmental quality dimension. In a ranking of urban sustainability assessment,
106 cities were evaluated using 46 basic indicators such as SO2 concentration and annual average PM10

concentration [52]. Cicirelli et al. [29] used sensors to measure brightness and noise levels and evaluate
the climate comfort of a smart city. Cook et al. [46] established a performance index system to measure
environmental sustainability and employed the carbon intensity of economic activity as an indicator of
air quality and pollution.

Based on this analysis, the seven criteria under pollution control used in this study were greenhouse
gas emissions, annual mean PM10 concentration, SO2 concentration, ozone layer destruction, acoustical
environmental quality, brightness level, and carbon strength. Table 1 lists each criterion and the
associated literature for all selected evaluation structures. Four experts were asked to verify the
consistency and redundancy of this evaluating framework, including representatives from academia,
government, environmental protection associations, and the environmental movement.

Table 1. Descriptions of dimensions and criteria.

Dimensions Criteria Definitions Sources

Natural
environment D1

C11 Air quality Reflects the degree of air pollution [10,30,31]
C12 Wetland area An ecosystem that is inundated by water [32]

C13 Green coverage rate The ratio of the vertical projected area of vegetation to the total
land area of the city [33,34]

C14 Biodiversity The variety and variability of life on city [10,35]

C15 Land use The management and modification of natural environment or
wilderness into built environment [30,37]

Artificial
environment D2

C21 Green belt area A protected area of green space, farmland, forests in city [10,35]

C22 Public health Prevent disease, prolong life and promote human health through
organized efforts [38]

C23 Sustainable transportation The ability to supply the source energy indefinitely in city [39]

C24 Green infrastructure A network providing the “ingredients” for solving urban and
climatic challenges by building with nature [39]

C25 Green building A structure and application of processes that are
environmentally responsible [40]

Energy
management D3

C31 Energy consumption The total energy used by the city [41–43]
C32 Clean energy Energy that does not emit pollutants [44]
C33 Heat energy management The transfer of energy between systems [38]

C34 Energy efficiency The ratio between the useful output and input of an energy
conversion process [43]

Water
management D4

C41 Wastewater treatment A process used to convert wastewater to the water with minimum
impact on the environment, or directly reused [12,33,45]

C42 Water quality The chemical, physical, biological, and radiological characteristics
of water [31,45]

C43 Reuse of reclaimed water Reclaimed water can be used for other purposes [12,32,38]

C44 Rainwater utilization Rainwater harvesting system, rainwater interception and
infiltration system [12,32,45]

Waste
management D5

C51 Materials treatment Use high-tech process materials to reduce environmental hazards [12,35,47]
C52 Food waste management Reduce the pollution of food waste to urban environment [48,49]

C53 Hazardous waste management The city adopts systems and technologies for managing
hazardous waste [50]

C54 Other waste management The way to manage other waste, like construction rubbish [12,28,35]

Pollution
control D6

C61 Greenhouse gas emissions The atmosphere absorbs solar radiation reflected from the ground
and re-emits some of the radiated gas, like CO2, NO2

[30,34]

C62 Annual mean PM10 concentration An average annual distribution density of particles with a particle
size below 10 microns [34,38,52]

C63 SO2 concentration The flue gas concentration cannot be satisfied when the contact
method is self-heating to produce sulfuric acid [34,52]

C64 Ozone layer destruction Degree of damage to the ozone layer over the city [24,52]
C65 Acoustical environmental quality The impact of urban noise on residents’ lives [34,52]
C66 Brightness level City night illumination [52]
C67 Carbon strength CO2 emissions per unit of GDP [46]

3. Methodology

In order to evaluate a sustainable urban environment, we propose a MADM framework based on
FBWM and GRA. As shown in Figure 1, the framework consists of three key phases: screening criteria



Int. J. Environ. Res. Public Health 2019, 16, 1434 7 of 25

(Section 2), obtaining optimal weights (Section 3.1) and evaluating city performance (Section 3.2).
The details are as follows.Int. J. Environ. Res. Public Health 2019, 16, x  9 of 28 

 

Figure 1. Research framework. 

We next built a fuzzy mathematical programming model to obtain the weights of dimensions 
and criteria, as follows: 

Step 1: Set up a decision standard system. 

In this step, the evaluation system criteria should be determined through a literature review and 

by obtaining expert opinions. Suppose there are n criteria { }1 2, , , ns s s  for a research object. 

Step 2: Determine the best (most important) dimension or criterion and the worst one (the least 
important). 

Define evaluation criteria for urban sustainable 
environmental quality and expert panel 

Literature review and expert’s 
opinion 

Determine the best and worst dimensions and 
criteria and select the degree of preference between 
the best or the worst dimension (criteria) and other 
dimensions (criteria) with linguistic variables 

Interview of the expert panel, 
Linguistic scale for the important 
weight (Refer Table 2) 

Convert linguistic assessment into triangular fuzzy 
numbers and obtain fuzzy BO vector and OW vector Refer Tables 2,5,6 

Determine the optimal fuzzy weights and transform 
the fuzzy weight into crisp value 

Refer Equations (1) – (2) 

Calculate the consistency ratio and determine the 
dimensions and criteria weights  

Refer Equations (3) – (5) 

Determine five alternatives and the ten experts assess 
the environment quality 

Expert’s opinion and linguistic 
to grey scale of evaluation of 
criteria, Refer Equation (6) 

Build the weighted normalized grey relational matrix. Refer Equations (7) – (11) 

Calculate the grey possibility and rank the 
alternatives 

Refer Equations (12) – (14) 

Figure 1. Research framework.

3.1. Fuzzy Best and Worst Method

The basic MADM methods for calculating weights are analytic hierarchy process (AHP), analytic
network process (ANP), decision-making trial and evaluation laboratory-based ANP, and hybrid
methods such as fuzzy AHP and fuzzy ANP. However, when an evaluation system has a very
large number of indicators, the number of paired comparisons between indicators will be similarly
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excessive, thus rendering weight calculation extremely difficult. As a relatively new MADM method,
BWM can obtain criterion weights more easily and accurately with less comparison time and higher
consistency [19]. Guo and Zhao [24] proposed a hybrid model that combines fuzzy methods with
BWM to improve decision accuracy. Mou et al. [23] proposed an intuitionist fuzzy multiplicative
BWM for group decision-making. Hafezalkotob and Hafezalkotob [18] suggested a new method that
combines individual and group decisions based on FBWM.

In this study, we examined the fuzzy preference degrees of all criteria in the form of triangular
fuzzy sets. Triangular fuzzy set theory was developed to solve fuzzy and uncertain problems and can
improve data accuracy based on fuzzy mathematics. A triangular-shape membership function is easy
to understand and can convert uncertain data into a lower bound, middle bound and upper bound,
which is more consistent with the semantics of human thought expression. Linguistic variables such
as “equally important (EI),” “slightly important (SI),” “fairly important (FI),” “very important (VI),”
and “absolutely important (AI)” are used to reflect the degree of preference between the best or worst
criteria and other criteria. Therefore, the linguistic variables must be transformed into triangular fuzzy
numbers (TFNs), with the rules of transformation listed in Table 2 [53].

