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Abstract: Prenatal alcohol exposure results in an array of developmental abnormalities known as fetal
alcohol spectrum disorders (FASDs). Despite the high prevalence of FASDs, therapeutic interventions
against accidental or intended exposure of developing fetuses to alcohol are limited. This review
outlines current knowledge about mitochondria in cerebral blood vessels as a potential target for
anti-FASDs intervention. First, it describes the multifaceted role of mitochondria in maintaining
the cerebral artery diameter as shown in adult tissue. Second, current literature on alcohol-driven
damage of mitochondrial morphology and function in several fetal tissues, including liver, heart,
and brain is summarized. The functional consequences of alcohol exposure in these organs include
morphological enlargement of mitochondria, increased oxidative stress, and alteration of cellular
respiration. These studies point to a tissue-specific effect of alcohol on mitochondrial function
and a particular vulnerability of fetal mitochondria to alcohol exposure when compared to adult
counterparts. Third, recent work from our group describing persistent changes in fetal baboon cerebral
artery proteome following three episodes of prenatal alcohol exposure is reviewed. In conclusion, the
consequences of prenatal alcohol exposure on cerebral artery mitochondria constitute an open field of
investigation and, eventually, a point of therapeutic intervention against FASDs.

Keywords: maternal drinking; intrauterine alcohol; alcohol in utero; nonhuman primate; basilar
artery; neurovascular unit

1. Introduction

Alcohol (ethyl alcohol, ethanol) is one of the most widely consumed psychoactive substances in the
world [1]. Despite major research and education efforts describing the deleterious effects of excessive
alcohol consumption on human health, alcohol continues to be consumed by pregnant women in both
industrialized and developing countries [2,3]. As documented by numerous studies, maternal alcohol
consumption with sharp and high peaks of maternal blood alcohol levels (BAL) above 80 mg/dL poses
the highest risk of fetal developmental abnormalities [4–6]. These abnormalities encompass multiple
aspects of fetal development, ranging from subtle cognitive delay to severe morphological and neuronal
anomalies. The entire spectrum of developmental changes triggered by maternal alcohol consumption
is termed fetal alcohol spectrum disorders (FASDs) [7,8]. The most severe cases of prenatal alcohol
damage are manifested as fetal alcohol syndrome (FAS) [7]. Although there are different diagnostic
trees for severe prenatal damage by alcohol, all converge on the most distinctive facial characteristics
(short palpebral fissures, a smooth philtrum, a thin upper vermillion border) and growth deficiency as
pre- or postnatal weight/height at or below the 10th percentile. [7]. A wide range of behavioral and
cognitive abnormalities that result from prenatal alcohol exposure is often specific toward deficits in
magnitude comparisons and in eyeblink conditioning [7]. The global prevalence of FASDs among
children and youth is estimated at 0.77% [2,9–12]. However, FASDs prevalence is as high as 30% in
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particular geographic areas with high occurrence of maternal binge alcohol consumption (such as
South Africa) [10].

Currently, there is no readily available cure for intended or accidental fetal exposure to
alcohol [13,14]. One of the reasons is the limited mechanistic understanding of FASDs pathophysiology.
This limitation arises largely from the peculiar pharmacological profile of the ethanol molecule, which
allows it to readily cross cell membranes and freely distribute among body compartments. Thus,
ethanol targets multiple proteins, cellular processes, organs, and systems [15–17]. The fetal brain is the
most severely affected organ, exhibiting both structural and functional abnormalities in response to
maternal alcohol consumption [18,19]. Recently, the effects of alcohol on fetal cerebrovascular function
started receiving increasing attention, as brain energetic demands are usually met by a constantly
adapting blood supply [20]. Such an adaptation is initiated at the level of cerebral arteries and spans
to microvessels that penetrate the brain parenchyma and engage in the formation of neurovascular
units [21,22].

Within the cells, mitochondria constantly power adaptation to dynamic changes in metabolic
demands. Thus, it comes as no surprise that vascular mitochondria dysfunction is implicated in
the progressive decline observed during aging, development of neurocognitive disorders (such as
Alzheimer’s disease), and substance abuse [23–27]. The deleterious effects of alcohol exposure on
mitochondrial morphology and function within fetal tissues have been widely documented [28].
Moreover, mitochondrial dysfunction in fetal cardiomyocytes has been proposed as one of the driving
forces behind the development of heart pathology present in severe cases of fetal damage by alcohol
exposure in utero such as in FAS [29]. The majority of studies, however, focus on fetal neurons, heart,
and liver, which leaves many unanswered questions on the role of cerebrovascular mitochondria in the
sequelea triggered by prenatal alcohol exposure. This review summarizes findings that help to fill this
gap in knowledge.