Table 2. Transformation rules of linguistic variables.

Linguistic Variables Membership Function

Equally importance (EI) (1,1,1)
Between the two (1,2,3)

slightly important (WI) (2,3,4)
Between the two (3,4,5)

Fairly Important (FI) (4,5,6)
Between the two (5,6,7)

Very important (VI) (6,7,8)
Between the two (7,8,9)

Absolutely important (AI) (8,9,10)

We next built a fuzzy mathematical programming model to obtain the weights of dimensions and
criteria, as follows:

Step 1: Set up a decision standard system.
In this step, the evaluation system criteria should be determined through a literature review and

by obtaining expert opinions. Suppose there are n criteria {s1, s2, · · · , sn} for a research object.
Step 2: Determine the best (most important) dimension or criterion and the worst one (the least

important).
In this step, the decision-maker determines the best and worst criteria based on the decision system.
Step 3: Derive the best-to-others (BO) vectors.
Determine the fuzzy preferences of the best criteria to all the others using TFNs, as listed in Table 2.

The BO vectors can be described as Q̃b = (q̃b1, q̃b2, · · · , q̃bn), where b is the index of the best criterion,
and q̃bi is a TNF indicating the degree of importance of the best criterion Cb over criterion Ci. Clearly,
q̃bb = (1,1,1).

Step 4: Derive the others-to-worst (OW) vectors.
Following the same procedure as in step 3, the decision-maker determines the fuzzy preferences

of all other criteria to the worst criterion using the TFNs listed in Table 2. The OW vectors can be
described as Q̃w = (q̃1w, q̃2w, · · · , q̃nw), where w is the index of the worst criterion, and q̃iw is a TFN
indicating the importance degree of another criterion Ci over the worst criterion Cw. It is clear that
q̃ww = (1,1,1).

Step 5: Determine the optimal fuzzy weights
(
w̃∗1, w̃∗2, · · · , w̃∗n

)
.

The ideal fuzzy weight value of each criterion satisfies the following equations: w̃b/w̃i = q̃bi and
w̃i/w̃w = q̃bi. We can obtain the dimension and criterion weights by minimizing the maximum absolute

differences
∣∣∣∣ w̃b

w̃i
− q̃bi

∣∣∣∣ and
∣∣∣∣ w̃i
w̃W
− q̃iW

∣∣∣∣, where w̃b, w̃i, and w̃W are TFNs and w̃i= (lwi , mw
i , uw

i ), lwi is the
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lower bound of the weight value of dimension or criterion i, mw
i is the middle bound, and uw

i is the
upper bound.

Then, the optimal weight can be obtained by solving the following nonlinear constrained
optimization problem [23].

min ζ∗

s.t.



∣∣∣∣ w̃b
w̃i
− q̃bi

∣∣∣∣ ≤ ζ∗∣∣∣∣ w̃i
w̃W
− q̃iW

∣∣∣∣ ≤ ζ∗
n∑

i=1
R(w̃i) = 1

lwi ≤ mw
i ≤ uw

i
lwi ≥ 0

i = 1, 2, · · · , n

(1)

where ζ∗ = (h∗, h∗, h∗), and R(w̃i) =
li+4mi+ui

6 . This equation can be transformed to have greater detail
into Equation (2):

s.t.



∣∣∣∣∣ (lwb ,mw
b ,uw

b )
(lwi ,mw

i ,uw
i )
− (lbi, mbi, ubi)

∣∣∣∣∣ ≤ (h∗, h∗, h∗)∣∣∣∣∣ (lwi ,mw
i ,uw

i )
(lwW ,mw

W ,uw
W)
− (liW , miW , uiW)

∣∣∣∣∣ ≤ (h∗, h∗, h∗)
n∑

i=1
R(w̃i) = 1

lwi ≤ mw
i ≤ uw

i
lwi ≥ 0

i = 1, 2, · · · , n

(2)

where q̃bi = (lbi, mbi, ubi), and q̃iw = (liW , miW , uiW).
We transform the fuzzy criterion weight represented by TFN w̃i = (lwi , mw

i , uw
i ) into a crisp value.

The function R(w̃i) is used to resolve ambiguous numbers, so that the weight of each dimension and
criterion can be obtained.

Step 6: Determine the consistency ratio (CR) for BWM.
CR is a crucial indicator for determining the consistency of pairwise comparisons. A comparison

is fully consistent when q̃bi × q̃iw = q̃bw, where q̃bi, q̃iw, and q̃bw are the fuzzy preference of the best
criterion over criterion i, the fuzzy preference of criterion i over the worst criterion, and the fuzzy
preference of the best criterion over the worst criterion, respectively. CR can indicate the degree of
consistency of a fuzzy pairwise comparison.

Guo and Zhao [24] proposed a method for calculating CR. Given that inconsistency in a
fuzzy pairwise comparison occurs when q̃bi × q̃iw , q̃bw, the maximum inconsistency occurs when
q̃bi = q̃iw = q̃bw, and the variable ζ can be obtained to satisfy Equation (3).

(q̃bw − ζ) × (q̃bW − ζ) = (q̃bW + ζ) (3)

Guo and Zhao [18] considered that the upper boundary ubw could be used to calculate the CR,
and thus Equation (3) can be transformed into Equation (4):

ζ2
− (1 + 2ubW)ζ+

(
u2

bW − ubW
)
= 0 (4)

where q̃bw = (lbw, mbw, ubw).
According to Table 2, the values of ubW are as follows: ubW = 1,3,4,5,6,7,8,9,10. The maximum

possible ζ, which is considered to be consistency index (CI), can be derived using Equation (4). The CIs
for different ubW values are listed in Table 3.
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Table 3. CI for FBWM.

Linguistic Terms q̃bW CI

Equally importance (EI) (1,1,1) 3.00
Between the two (1,2,3) 6.00

Weakly important (WI) (2,3,4) 7.36
Between the two (3,4,5) 8.69

Fairly Important (FI) (4,5,6) 10.00
Between the two (5,6,7) 11.27

Very important (VI) (6,7,8) 12.53
Between the two (7,8,9) 13.77

Absolutely important (AI) (8,9,10) 15.00

Step 7: Determine the dimension or criterion weights.
Suppose that there are k experts. The weight of dimension or criterion j can be identified by vector

w̃ j =
{
w1

j , w2
j , w3

j , . . . , wk
j

}
, and the dimension or criterion weight can be obtained by averaging the

elements w̃ j:

w =
1
k

[
w1

j + w2
j + w3

j + . . .+ wk
j

]
(5)

3.2. Grey Relational Analysis

Grey relational analysis (GRA) is used to measure the degree of correlation between similarities or
differences of criteria variability. One advantage of GRA is that it can provide a high-quality result with
a small sample size and little calculation. It can be applied to decision-making in multiple-attribute
decision problems [25,53]. Therefore, GRA was applied to the performance evaluation of sustainable
urban environmental quality. Rajesh and Ravi [54] proposed a GRA method with an interval probability
algorithm, that has the following steps:

Step 1: Determine the number of alternatives.
The suitable m alternatives are chosen based on decisions in the sustainable urban environment

quality assessment. Let X = {X1, X2, X3, . . . , Xm} be m sets of alternatives.
Step 2: Linguistic to grey scale of evaluation of criteria.
Expert h assessing the performance of criterion j of alternative i can be represented as Vh

ij, where

i = {1, 2, 3, 4 . . . , m}, j = {1, 2, 3, 4 . . . , n}, and h = {1, 2, 3, 4, . . . , k}. The linguistic variable Vh
ij =

⌊
Vh

ij, V
h
ij

⌋
can be obtained using the grey relational semantic transformation rule, where Vh

ij is the lower bound

of the grey value Vh
ij, and V

h
ij is the upper bound.

The average value can be calculated as follows:

⊗Vi j =


1

k

k∑
h=1

(Vh
ij)

,

1
k

k∑
h=1

(V
h
ij)


 (6)

Step 3: Build the grey matrix.
Grey matrix M is obtained from the average grey values ⊗Vi j.

M =


⊗V11 ⊗V12 · · · ⊗V1n
⊗V21 ⊗V22 · · · ⊗V2n

...
...

. . .
...

⊗Vm1 ⊗Vm2 · · · ⊗Vmn

 (7)

Step 4: Normalize the grey relational matrix.
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The grey number between limits [0,1] can be obtained through normalization, as follows:

⊗V =

 Vi j

Vmax
j

,
Vi j

Vmax
j

 (8)

where Vmax
j =max

1≤i≤m

{
Vi j

}
.

The normalized grey relational matrix M* is represented as follows:

M∗ =


⊗V∗11 ⊗V∗12 · · · ⊗V∗1n
⊗V∗21 ⊗V∗22 · · · ⊗V∗2n

...
...

. . .
...

⊗V∗m1 ⊗V∗m2 · · · ⊗V∗mn

 (9)

Step 5: Build the weighted normalized grey relational matrix.
The weighted normalized matrix (⊗Ei j) can be obtained when the weight (w j) calculated using

FBWM is multiplied by the normalized grey relational matrix (⊗V∗i j):

⊗ Ei j =
[(
⊗V∗i j

)
∗w j

]
(10)

where ⊗V∗i j =
⌊
Vh

ij, V
h
ij

⌋
The weighted normalized grey relational matrix M** is represented as follows:

M∗∗ =


⊗E11 ⊗E12 · · · ⊗E1n
⊗E21 ⊗E22 · · · ⊗E2n

...
...

. . .
...

⊗Em1 ⊗Em2 · · · ⊗Emn

 (11)

Step 6: Build the ideal referential set of alternatives.
We can obtain the maximum ⊗Ei j of all columns by comparing the values of each column in

matrix M∗∗. The maximum ⊗Ei j is denoted as Xmax:

Xmax =



[max
1 ≤ i ≤ mEi1,

max
1 ≤ i ≤ mEi1

]
,[max

1 ≤ i ≤ mEi2,
max
1 ≤ i ≤ mEi2

]
,[max

1 ≤ i ≤ mEi3,
max
1 ≤ i ≤ mEi3

]
,[max

1 ≤ i ≤ mEin,
max
1 ≤ i ≤ mEin

]


=

{
Cmax

1 , Cmax
2 , Cmax

3 , . . . , Cmax
n

}
, (12)

where Cmax
i =

⌊
Cmax

i , C
max
i

⌋
.

Step 7: Calculate the grey possibility by comparing Xi with Xmax.
By comparing the alternatives set Xi with the ideal referential Xmax, we can obtain the grey

possibility for each alternative, which is given as follows:

p(Xi ≤ Xmax) =
1
n

n∑
j=1


max

(
0, L∗j −max

(
0, Ei j −Cmax

j

))
L∗j

 (13)

where L∗j is the sum of length ⊗Ei j and Cmax
j , which can be represented as follows:

L∗j = L(⊗Ei j) + (⊗Cmax
j ) (14)
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Equation (13) can be transformed as follows:

L∗j =
⌊
(Ei j − Ei j) + (C

max
j −Cmax

j )
⌋

(15)

Step 8: Rank the alternatives.
We can sort the alternatives after obtaining the probability value p(Xi ≤ Xmax). An alternative is

closer to the ideal referential when its possibility value is lower.

4. Results Analysis

In this section, we apply the proposed hybrid model combining FBWM with GRA to evaluate
the sustainable urban environmental quality of five Chinese cities: Guangzhou, Shanghai, Beijing,
Hangzhou, and Shenzhen. These five cities are in highly developed regions of China and play a
vital role in its economy and culture. Beijing is the capital of China. It is a cultural, political and
educational center. Shanghai is China’s most economically developed city and the most populous
city. It is China’s financial and technological development center. Guangzhou is the largest city in
South China with developed manufacturing and commerce. Shenzhen is China’s most dynamic
entrepreneurial city. Its GDP rate is growing fast, and its total GDP has surpassed that of Guangzhou,
ranking third. Hangzhou is the representative of the new first-tier cities in China. It is China’s
e-commerce capital, there are lots of famous internet companies, such as Alibaba and NetEase. These
five cities have been devoted to environmental improvement and smart city construction for a long
time. For other cities, based on the familiarity with the advantages and disadvantages of the five cities
in a sustainable environment, managers or government can serve as a reference to improve their own
urban environment for future development.

To perform a comprehensive evaluation, we selected 10 Chinese experts with abundant experience
in different fields. The group of experts comprised three professors from the Institute of Environmental
Engineering, two managers at an environmental monitoring company, one researcher from the
Intelligent City Institute, one researcher from the Intelligent Environment Institute, one manager at a
pollution testing company, and two officials from the Environmental Protection Bureau. The duties of
these 10 experts are closely related to the urban environment, including urban environment governance,
urban environmental engineering design, environmental pollution detection, and urban environment
research. These experts have more than 10 years of work experience. Although they come from
different work backgrounds, their different evaluation perspectives are deemed as having equal
importance. Experts from enterprises and research institutes are members of the National Urban
Environmental Planning Expert Pool. They are very familiar with the urban environment of major
cities in China. Government personnel are engaged in urban environmental management and often
understand the environmental development of various cities in China. The experts were asked to
answer a two-part questionnaire. The first part of the questionnaire was used to assess the importance
of the six dimensions and 29 criteria, and the second part was used to rate the performance of the five
cities with respect to the 29 criteria. It took three months from November 2017 to January 2018 to
contact 10 experts to fill out the questionnaire.