First, a multifaceted role of mitochondria in maintaining cerebral artery diameter as shown in adult
tissue is described. Second, current literature on alcohol-driven damage of mitochondrial morphology
and function in several fetal liver, heart, and brain is presented. Third, recent work from our group
describing persistent changes in fetal baboon cerebral artery proteome following three episodes of
prenatal alcohol exposure is discussed. The review concludes with the prospective view on the future of
cerebrovascular mitochondria research in the field of FASD pathology and therapeutic developments.

2. Mitochondria: Basic Morphology and Function

Mitochondria are formed by two membranes, termed outer and inner. The inner has multiple
extensions called “cristae” with the intracristae space being referred to as the matrix (Figure 1).
Mitochondrial morphological components serve their unique functions. For instance, the Krebs cycle
occurs in the matrix, while protein complexes associated with the electron transport chain are embedded
into the inner membrane. Mitochondrion has its own DNA and protein-synthesizing machinery.
However, approximately one-half of mitochondrial proteome is encoded by nuclear DNA, which
is transported to mitochondria. Mitochondrion morphology and basic functioning are extensively
reviewed elsewhere [26,30,31]. The size and shape of mitochondria are determined by fusion and
fission [31–33]. Moreover, modulation of these basic processes by cell signaling results in modifications
of mitochondria shape and function [33,34]. Thus, elongation of mitochondria triggers senescence-like
state in cellular cultures, which is accompanied by a decrease in mitochondrial membrane potential
and increased generation of ROS [35]. Mutations in genes that encode proteins affecting fusion and
fission are associated with human disease [36–39].
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Figure 1. Principal structural and functional components of cellular mitochondrion. ATP: Adenosine 
triphosphate. 

A basic mitochondrial feature is the maintenance of membrane potential across the inner 
membrane. This membrane potential is usually set around –180 mV and provides a driving force for 
electron transport. A plethora of potassium channels located within the mitochondrial inner 
membrane has been implicated in mitochondrial membrane potential maintenance. These channels 
include voltage- and Ca2+-gated potassium channels of large conductance (BKCa), potassium channels 
of small (SK) and intermediate (IK) conductance, as well as adenosine triphosphate (ATP)-sensitive 
potassium channels (KATP) [40,41]. The latter are composed of inwardly rectifying K+ 6.1 channel and 
sulfonylurea receptor SUR-2 subunits and have been extensively used as pharmacological targets to 
evoke mitochondrial depolarization, which could be accompanied by reactive oxygen species (ROS) 
production [42,43].  

Mitochondrion has been conventionally considered as a main energy producing cellular 
organelle, in which the highly conserved process of oxidative phosphorylation occurs [26,31,44]. 
However, in recent years, a growing number of studies have documented mitochondria function as 
a source of signaling molecules which thus plays major roles in a plethora of physiological and 
pathological processes [26,43]. Indeed, at the cellular level, mitochondria are central not only to 
maintenance of cellular ATP and redox potential but also for modulating two intracellular 
messengers: ROS and Ca2+ itself [45–51]. Mitochondria capture Ca2+ from intracellular space via a low-
affinity inner membrane mitochondria Ca2+ uniporter (MCU), while Ca2+ release may occur via 
several mechanisms, such as the mitochondrial permeability transition pore (PTP) and the Na+/Ca2+ 
exchanger [52,53]. 

Mitochondria compartmentalize glutathione (GSH), which is the main nonprotein thiol in cells 
where functions are dependent on the redox-active thiol of GSH cysteine moiety. The latter serves as 
a cofactor for an array of antioxidant and detoxifying enzymes [54–56]. Mitochondrial GSH levels are 
often used as a reader of mitochondrial ROS detoxification, with low GSH leading to oxidative stress 
and accompanying prevalent health disorders [54–56]. 

Mitochondria also harbor a fraction of alcohol dehydrogenase (ADH) and aldehyde 
dehydrogenase (ALDH) enzymes, which provide the first and the second steps in the major oxidative 
pathway of alcohol metabolism [57–60]. Both ADH and ALDH use the cofactor nicotinamide adenine 
dinucleotide (NAD+), which is reduced to NADH. Alcohol consumption results in a reduced 
NADH/NAD+ ratio, shifting cellular redox balance [61].  