4.1. Determination of Criteria Weights

The analytical processes consisted of the seven steps of fuzzy best and worst method introduced
in Section 3.1. They were used to obtain the weights of the dimensions and criteria and as a basis for
performance evaluation. The experts were asked to identify the most important of the six dimensions
in Table 1 and the most important criterion within each dimension. Similarly, the least important
dimension and criteria were decided based on the experts’ opinions. Table 4 displays the best and worst
dimensions identified by the experts. One expert stated that natural environment (D1) was the most
important dimensions, and another argued that energy management (D3) was the best. The eight other
experts all selected pollution control (D6) as the best dimension. All experts unanimously deemed
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artificial environment (D2) as the worst of the six dimensions. The best and worst criteria within each
dimension were obtained in the same manner.

Table 4. Best and worst dimensions determined by the 10 experts.

Dimension Determined as “Best” by Expert No. Determined as “Worst” by Expert No.

D1 1
D2 1,2,3,4,5,6,7,8,9,10
D3 6
D4
D5
D6 2,3,4,5,7,8,9,10

After selecting the best and worst dimensions and criteria, the experts were asked to determine
the preference of the best ones over all others and the preferences of all others over the worst dimension
or criterion using the linguistic variables proposed in Section 3. As shown in Table 5, the third expert
considered pollution control (D6) to be more important (between FI and VI) than artificial environment
(D2) with the interval value (5,6,7) obtained according to Table 2. As shown in Table 6, the first
expert believed that natural environment (D1) was slightly more important than the worst dimension
(artificial environment, D2), with the interval value (2,3,4). The preference values of the best criterion
over all other criteria within a dimension and of all others over the worst, were obtained through the
same procedure.

Table 5. BO dimension vectors for the 10 experts.

Expert No. Best D1 D2 D3 D4 D5 D6

1 D1 (1,1,1) (2,3,4) (1,1,1) (1,1,1) (1,1,1) (1,1,1)
2 D6 (1,2,3) (7,8,9) (3,4,5) (1,2,3) (2,3,4) (1,1,1)
3 D6 (1,2,3) (5,6,7) (1,2,3) (1,2,3) (1,2,3) (1,1,1)
4 D6 (1,2,3) (5,6,7) (2,3,4) (1,2,3) (2,3,4) (1,1,1)
5 D6 (1,2,3) (7,8,9) (2,3,4) (2,3,4) (1,2,3 (1,1,1)
6 D3 (1,1,1) (4,5,6) (1,1,1) (1,1,1) (1,1,1) (1,1,1)
7 D6 (1,2,3) (7,8,9) (1,2,3) (2,3,4) (3,4,5) (1,1,1)
8 D6 (1,1,1) (5,6,7) (1,2,3) (1,1,1) (1,2,3) (1,1,1)
9 D6 (1,1,1) (7,8,9) (1,2,3) (1,1,1) (1,1,1) (1,1,1)

10 D6 (1,2,3) (8,9,10) (2,3,4) (1,2,3) (2,3,4) (1,1,1)

Table 6. OW dimension vectors for the 10 experts.

Expert No. 1 2 3 4 5 6 7 8 9 10

Worst D2 D2 D2 D2 D2 D2 D2 D2 D2 D2

D1 (2,3,4) (3,4,5) (2,3,4) (2,3,4) (4,5,6) (4,5,6) (3,4,5) (5,6,7) (7,8,9) (3,4,5)
D2 (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)
D3 (2,3,4) (1,2,3) (2,3,4) (1,2,3) (2,3,4) (4,5,6) (3,4,5) (2,3,4) (3,4,5) (2,3,4)
D4 (2,3,4) (3,4,5) (2,3,4) (2,3,4) (2,3,4) (4,5,6) (2,3,4) (5,6,7) (7,8,9) (3,4,5)
D5 (2,3,4) (2,3,4) (2,3,4) (1,2,3) (4,5,6) (4,5,6) (1,2,3) (2,3,4) (7,8,9) (2,3,4)
D6 (2,3,4) (7,8,9) (5,6,7) (5,6,7) (8,9,10) (4,5,6) (7,8,9) (5,6,7) (7,8,9) (8,9,10)

The weights of the dimensions and criteria were calculated using a linear model for the experts
according to Equation (2). Since the experts come from different departments and have different job
responsibilities, their assessments reflect different perspectives. All of the experts have many years
of work experience related to the urban environment, and the importance of each expert’s opinion is
considered equal [20,55]. The average weight for each dimension and criterion for the experts was
obtained, which are ranked by value in Table 7.
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Table 7. Overall weights of dimensions and criteria.

Dimensions Weights Criteria Local Weights Global Weights Ranking

Natural environment (D1) 0.192

C11 0.263 0.051 9
C12 0.184 0.035 12
C13 0.147 0.028 16
C14 0.333 0.064 6
C15 0.072 0.014 22

Artificial environment
(D2) 0.046

C21 0.190 0.008 26
C22 0.453 0.021 19
C23 0.082 0.004 29
C24 0.133 0.006 28
C25 0.141 0.007 27

Energy management (D3) 0.140

C31 0.501 0.070 4
C32 0.251 0.035 13
C33 0.076 0.011 24
C34 0.172 0.024 18

Water management (D4) 0.178

C41 0.307 0.055 8
C42 0.415 0.074 2
C43 0.203 0.036 11
C44 0.075 0.013 23

Waste management (D5) 0.151

C51 0.094 0.014 21
C52 0.228 0.034 14
C53 0.494 0.075 1
C54 0.185 0.028 17

Pollution control (D6) 0.293

C61 0.240 0.070 3
C62 0.106 0.031 15
C63 0.205 0.060 7
C64 0.219 0.064 5
C65 0.034 0.010 25
C66 0.058 0.017 20
C67 0.138 0.040 10

We calculated the CRs of the dimensions for the experts, and all were below 0.1. A smaller value
indicates a higher consistency in pairwise comparisons.

The results showed that pollution control (D6, 29.3%) accounted for the highest weight in the
evaluation system, and ozone layer destruction (C64, 6.4%) ranked fifth among the 29 criteria. Therefore,
more attention should be given to ozone layer damage by strengthening the monitoring of harmful
substances and incorporating such monitoring in the air evaluation system of the intelligent city
environment. The government should also advocate the use of environmentally friendly appliances
such as Freon-free refrigerators.

Energy consumption (C31, 0.07%) ranked fourth and hazardous waste management (C53, 0.075%)
ranked first among the 29 criteria. This indicates that enterprises should improve their production
processes, develop advanced industrial manufacturing, reduce the direct discharge of waste heat,
and implement waste heat recycling Urban waste treatment cannot be ignored. It is necessary to
popularize garbage sorting activities, promote urban coverage of garbage sorting facilities, promote
rational and efficient food waste use, promote clean cities, and create good conditions through different
forms of communication, such as the government’s public WeChat channel, publicity handbooks,
and banners.