3. Cerebrovascular Mitochondria 

Within cerebral arteries, mitochondria control a plethora of cellular processes, including 
apoptosis [62,63], maintenance of arterial tone, constrictive or dilatory responses to 
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A basic mitochondrial feature is the maintenance of membrane potential across the inner membrane.
This membrane potential is usually set around −180 mV and provides a driving force for electron
transport. A plethora of potassium channels located within the mitochondrial inner membrane has
been implicated in mitochondrial membrane potential maintenance. These channels include voltage-
and Ca2+-gated potassium channels of large conductance (BKCa), potassium channels of small (SK) and
intermediate (IK) conductance, as well as adenosine triphosphate (ATP)-sensitive potassium channels
(KATP) [40,41]. The latter are composed of inwardly rectifying K+ 6.1 channel and sulfonylurea receptor
SUR-2 subunits and have been extensively used as pharmacological targets to evoke mitochondrial
depolarization, which could be accompanied by reactive oxygen species (ROS) production [42,43].

Mitochondrion has been conventionally considered as a main energy producing cellular organelle,
in which the highly conserved process of oxidative phosphorylation occurs [26,31,44]. However, in
recent years, a growing number of studies have documented mitochondria function as a source of
signaling molecules which thus plays major roles in a plethora of physiological and pathological
processes [26,43]. Indeed, at the cellular level, mitochondria are central not only to maintenance of
cellular ATP and redox potential but also for modulating two intracellular messengers: ROS and Ca2+

itself [45–51]. Mitochondria capture Ca2+ from intracellular space via a low-affinity inner membrane
mitochondria Ca2+ uniporter (MCU), while Ca2+ release may occur via several mechanisms, such as
the mitochondrial permeability transition pore (PTP) and the Na+/Ca2+ exchanger [52,53].

Mitochondria compartmentalize glutathione (GSH), which is the main nonprotein thiol in cells
where functions are dependent on the redox-active thiol of GSH cysteine moiety. The latter serves as a
cofactor for an array of antioxidant and detoxifying enzymes [54–56]. Mitochondrial GSH levels are
often used as a reader of mitochondrial ROS detoxification, with low GSH leading to oxidative stress
and accompanying prevalent health disorders [54–56].

Mitochondria also harbor a fraction of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase
(ALDH) enzymes, which provide the first and the second steps in the major oxidative pathway of
alcohol metabolism [57–60]. Both ADH and ALDH use the cofactor nicotinamide adenine dinucleotide
(NAD+), which is reduced to NADH. Alcohol consumption results in a reduced NADH/NAD+ ratio,
shifting cellular redox balance [61].

3. Cerebrovascular Mitochondria

Within cerebral arteries, mitochondria control a plethora of cellular processes, including
apoptosis [62,63], maintenance of arterial tone, constrictive or dilatory responses to physiological/
pharmacological stimuli, adaptation to environmental insult [27,30,43,64], and vascular aging [65,66].
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Indeed, mitochondrial size is increased with age, as reported for vascular smooth muscle of 3 versus
18 months-old Sprague–Dawley rats [67]. A subset of aged mitochondria is apparently elongated
with length exceeding width dimensions over 3-fold. Aged mitochondria are also less mobile when
compared to young tissue, which exhibits mitochondrial motions that reach 12 µm within 10 min [67].
Notably, mitochondrial motility detected by high-speed fluorescence imaging is characteristic of a
proliferative state, as shown in vascular smooth muscle of resistance-size cerebral arteries of guinea
pig [68]. Conceivably, restriction of mitochondrial fission prevents vascular smooth muscle proliferation
at single cell and resistance size artery levels [68]. Thus, it has been proposed that mitochondrial
motion might be critical for cell proliferation and recovery from vascular injury [67,68].

A study on 3- versus 24-months-old mice demonstrated increased ROS production in cerebral
arteries of the latter group in response to in vitro pressurization at 140 mmHg [66]. Intracellular
vascular mechanisms that link cerebrovascular mechanosensitivity to mitochondrial ROS level remain
elusive. Another link between fundamental arterial properties and mitochondrial function is presented
by nitric oxide: Application of nitric oxide synthase inhibitor to cerebral arteries from adult rats results
in increased mitochondrial respiration [69]. Importantly, there are gender differences in cerebral artery
mitochondrial characteristics. For example, cerebral arteries from adult (8- to 10-weeks-old) female
rats are larger in mass and also characterized by elevated ATP production, proton leak, maximal
respiration, and spare respiratory capacity [43,69]. Moreover, application of KATP channel activator
diazoxide to female rat cerebral arteries results in decreased mitochondrial respiration, while having
little effect on respiration in arteries from male rat donors [69].