4.2. Sustainable Urban Environmental Quality Evaluation

After obtaining the weights of dimensions and criteria, we evaluated the sustainable environmental
quality of each city using the GRA method outlined in Section 3.2. We chose Guangzhou (X1), Shanghai
(X2), Beijing (X3), Hangzhou (X4), and Shenzhen (X5) as the five cities for this cases study because they
are in China’s top five developed regions.
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The experts evaluated the sustainable environmental quality of the cities based on their knowledge
and experience. We applied grey preference degrees to all criteria to evaluate the performance of
the cities in the form of grey intervals. Linguistic variables were used to rate performance of the
alternatives (cities) for the corresponding criterion: “very poor (VP)”, “poor (P)”, “medium poor
(MP)”, “fair (F)”, “medium good (MG)”, “good (G)”, and “very good (VG)”. Vh

ij denotes the value that

expert h assigned to criterion j for city i and can be represented using the grey number Vh
ij =

⌊
Vh

ij, V
h
ij

⌋
according to the rules in Table 8 [48].

Table 8. Linguistic assessment and associated grey values.

Associated Grey Numbers Linguistic Assessment

Lower Bound 0 Upper Bound 1 Rating of Attributes Very Poor (VP)

1 3 Poor (P)
3 4 Medium Poor (MP)
4 5 Fair (F)
5 6 Medium Good (MG)
6 9 Good (G)
9 10 Very Good (VG)

The average evaluation value ⊗Vi j of criterion j for city i among the experts was calculated using
Equation (6), and the grey decision matrix M was obtained using Equation (7), as shown in Table A1 of
Appendix A. The normalized grey decision matrix M* obtained using Equation (8) is shown in Table A2
of Appendix A. The weighted normalized grey decision matrix M** was obtained using Equations (10)
and (11), as illustrated in Table A3 of Appendix A. The ideal referential set of alternatives Xmax can
be obtained using Equation (12). The overall grey possibility p(Xi ≤ Xmax) can be calculated using
Equations (13)–(15), and the grey possibility of sustainable environmental quality for the five cities is
as follows: P(X1 < Xmax) = 0.91194, P(X2 < Xmax) = 0.95519, P(X3 < Xmax) = 0.85828, P(X4 < Xmax)

= 0.64435, and P(X5 < Xmax) = 0.73386 (see Table 9).

Table 9. Quality rankings of sustainable urban environments for 29 indices.

Criteria P(Xi ≤ Xmax)

P(X1 ≤ Xmax) P(X2 ≤ Xmax) P(X3 ≤ Xmax) P(X4 ≤ Xmax) P(X5 ≤ Xmax) Priority

C11 0.773 1.000 1.000 0.700 0.500 X5 > X4 > X1 > X2 = X3
C12 1.000 1.000 1.000 0.500 1.000 X4 > X1 = X2 = X3 = X5
C13 0.944 1.000 1.000 0.500 1.000 X4 > X1 > X2 = X3 = X5
C14 0.824 1.000 1.000 0.500 1.000 X4 > X1 > X2 = X3 = X5
C15 1.000 0.970 0.533 0.842 0.579 X3 > X5 > X4 > X2 > X1
C21 0.630 1.000 0.775 0.500 0.800 X4 > X1 > X3 > X5 > X2
C22 1.000 1.000 0.868 0.500 0.743 X4 > X5 > X3 > X1 = X2
C23 1.000 1.000 0.694 0.500 0.649 X4 > X5 > X3 > X1 = X2
C24 1.000 1.000 1.000 0.500 1.000 X4 > X1 = X2 = X3 = X5
C25 1.000 1.000 0.639 0.500 1.000 X4 > X3 > X1 = X2 = X5
C31 0.790 1.000 1.000 0.500 0.632 X4 > X5 > X1 > X2 = X3
C32 0.810 1.000 1.000 0.548 0.500 X5 > X4 > X1 > X2 = X3
C33 0.960 0.583 1.000 0.792 0.533 X5 > X2 > X4 > X1 > X3
C34 1.000 0.667 1.000 1.000 0.500 X5 > X2 > X1 = X3 = X4
C41 1.000 1.000 1.000 0.500 1.000 X4 > X1 = X2 = X3 = X5
C42 1.000 1.000 0.500 1.000 0.591 X3 > X5 > X1 = X2 = X4
C43 1.000 1.000 0.500 1.000 0.643 X3 > X5 > X1 = X2 = X4
C44 1.000 1.000 0.500 1.000 0.895 X3 > X5 > X2 = X3 = X1
C51 1.000 0.821 0.964 0.5000 0.969 X4 > X2 > X3 > X5 > X1
C52 1.000 1.000 0.711 1.000 0.500 X5 > X3 > X1 = X2 = X4
C53 0.6410 0.966 0.811 0.630 0.541 X5 > X4 > X1 > X3 > X2
C54 1.000 1.000 0.644 0.538 0.512 X5 > X4 > X3 > X1 = X2
C61 0.929 1.000 1.000 0.500 0.813 X4 > X5 > X1 > X2 = X3
C62 0.756 1.000 1.000 0.622 0.511 X5 > X4 > X1 > X2 = X3
C63 0.829 1.000 1.000 0.515 0.541 X4 > X5 > X1 > X2 = X3
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Table 9. Cont.

Criteria P(Xi ≤ Xmax)

P(X1 ≤ Xmax) P(X2 ≤ Xmax) P(X3 ≤ Xmax) P(X4 ≤ Xmax) P(X5 ≤ Xmax) Priority

C64 0.923 1.000 1.000 0.500 1.000 X4 > X1 > X2 = X3 = X5
C65 0.639 0.889 0.9167 0.500 0.833 X4 > X1 > X5 > X2 > X3
C66 1.000 1.000 0.833 0.500 1.000 X4 > X3 > X1 = X2 = X3
C67 1.000 0.805 1.000 1.000 0.500 X5 > X2 > X1 = X3 = X4

Note: We simply wrote P(Xi ≤ Xmax) as Xi in column “Priority”.

The smaller the probability of the grey relation is the closer to the ideal alternative [54]. Therefore,
the cities can be ranked according to sustainable environmental quality as follows: P(X4 < Xmax) >

P(X5 < Xmax) > P(X3 < Xmax) > P(X1 < Xmax) > P(X2 < Xmax). The best sustainable environmental
quality was thus found in Hangzhou, followed by Shenzhen, Beijing, and Guangzhou, with the worst
sustainable environmental quality performance noted in Shanghai.

5. Discussion

Table A1 in Appendix A shows that the scores for green infrastructure (C24), wetland area (C12),
green coverage rate (C13), and air quality (C11) were highest, and the maximum upper boundaries of the
scores were given by the experts as ⊗V24 = 9.4, ⊗V12 = 9.3, ⊗V13 = 9.3, and ⊗V11 = 9.1, respectively.
Therefore, the sustainable environment construction in the five cities has achieved remarkable results
in these four areas. There seems to be a consensus on using water-saving faucets in washrooms and
installing green infrastructure such as electric panels on buildings. With the popularization of cultural
and scientific knowledge in China, citizens are also paying increasing attention to green vegetation
and the roles as the city’s “kidneys” and “lung”. China’s government has placed great emphasis
on ecological environment construction, the protection and renewal of vegetation, and increased
vegetation coverage. Moreover, cities in China are more committed to improving air quality. In Beijing,
for example, air quality has been greatly improved by limiting the number of vehicles and issuing
license plates.

For the importance of dimensions (Table 7), the results indicated that pollution control (D6,
0.293), natural environment (D1, 0.192), and water management (D4, 0.178) were the three most
influential dimensions for urban sustainable environmental quality. This is consistent with the
conclusions of other studies that air pollution and water resource quality are important indicators
of urban environments [56–58]. Compared to other criteria, Table A1 shows that the performance
values for heat energy management (C33), materials treatment (C51), and ozone layer destruction (C64)
were significantly lower (the average upper boundaries among the experts were 6.3, 7.2, and 7.5,
respectively). Therefore, shortcomings remain in sustainable urban environment construction in these
areas. As shown in Table 7, the weight of the ozone layer destruction (C64, 0.064) accounts for 6.424%
of the total weight of the urban sustainable environmental quality evaluation system, which means
that it is a significant urban environmental indicator. However, many cities still ignore this aspect in
weather forecasting and air monitoring and have not established an improved monitoring system,
which could hinder the construction of a city environment’s sustainability.

Waste treatment (D5, 0.151) is essential for maintaining a clean urban environment. Hazardous
waste management (C53, 0.075) accounts for 7.5% of the assessment system weight and thus has the
highest weight among all 29 criteria (Table 7). Its smallest lower-boundary grey value is 0.62, which is
larger than that of the other 28 criteria. The Chinese government has realized that hazardous waste
causes serious environmental destruction and has banned waste imports as part of its campaign against
“foreign garbage.” Garbage-sorting experiments have been carried out in developed cities such as
Hangzhou and Xiamen, but public awareness of this practice must be further improved. Some large
cities such as Guangzhou have not implemented garbage sorting and lack food waste management.
Garbage sorting is beneficial for the rational and efficient use of waste resources.
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The way of using waste heat (C33, 0.011) from urban economic production processes and daily life
activities is not effective. This not only causes energy waste but also produces more waste heat directly in
the air, thus further increasing the urban heat-island effect. Therefore, it is necessary to strengthen heat
energy management in production processes, develop advanced industrial manufacturing, promote
the reuse of waste-heat resources, promote clean production processes, and undertake sustainable
city development.

When experts evaluate sustainable urban environmental quality, they may not consider all the
indicators and instead use a single index because of differences in personal values and preferences.
This can affect their overall evaluation of the sustainable city environment. Based on a single index
of sustainable environmental quality for each city, a single indicator of the five cities’ environmental
quality was created, as presented in Table 9. For example, if air quality is a highly preferred indicator,
then the quality of the intelligent city environment in Shenzhen would be considered the best.

Mangla et al. [59] and Guota and Barua [60] suggested a sensitivity analysis method for verifying
the robustness of an evaluation system and eliminating biases. Therefore, to verify the effects of
weights in our proposed model, we selected the highest weight from among the 29 criteria (hazardous
waste management, C53) and varied it from 0.1 to 0.9 (Table 10). All other criteria weights were found
to correspondingly change with it. A resulting variety in criteria ranking was observed. The five cities
were then ranked using GRA in 9 different runs, and their ranks were compared, as shown in Table 11.
The sensitivity results indicated that the model proposed in this paper was robust.

We also applied another sensitivity analysis method to test whether the indicators ranked last
have an impact on performance evaluation. Interestingly, we found proof that the four lowest-ranked
indicators were in the artificial environment dimension. First, we deleted the lowest-ranked criterion
(sustainable transportation) and found that the results of the performance evaluation remained stable.
Next, we removed green infrastructure, and the results remained unaffected. However, the results of
the performance evaluation showed large fluctuations when we deleted the third-lowest indicator,
green building. Therefore, we conclude that sustainable transportation and green infrastructure
have no significant impact on the assessment of sustainable urban environment in China. Therefore,
we believe that the system for evaluating sustainable urban environment quality involves a total of
27 indicators in six dimensions, as shown in Figure 2. Local government in China are devoting their
energies to air pollution and water pollution control and management in cities [61,62]. Enterprises
under the guidance of the government also began to pay attention to the effective use of energy [63].
These government and enterprise actions further validate the rationality and application value of
our model.

Table 10. Changes in all the criteria weights according to C53.

Criteria BWM Weight 1 2 3 4 5 6 7 8 9

C11 0.051 0.049 0.044 0.038 0.033 0.027 0.022 0.016 0.011 0.005
C12 0.035 0.034 0.031 0.027 0.023 0.019 0.015 0.011 0.008 0.004
C13 0.028 0.027 0.024 0.021 0.018 0.015 0.012 0.009 0.006 0.003
C14 0.064 0.062 0.055 0.048 0.041 0.035 0.028 0.021 0.014 0.007
C15 0.014 0.014 0.012 0.011 0.009 0.008 0.006 0.005 0.003 0.002
C21 0.008 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001
C22 0.021 0.020 0.018 0.016 0.014 0.011 0.009 0.007 0.005 0.002
C23 0.004 0.004 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.000
C24 0.006 0.006 0.005 0.005 0.004 0.003 0.003 0.002 0.001 0.001
C25 0.007 0.006 0.006 0.005 0.004 0.004 0.003 0.002 0.001 0.001
C31 0.070 0.068 0.060 0.053 0.045 0.038 0.030 0.023 0.015 0.008
C32 0.035 0.034 0.030 0.027 0.023 0.019 0.015 0.011 0.008 0.004
C33 0.011 0.010 0.009 0.008 0.007 0.006 0.005 0.003 0.002 0.001
C34 0.024 0.023 0.021 0.018 0.016 0.013 0.010 0.008 0.005 0.003
C41 0.055 0.053 0.047 0.041 0.035 0.030 0.024 0.018 0.012 0.006
C42 0.074 0.072 0.064 0.056 0.048 0.040 0.032 0.024 0.016 0.008
C43 0.036 0.035 0.031 0.027 0.023 0.020 0.016 0.012 0.008 0.004
C44 0.013 0.013 0.011 0.010 0.009 0.007 0.006 0.004 0.003 0.001
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Table 10. Cont.