Several pathological conditions affecting vascular function are also associated with alterations
of mitochondria characteristics. Maximal respiration is increased in cerebral microvessels of Zucker
obese insulin-resistant rats when compared to the lean phenotype [70]. Although mitochondria
respiration and protein levels remain unaltered at the point of insulin resistance, cerebral arteries
from insulin-resistant Zucker obese rats exhibit reduced vasodilation in response to KATP channel
activator diazoxide [71]. At early stages of type 2 diabetes development, however, basal mitochondrial
respiration and proton leak are significantly decreased in the large cerebral arteries from Zucker
diabetic fatty obese rats when compared to their age-matched (14-weeks-old) lean counterparts [72].
In the same experimental setting, superoxide production is increased in Zucker diabetic fatty obese
rats, and this increase cannot be counterbalanced by the exogenous superoxide dismutase [72]. These
findings point to the dynamic nature of mitochondrial sensing of pathology.

In a cerebrovascular ischemia/reperfusion model, mitochondria retain functional state for
up to at least 48 h following transient occlusion of middle cerebral artery (MCA) in rats [73].
This finding prompted speculation that mitochondria could be considered as a therapeutic target
during ischemia/reperfusion [73]. However, in male rats, oxygen consumption rate is increased in
ipsilateral (ischemic) hemisphere arteries when compared to contralateral (non-ischemic) counterparts
in the same transient MCA occlusion model [74]. Mitochondria depolarization also significantly
increases Ca2+ sparks in ipsilateral but not contralateral cerebral arteries [74]. Although many studies
on mitochondria role in vasculature are ongoing, available data leave no doubt about the critical role
of mitochondrial function in vascular physiology and pathology.

4. Mitochondrial Function and Control of Cerebral Artery Diameter

At the level of cellular function, mitochondrion regulates cerebrovascular myocyte Ca2+ signaling.
In particular, mitochondrial depolarization within rat posterior cerebral and cerebellar artery myocyte
results in decreased Ca2+ sparks and waves yet elevates intracellular global Ca2+ [75]. The reduction
in Ca2+ spark frequency and amplitude leads to a reduction in outward KCa currents; this reduction
is further deepened by reduced efficiency of spark-KCa current coupling [75]. Mitochondria
depolarization-driven decrease in KCa is attenuated by permeability transition pore block. Thus, it has
been proposed that mitochondrial depolarization opens mitochondrial PTP in the inner membrane
leading to inhibition of Ca2+ sparks and transient KCa currents [75]. These findings contrast with other
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reports pointing to vasodilatory properties of mitochondrial depolarization (see below). The discrepancy
may be explained by the differential time-course and pharmacological profile of the studies.

Mitochondria depolarization-driven decrease in transient KCa currents is still observed in the
presence of voltage-gated calcium channel blocker diltiazem [75]. This is noteworthy as mitochondrion
location correlates with the spatial distribution of L-type Ca2+-channels as shown in rat basilar and
cerebral artery myocytes [76]. Moreover, vascular myocyte mitochondrial amplification of hydrogen
peroxide signaling activates Ca2+ entry in the form of Ca2+ sparklets into the myocyte [76] and
upregulates CaV1.2 channel transcription (Figure 2) [77]. The latter effect is mediated by NF-kB
activation by mitochondrial ROS that are produced in response to IP3 receptor-mediated release of Ca2+