Criteria BWM Weight 1 2 3 4 5 6 7 8 9

C51 0.014 0.014 0.012 0.011 0.009 0.008 0.006 0.005 0.003 0.002
C52 0.034 0.034 0.030 0.026 0.022 0.019 0.015 0.011 0.007 0.004
C53 0.075 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900
C54 0.028 0.027 0.024 0.021 0.018 0.015 0.012 0.009 0.006 0.003
C61 0.070 0.068 0.061 0.053 0.046 0.038 0.030 0.023 0.015 0.008
C62 0.031 0.030 0.027 0.024 0.020 0.017 0.013 0.010 0.007 0.003
C63 0.060 0.059 0.052 0.046 0.039 0.033 0.026 0.020 0.013 0.007
C64 0.064 0.062 0.056 0.049 0.042 0.035 0.028 0.021 0.014 0.007
C65 0.010 0.010 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001
C66 0.017 0.017 0.015 0.013 0.011 0.009 0.007 0.006 0.004 0.002
C67 0.040 0.039 0.035 0.031 0.026 0.022 0.017 0.013 0.009 0.004

Total 1 1 1 1 1 1 1 1 1 1Int. J. Environ. Res. Public Health 2019, 16, x  22 of 28 
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Table 11. Five urban environment quality ranking after 9 runs in the sensitivity analysis.

Cities Normalized Run1 Run2 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9

X1 4 4 4 4 4 4 4 4 4 4 4
X2 5 5 5 5 5 5 5 5 5 5 5
X3 3 3 3 3 3 3 3 3 3 3 3
X4 1 1 1 1 1 1 1 1 1 1 1
X5 2 2 2 2 2 2 2 2 2 2 2

In Summary, the proposed hybrid model provides a systematic way to evaluate sustainable urban
environment and suggest improvement measures. The sustainability of urban environments is an
important issue in urban development and management. The proposed model has not been applied
previously in sustainable urban environment evaluation. The model adopts fuzzy and grey techniques
to solve the problems related to the subjectivity and information uncertainty in the assessments of
experts. The practicality and effectiveness of the proposed model was also demonstrated through a
sensitivity analysis. The findings could provide various advantages in terms of (i) deciding the most
appropriate criteria for sustainable urban environment evaluation, (ii) applying an advanced model
to find the weights of the dimensions and criteria of the evaluation system, (iii) providing a highly
reliable assessment of urban sustainability environmental performance, (iv) and providing targeted
measures for the improvement of the urban environmental sector based on experts’ judgements. This
evaluation system could provide administrations with a guideline for sustainable city development.

6. Conclusions

This study proposed six dimensions and 27 criteria to evaluate urban environmental quality.
The dimensions comprise the natural environment, artificial environment, energy management, water
management, waste management, and pollution control. A hybrid MADM model was proposed
for construction a sustainable urban-environmental quality-evaluation system. FBWM was used to
calculate the weights of the criteria, and then GRA was applied with a possibility interval algorithm to
obtain the sustainable environmental quality performance of five Chinese cities.

The results indicated that pollution control, natural environment, and water management were the
three most influential dimensions for urban sustainable environmental quality. Therefore, controlling
pollutant emissions, cleaning air and water, improving clean production processes, and reducing
emissions of ozone layer materials represent the most essential tasks for the government and the
public. The results of GRA with a possibility interval algorithm showed that the overall levels of
sustainable environmental quality in Shenzhen and Hangzhou was good, whereas Beijing had favorable
performance for water management but poor performance for natural environment and pollution
control. Therefore, the public and the government should devise strategies to improve the natural
environment and pollution control quality in this city.

There are some limitations in the application of the hybrid model. We interviewed experts and
analyzed the data. Although the average CR was 0.73%, we cannot conclude that this represents the
consensus of all stakeholders. Fuzzy and grey techniques were used to reduce the experts’ subjective
bias due to their different backgrounds. Other methods could also be used to address this problem, such
as Delphi or artificial intelligence methods. If real data can be collected, it could be possible to apply
multiple-objectives, decision-making methods, and data mining techniques to obtain more reasonable
conclusions. The empirical data were limited to five cities in China, and therefore, the applicability of
the findings to other cities and countries may vary. Regarding future research, cases of sustainable
urban environments could be collected for performance evaluation using VIKOR, TOPSIS, and other
methods, based on the FBWM model in this study. The proposed model could also be used in similar
decision-making problems in other fields.
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Appendix A Detailed Results

Table A1. Direct grey decision matrix M.

C11 C12 C13 C14 C15 C21 C22 C23 C24 C25 C31 C32 C33 C34 C41

L U L U L U L U L U L U L U L U L U L U L U L U L U L U L

5.7 8.1 6 7.6 5.9 7.9 6.1 7.9 4.2 5.2 6 8.2 3.4 4.4 4 5.5 5 6.4 4.5 5.7 5.6 7.4 5.1 7.1 3.9 5 4.5 5.7 4.9
4.9 6.3 5.4 7 4.6 5.8 4.5 5.7 5.4 7.1 4.9 6.1 4.6 5.6 4.3 6.2 5.3 6.9 4.2 5.2 4.6 5.8 4.7 5.9 4.9 5.9 6.1 7.7 4.6
3.7 5.3 4.1 5.1 4.4 5.8 4.2 5.4 7 8.4 5.8 7.4 5.3 7.1 5.7 7.8 6.3 7.9 5.7 7.7 3.7 4.9 4.4 5.6 3.7 4.9 4.7 6.3 3.7
6.3 8.3 7.9 9.3 7.7 9.3 7.3 8.9 5.4 7.6 6.5 8.9 6.6 8.6 6.7 8.2 8 9.4 6.4 8 6.6 8.6 6.2 8.2 4.4 5.4 5.2 6.2 7.6
7.1 9.1 5.8 7.4 4.6 6.2 4.5 5.9 6.4 8.6 5.7 7.3 6 7.5 5.8 8 5.8 8 4.2 5.4 6.2 8 6.3 8.5 4.7 6.3 6.7 8.1 5

C42 C43 C44 C51 C52 C53 C54 C61 C62 C63 C64 C65 C66 C67

U L U L U L U L U L U L U L U L U L U L U L U L U L U L U

6.8 3.7 4.9 4.7 6.1 4.1 5.1 4.2 5.2 3.9 4.9 5.4 7.6 4.4 5.4 5 6.4 5.3 7.1 5.2 7 5.1 6.3 5.6 7.2 4.8 6.4 4.4 5.4
5.8 4.9 6.3 4.7 6.1 4.3 5.3 4.9 6.1 5.2 6.6 5.1 6.3 4.9 5.9 4.3 5.8 4.4 5.8 4.8 6.4 3.9 5.2 4.7 6.3 4.4 5.4 5 7.5
4.9 6.3 8.3 6.1 8.1 5.8 8 4.5 5.7 5.5 7.9 4.9 6.9 5.7 8.1 2.7 3.7 3.4 4.9 4.5 6.2 3.1 4.3 4.6 6.2 5.8 7 3.6 4.7
9 4.8 6 4.6 5.6 3.9 4.9 5.6 7.2 5.1 6.7 6.2 7.2 6.5 8.3 6.2 7.6 6.1 7.5 6.4 8 6.1 7.5 5.9 7.9 6.5 8.3 4.7 5.7

6.6 5.7 8.1 5.4 7.6 4.6 6.2 4.1 5.7 6.8 8.2 5.9 7.9 6.4 8.6 5 6.8 6 8.4 6.1 8.1 4.9 6.1 4.9 6.5 3.8 5 6.7 8.3

Table A2. Normalization of direct grey decision matrix M*.