from sarcoplasmic reticulum [77]. At the whole organ level, artery treatment with mitochondria-targeted
antioxidant mitoTEMPO decreases production of hydrogen peroxide in presence of angiotensin II
(AngII) and also diminishes AngII-induced vasoconstriction. In vivo treatment of Sprague–Dawley
rats with mitoTEMPO also diminishes pressure-induced vasoconstriction in presence of nitric oxide
production blocker L-NAME [76].
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Figure 2. Pathways of mitochondria-mediated control of cerebral artery diameter. A balance between
constriction and dilation is achieved by a plethora of mechanisms. Vasoconstrictive mechanisms
include vascular myocyte mitochondrial amplification of hydrogen peroxide signaling that result in
activation of Ca2+ entry into the myocyte and upregulation of CaV1.2 channel transcription. Increase
in vascular smooth muscle (VSM) global Ca2+ is accompanied by an opening of the permeability
transition pore (PTP) and a decreased Ca2+ spark and KCa [75]. Dilatory mechanisms include pathways
within VSM as well as endothelial cells (EC). Mitochondrial depolarization via KATP channel activation
within VSM results in ROS-dependent, and independent activation of Ca2+ sparks release from
sarcoplasmic reticulum (SR). Ca2+ sparks activate voltage- and Ca2+-gated potassium channels of
large conductance (KCa). The latter generate outward potassium currents that negatively feedback
on depolarization-driven Ca2+ entry into the myocyte [78]. VSM-mediated vasodilation is further
bolstered by ROS-dependent and independent mechanisms that trigger phosphoinositide 3-kinase
(PI3K)–Akt–NOS phosphorylation within EC and thus increase production of vasodilator nitric oxide.
Mitochondrial depolarization within EC is accompanied by an increase in EC intracellular Ca2+.
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Despite the involvement of mitochondria in vasoconstrictive mechanisms, a plethora of
mitochondria-mediated vasodilatory responses has also been reported in the cerebral vasculature. It
has been shown that mitochondria-derived ROS give rise to an increase in transient KCa currents that
are triggered by mitochondrial ROS-induced activation of Ca2+ sparks and provide negative feedback
on depolarization-induced Ca2+ entry [79]. However, another study points to the ROS-independent
mechanism of mitochondrial depolarization-mediated dilation of rat cerebral arteries. In particular,
Katakam et al. [80] compared vasodilatory responses in the presence of mitochondrial KATP channel
activator diazoxide that activates ROS production (likely via inhibition of succinate dehydrogenase [81])
and ROS-free activator of KATP channels BMS-191095 (BMS). Both agents produce vasodilation in
de-endothelialized arteries, yet ROS scavenging does not affect vasodilation triggered by BMS [80].
Both diazoxide and BMS ultimately converge on increased Ca2+ spark generation and activation
of BKCa channels to oppose constrictive machinery of cerebral vessels [80]. While ROS-dependent
increase in Ca2+ spark generation may be mediated via redox modulation of Ca2+ spark-generating
ryanodine receptors (RyRs) within sarcoplasmic reticulum (SR), the ROS-independent pathway may
involve electrical coupling of mitochondria with SR to allow sensing of mitochondrial depolarization
(Figure 2) [80].

Mitochondrion control over cerebral artery diameter is also exerted at the endothelial layer, as
diazoxide and BMS-induced dilation of cerebral arteries is larger in vessels with intact endothelium
when compared to de-endothelialized cerebral arteries [82]. Mitochondrial depolarization-induced
vasodilation in arteries with intact endothelium is diminished by inhibition of nitric oxide synthase
(NOS) or phophoinositide-3 kinase (PI3K). The latter is critical for diazoxide-driven phosphorylation
of Akt and NOS by diazoxide and BMS. As in smooth muscle, scavenging of ROS in arteries with
intact endothelium reduced the vasodilation caused by diazoxide but not that from ROS-free BMS
treatment [82]. Notably, both diazoxide and BMS increased intracellular Ca2+ in cultured rat brain
microvascular endothelial cells [82]. Thus, a rather complex picture emerges of ROS-dependent and
independent mechanisms that bolster mitochondrial depolarization-driven dilation of cerebral arteries
with intact endothelium (Figure 2). Of note, cerebral artery endothelial mitochondrion content is
higher than in other vascular beds. This mitochondrial enrichment of cerebrovascular endothelium
has been suggested to arise from high energetic demands of the blood–brain barrier [83].

A critical feature for the proper function of cerebral arteries is their ability to develop and maintain
constant diameter independent of changes in systemic blood pressure [84,85]. This autoregulation
property is impaired following traumatic brain injury, as shown in a rat model of severe drop-impact
acceleration brain injury [86]. Most important, the loss of autoregulation in cerebral arteries in this
scenario is rescued by mitochondria-targeted antioxidant mitoTEMPO and by scavenging of H2O2 [86].
It is noteworthy that cerebral artery mitochondria, when compared to other vascular beds, may be
particularly sensitive to environmental insults. Indeed, rats subjected to microgravity via hind limb
unweighting exhibit increased mitochondrial ROS, mitochondria PTP opening and malondialdehyde
level, mitochondrial respiratory rate, membrane potential, and manganese superoxide dismutase
(MnSOD)/glutathione peroxidase (GPx) activity ratio in cerebral but not mesenteric arteries [64].
Conceivably, treatment with nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor
apocynin and with mitochondria-targeted antioxidant mitoTempol favored recovery of cerebral arteries
from oxidative stress, while these agents had no effect on mesenteric vessels [64].

5. Mitochondria during Fetal Development

Data on mitochondria during development are scarce. In chick embryos, developmental increase
in cytochrome oxidase (complex IV) and citrate synthase (Krebs cycle enzyme) activity is reported [87].
Yet, this increase in activity is accompanied by a decrease in cytochrome oxidase subunit III mRNA and
mitochondrial DNA levels across development [87]. In the ovine carotid artery that provides blood
supply to the brain, metabolomics analysis also points at the mitochondria developmental changes [88].
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Both ADH and two isozymes of ALDH (ALDH-I and ALDH-II-NAD+) are detected in rat liver
samples as early as 5 days before birth [89]. This time window corresponds to the end of the second
trimester in humans [90], which is close to the time-window for the detection of ALDH6A1 expression
and functional activity in fetal baboon cerebral arteries [27]. Moreover, in the perinatal period, a
remarkable increase in rat fetal liver ALDH activity is noted in the mitochondrial fraction [91].

6. Alcohol Modifications in Fetal Mitochondria Morphology and Function

Acute and chronic alcohol exposure during prenatal development results in impaired
mitochondrial morphology and function as widely studied in various cell types and organs [92].
Abnormal mitochondrial morphology such as elongation, cristae disorientation, and appearance of
a dense material in the matrix are described in the mitochondria of half-term mini-pig fetuses who
were subjected to daily exposure to alcohol in utero (3g/kg of maternal body weight) [93]. Abnormal
mitochondrial aggregation is noted in preputial neural tissues in newborns of alcohol-abusing
mothers [94].

At the molecular level, alcohol-driven alterations in fetal mitochondrion have been linked to a variety
of signaling pathways. Acute ethanol (2.5 mg/mL for 24 h) exposure of cultured fetal rat hepatocytes
reduces mitochondrial complex I, complex IV, succinate dehydrogenase, and ADP translocase activities.
These decreases are accompanied by a decrease in mitochondrial GSH level [92]. A similar ethanol
exposure paradigm in cultured fetal rat cortical neurons leads to a rapid onset of oxidative stress
that precedes cellular apoptosis [95]. Mitochondria-linked cellular apoptosis is also reported in an
animal model of prenatal acute exposure to alcohol. In particular, gastric delivery of 4 g/kg ethanol to
Sprague–Dawley rats on days 17, 18, and 19 of gestation leads to an increased mitochondrial permeability,
release of cytochrome c and apoptosis-inducing factor from mitochondria, and increased level of lipid
peroxidation product 4-hydroxynonenal in fetal whole-brain mitochondrion fraction [96].

Several studies ranging from cell cultures to animal models also report changes in mitochondrial
function upon protracted or chronic alcohol exposure. For instance, rat primary cerebellar neuron
cultures treated with 50 mM ethanol for 96 h have significantly reduced mRNA levels of mitochondrial
genes encoding several electron transport chain complexes [97]. A four-day-long treatment of
immature human PNET2 neuronal cultured cells with 100 mM ethanol decreases mitochondrial mass
as detected by reduced mitochondrial protein expression and decreased fluorescence labeling with
green mitochondrial dye MitoTracker [98]. Alterations in mitochondrion content are paralleled by
a decreased mitochondrial function [98]. Deleterious effects of alcohol exposure in this setting are
diminished by the broad-spectrum caspase inhibitors and are fully reversed by nerve growth factor
stimulation [98].

At the organismal level, exposure of chick embryos to ethanol (75mg/100g of weight) on embryonic
days 11, 13, 15, and 17 decreases cytochrome oxidase activity without alteration of cytochrome oxidase
subunit III mRNA level [87]. In a mouse model, extended exposure to alcohol (gestational days 6
through 15) results in an increased fraction of immature mitochondria in fetal brain on gestational day
18 [99]. Reduced activities of respiratory chain complexes I and IV, as well as ATP synthase are also
found [99].

Prenatal chronic alcohol exposure in the form of liquid diet from day 8 to delivery in mouse
model results in depressed mitochondrial respiration and activities of the inner membrane enzymes
cytochrome c oxidase and succinate dehydrogenase [29]. Oral chronic daily administration of ethanol
(4 g/kg of weight) to timed pregnant guinea-pigs results in decreased mitochondrial level of GSH in
the hippocampus of newborn progeny without change in cytosolic GSH concentration [100]. Thus,
mitochondria may be particularly vulnerable to effects of alcohol.

Moreover, when compared to adults, fetal mitochondria may be an overly sensitive target for
alcohol. Indeed, prenatal alcohol exposure by five oral feedings of pregnant Sprague–Dawley dams
with ethanol (4 g/kg of weigh, at 12 h intervals) on gestational days 17 through 19 results in an increased
HNE level in fetal hepatocyte mitochondria when compared to their maternal counterparts [101].
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This increase in fetal HNE level is arising from the higher susceptibility to HNE production and the
lack of metabolic capacity [101]. On the other hand, intrauterine ischemia induced by a 30 min-long
occlusion of the uterine artery results in decreased mitochondrial respiration in term (20 days of
gestation) but not preterm (14 days of gestation) Wistar rat fetuses [102]. Although it is uncertain
whether in utero ischemia may mimic alcohol exposure, the existence of specific time-periods that
may constitute “windows of vulnerability” for fetal mitochondrial damage by environmental insult
(including alcohol exposure) cannot be ruled out.