C11 C12 C13 C14 C15 C21 C22 C23 C24 C25 C31 C32 C33 C34 C41

L U L U L U L U L U L U L U L U L U L U L U L U L U L U L

0.63 0.89 0.65 0.82 0.63 0.85 0.69 0.89 0.49 0.60 0.67 0.92 0.40 0.51 0.49 0.67 0.53 0.68 0.56 0.71 0.65 0.86 0.60 0.84 0.62 0.79 0.56 0.70 0.54
0.54 0.69 0.58 0.75 0.49 0.62 0.51 0.64 0.63 0.83 0.55 0.69 0.53 0.65 0.52 0.76 0.56 0.73 0.53 0.65 0.53 0.67 0.55 0.69 0.78 0.94 0.75 0.95 0.51
0.41 0.58 0.44 0.55 0.47 0.62 0.47 0.61 0.81 0.98 0.65 0.83 0.62 0.83 0.70 0.95 0.67 0.84 0.71 0.96 0.43 0.57 0.52 0.66 0.59 0.78 0.58 0.78 0.41
0.69 0.91 0.85 1.00 0.83 1.00 0.82 1.00 0.63 0.88 0.73 1.00 0.77 1.00 0.82 1.00 0.85 1.00 0.80 1.00 0.77 1.00 0.73 0.96 0.70 0.86 0.64 0.77 0.84
0.78 1.00 0.62 0.80 0.49 0.67 0.51 0.66 0.74 1.00 0.64 0.82 0.70 0.87 0.71 0.98 0.62 0.85 0.53 0.68 0.72 0.93 0.74 1.00 0.75 1.00 0.83 1.00 0.56

C42 C43 C44 C51 C52 C53 C54 C61 C62 C63 C64 C65 C66 C67

U L U L U L U L U L U L U L U L U L U L U L U L U L U L U

0.76 0.45 0.59 0.58 0.75 0.51 0.64 0.58 0.72 0.48 0.60 0.68 0.96 0.51 0.63 0.66 0.84 0.63 0.85 0.64 0.86 0.68 0.84 0.71 0.91 0.58 0.77 0.53 0.65
0.64 0.59 0.76 0.58 0.75 0.54 0.66 0.68 0.85 0.63 0.80 0.65 0.80 0.57 0.69 0.57 0.76 0.52 0.69 0.59 0.79 0.52 0.69 0.59 0.80 0.53 0.65 0.60 0.90
0.54 0.76 1.00 0.75 1.00 0.73 1.00 0.63 0.79 0.67 0.96 0.62 0.87 0.66 0.94 0.36 0.49 0.40 0.58 0.56 0.77 0.41 0.57 0.58 0.78 0.70 0.84 0.43 0.57
1.00 0.58 0.72 0.57 0.69 0.49 0.61 0.78 1.00 0.62 0.82 0.78 0.91 0.76 0.97 0.82 1.00 0.73 0.89 0.79 0.99 0.81 1.00 0.75 1.00 0.78 1.00 0.57 0.69
0.73 0.69 0.98 0.67 0.94 0.58 0.78 0.57 0.79 0.83 1.00 0.75 1.00 0.74 1.00 0.66 0.89 0.71 1.00 0.75 1.00 0.65 0.81 0.62 0.82 0.46 0.60 0.81 1.00

M* means direct grey matrix.
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Table A3. Weighted normalized grey relational matrix M**.

C11 C12 C13 C14 C15 C21 C22 C23 C24 C25 C31 C32 C33 C34 C41

L U L U L U L U L U L U L U L U L U L U L U L U L U L U L

0.032 0.045 0.023 0.029 0.093 0.125 0.228 0.295 0.036 0.044 0.006 0.008 0.008 0.011 0.002 0.003 0.003 0.004 0.004 0.005 0.045 0.060 0.021 0.029 0.007 0.008 0.013 0.017 0.030
0.027 0.035 0.021 0.027 0.073 0.092 0.168 0.213 0.046 0.060 0.005 0.006 0.011 0.014 0.002 0.003 0.003 0.005 0.003 0.004 0.037 0.047 0.019 0.024 0.008 0.010 0.018 0.023 0.028
0.021 0.029 0.016 0.019 0.070 0.092 0.157 0.202 0.059 0.071 0.006 0.007 0.013 0.017 0.003 0.004 0.004 0.005 0.005 0.006 0.030 0.040 0.018 0.023 0.006 0.008 0.014 0.019 0.022
0.035 0.046 0.030 0.035 0.122 0.147 0.273 0.333 0.046 0.064 0.006 0.009 0.016 0.021 0.003 0.004 0.005 0.006 0.005 0.007 0.054 0.070 0.026 0.034 0.007 0.009 0.015 0.018 0.046
0.039 0.051 0.022 0.028 0.073 0.098 0.168 0.220 0.054 0.073 0.006 0.007 0.015 0.018 0.003 0.004 0.004 0.005 0.003 0.004 0.050 0.065 0.026 0.035 0.008 0.011 0.020 0.024 0.030

C42 C43 C44 C51 C52 C53 C54 C61 C62 C63 C64 C65 C66 C67

U L U L U L U L U L U L U L U L U L U L U L U L U L U L U

0.041 0.033 0.044 0.021 0.027 0.007 0.008 0.008 0.010 0.016 0.021 0.051 0.072 0.014 0.018 0.046 0.059 0.020 0.026 0.039 0.052 0.044 0.054 0.007 0.009 0.010 0.013 0.021 0.026
0.035 0.044 0.056 0.021 0.027 0.007 0.009 0.010 0.012 0.022 0.028 0.048 0.060 0.016 0.019 0.040 0.054 0.016 0.021 0.036 0.048 0.033 0.045 0.006 0.008 0.009 0.011 0.024 0.036
0.030 0.056 0.074 0.027 0.036 0.010 0.013 0.009 0.011 0.023 0.033 0.046 0.065 0.019 0.026 0.025 0.034 0.013 0.018 0.033 0.046 0.027 0.037 0.006 0.008 0.012 0.014 0.017 0.023
0.055 0.043 0.053 0.021 0.025 0.006 0.008 0.011 0.014 0.021 0.028 0.059 0.068 0.021 0.027 0.057 0.070 0.023 0.028 0.048 0.059 0.052 0.064 0.007 0.010 0.013 0.017 0.023 0.028
0.040 0.051 0.072 0.024 0.034 0.008 0.010 0.008 0.011 0.029 0.034 0.056 0.075 0.021 0.028 0.046 0.063 0.022 0.031 0.045 0.060 0.042 0.052 0.006 0.008 0.008 0.010 0.033 0.040

M** means normalized grey relational matrix.
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