Persistency is another characteristic of mitochondrial changes in response to alcohol exposure
during fetal period. Indeed, depressed mitochondrial function is observed in the early postnatal
period in liver and brain tissues, including cerebellar neurons of rat pups that were exposed to alcohol
prenatally [103,104]. Notably, while liver and brain mitochondria exhibit reduced ATP synthase
activity, only the liver is characterized by decreased complex III activity [103]. In addition, none
of the mitochondrial enzymes under study are affected in the heart [103]. Thus, fetal mitochondria
vulnerability to alcohol is also tissue-specific.

7. Alcohol and Fetal Cerebrovascular Mitochondria

Data on the physiological role of mitochondria and pathophysiological consequences of alcohol
targeting of mitochondria in fetal cerebral artery are scarce. A recent study from our group utilized
proteomics analysis to determine organelles and pathways that constitute major targets of prenatal
alcohol exposure in fetal cerebral arteries. For this purpose, we focused on nonhuman primates, which
offer several advantages to work on FASDs-related questions. These advantages include the large size
of fetal cerebral arteries and intrauterine development that closely matches the developmental trajectory
of human fetuses [20]. In our experimental paradigm, pregnant baboon (Papio spp) dams undergo three
episodes of gastric alcohol infusions (1.8 g/kg ethanol, total infusion volume 200 mL) at gestational days
90, 100, and 110 [105–107]. The amount of alcohol in the infusion liquid results in 80 mg/dL of BAL in
maternal blood samples and approximately 63 mg/dL alcohol in amniotic fluid [105]. With the average
gestation in baboons lasting 163–185 days [108], the chosen interval for alcohol infusions corresponds
to mid-pregnancy in humans. The control group of pregnant baboons receives three gastric infusions
of orange-flavored drink that matches caloric count of alcohol-containing infusion liquid. Fetuses are
delivered by cesarean section near-term at 165 days of gestation, and fetal basilar (cerebral) arteries
are harvested for differential protein expression (proteomics) analysis [27]. Of note, the basilar artery
participates in irrigation of the cerebellum that constitutes a rather sensitive target for prenatal alcohol
exposure. In an ovine model of pregnancy, fetal alcohol exposure results in selective increase of cerebral
blood flow in cerebellum, with subsequently detected neuronal loss in this region [109].

Differential protein expression analysis based on mass spectroscopy identification reveals
statistically significant differences in the relative abundance of 238 proteins between control and
alcohol-exposed fetal basilar arteries [27]. Statistical enrichment analysis points to the statistically
significant overrepresentation of mitochondria-related proteins within this set. These proteins represent
Vpr-mediated induction of apoptosis by mitochondrial outer membrane permeabilization, fatty acid
beta-oxidation, tRNA aminoacylation, complex I biogenesis pathways, as well as Krebs cycle (Figure 3).

These findings from our group point to the mitochondrial proteome as one of the components
within fetal cerebral arteries that is highly sensitive to alcohol exposure. Our conclusion on
mitochondrial sensitivity to prenatal alcohol exposure is consistent with previously published
observations on significant alterations in mitochondrial transcriptome and proteome in liver
mitochondria from ethanol-fed rats [110,111]. Importantly, in our experimental paradigm, baboon
fetuses were subjected to only three alcohol exposure episodes with moderate alcohol levels [27,105].
Yet, such exposure renders persistent changes in mitochondrial proteome, as there is a month-long
period of alcohol-free gestation between last alcohol exposure (110 days of gestation) and fetal tissue
harvesting near-term (165 days of gestation) [27].
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In our baboon model, it remains to be determined whether mitochondrion functionality is
affected by alcohol. Consistent with proteomics analysis, we documented increases in protein level
on Western blot and increased activity of ALDH6A1 enzyme in fetal baboon cerebral artery lysates
from alcohol-exposed fetuses when compared to control [27]. However, a large-scale functional
study on fetal cerebrovascular mitochondria function following prenatal alcohol exposure remains
to be conducted. If mitochondrial function is unchanged, then observed changes in mitochondrial
proteome may be indicative of the compensatory mechanisms that develop near-term in response
to a depression of mitochondrial activities by preceding exposure to alcohol. The presence of such
compensatory mechanisms would be consistent with previous findings in fetal mini-pigs: While
hepatocyte mitochondrion from half-term mini-pig fetuses following prenatal alcohol exposure shows
abnormal morphology, alterations in mitochondrial morphology and function are absent in term-fetuses
subjected to a similar alcohol exposure paradigm [112].

Although acute alcohol application dilates cerebral arteries from baboon mid-pregnancy fetuses
in vivo and in vitro [105–107], basic cerebrovascular properties of the near-term fetal baboons that
are subjected to prenatal alcohol exposure remain similar to control groups when evaluated both
in vivo and in vitro [106,107]. While we cannot evaluate every possible aspect of arterial basic function,
it is plausible to assume that fetal cerebral artery recovers or develops compensatory mechanisms
in response to alcohol exposure in utero. In this regard, higher susceptibility of cerebral artery
mitochondria to insult later in life cannot be ruled out. Indeed, prenatal alcohol exposure in a C57BL6
mouse model (3 g/kg of weigh ethanol on gestational days 12.5 through 15.5) results in apparently
normal basic function of cerebral arteries yet manifests in a worse neurological recovery outcome
after transient cerebral ischemia in adult 3-months-old progeny [113]. Increased susceptibility of the
brain to damage following ischemia/reperfusion in adulthood is also reported in Sprague–Dawley rats
fed 3% ethanol liquid diet for the duration of their pregnancy [114]. Considering that mitochondrial
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function plays a critical role in cellular recovery from ischemia/reperfusion [102,115–117], the role of
mitochondria capacity to cope with the environmental stress following prenatal alcohol exposure
should be explored systematically.

8. Conclusions

Current literature points to mitochondria as a potential link between prenatal alcohol exposure
and the brain damage that is characteristic of FASDs. In this regard, cerebrovascular mitochondria
hold several unanswered questions. First, there is lack of studies that focus on possible changes in
cerebrovascular mitochondria morphology and function following prenatal alcohol exposure. What
is the “window of vulnerability” for this cellular organelle in cerebrovascular tissue? Are changes
in cerebral artery proteome and function driven by prenatal alcohol exposure and/or damage by
alcohol metabolites, such as acetaldehyde? Is the alcohol effect on cerebral artery mitochondria direct
or mediated by an alcohol-/metabolite-driven changes in fetal cerebral artery diameter and, thus,
oxygenation? These questions must be answered in order to adapt biomedical research findings to
therapeutic needs.

Moreover, the question of applicability of findings in animal models to human populations
remains open. Even findings in primate animal models should be interpreted with caution. Overall,
human developmental expression trajectories are more similar to monkey than rodent [118]. However,
comparison of brain transcriptome between humans and macaque points at ontogeny and phylogeny-
specific points of divergence [119]. Thus, validation of primate findings on humans is still required.

Despite many open questions and apparent limitations in our current understanding of the role
that fetal cerebral artery mitochondria play in the deleterious sequelae of FASDs, mitochondria research
still holds high promise. Mitochondria-targeted interventions with ROS scavengers and antioxidants
are being increasingly considered as a preventive and therapeutic measure against alcohol-driven
mitochondria damage in various organs [61]. Moreover, reversal and prophylaxis of mitochondrial
damage by aberrations in intrauterine blood supply is being consistently studied, with ascorbic
acid, alpha-tocopherol, and melatonin showing promise in reducing fetal brain damage [116,120].
Considering that alcohol-driven changes in fetal cerebrovascular mitochondria could arise from
both direct targeting by alcohol [27,61] and secondary damage via alcohol-driven alterations in fetal
cerebral blood flow [105,106], fetal cerebrovascular mitochondria likely constitute a promising target
for anti-FAS/FASDs therapeutic intervention.
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ADH alcohol dehydrogenase
ALDH aldehyde dehydrogenase
AngII angiotensin II
ATP adenosine triphosphate
BAL blood alcohol level
BKCa voltage- and Ca2+-gated potassium channels of large conductance
EC endothelial cell
FAS fetal alcohol syndrome
FASDs fetal alcohol spectrum disorders
GPx glutathione peroxidase
HNE 4-hydroxynonenal
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MCA middle cerebral artery
MCU mitochondrial Ca2+ uniporter
MnSOD manganese superoxide dismutase
PTP permeability transition pore
NAD+ nicotinamide adenine dinucleotide
NADPH nicotinamide adenine dinucleotide phosphate
NOS nitric oxide synthase
SR sarcoplasmic reticulum
PI3K phophoinositide-3 kinase
ROS reactive oxygen species
RyR ryanodine receptor
VSM vascular smooth muscle
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