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Abstract: Pollutant analysis and pollution source tracing are critical issues in air quality management,
in which correlation analysis is important for pollutant relation modeling. A dynamic correlation
analysis method was proposed to meet the real-time requirement in atmospheric management. Firstly,
the spatio-temporal analysis framework was designed, in which the process of data monitoring,
correlation calculation, and result presentation were defined. Secondly, the core correlation calculation
method was improved with an adaptive data truncation and grey relational analysis. Thirdly, based
on the general framework and correlation calculation, the whole algorithm was proposed for various
analysis tasks in time and space, providing the data basis for ranking and decision on pollutant
effects. Finally, experiments were conducted with the practical data monitored in an industrial park
of Hebei Province, China. The different pollutants in multiple monitoring stations were analyzed
crosswise. The dynamic features of the results were obtained to present the variational correlation
degrees from the proposed and contrast methods. The results proved that the proposed dynamic
correlation analysis could quickly acquire atmospheric pollution information. Moreover, it can help
to deduce the influence relation of pollutants in multiple locations.

Keywords: correlation degree; spatio-temporal analysis; air pollution management; pollutant
source tracing

1. Introduction

In the rapid expansion of society and economy, pollutants and sources are emerging as threats to
indoor and outdoor air quality, although various measures have been conducted to control pollution.
In practice, many information systems are established to monitor pollutant discharge. The systems
usually provide the functions of real-time monitoring and trend prediction. The functions provide
only the basic information for the administrator and decision maker. Moreover, the influence relation
is important for the management of environment and public health [1,2]. There is an urgent demand to
explore the influence relation of pollutants and the potential pollution sources. The paper focused on
the analysis method of pollutants and sources, which can provide a solution to the emerging issues in
air quality management.

The issue of pollutant relation and source tracing belongs to the spatial and temporal analysis of
atmospheric variables [3,4]. For studying the issue, some explored fluid mechanics and probability
models, such as Gaussian plume model [5], Gaussian puff model [6], state-space model [7] and hidden
Markov model [8]. The models simulate the gas diffusion process from the source to the surrounding
area. The category of the models is built on mechanism analysis, which relies heavily on the professional
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knowledge of environmental sciences and physics. Besides, for the demand of source tracing, the
models are difficult to apply reversely, that is, to find out the pollution source with the gas distribution.
The other category of analysis methods is the data-driven solution. The implicit information is
extracted from data with statistical and information processing methods, such as the spatial–temporal
statistics [9–11], functional data analysis [12,13], and correlation analysis [14–16]. The spatial–temporal
statistics focus on the statistical parameters from the historical data. The functional data analysis can
build the regressive model with the data feature. The correlation analysis focuses on the numerical
relationship of variables with an intuitional and lucid correlation degree. The methods above rely
on a certain amount of data, and they output a general condition for a period. They are short of the
timeliness and dynamic features.

Different deficiencies exist in the methods above, which will be introduced in detail in the Section
of Related Work. For atmospheric environment management, there are some practical problems.
Firstly, air pollutants change obviously in a season and even in a day. Secondly, the pollutant diffusion
is impacted by production activities in industrial parks. The different factories can lead to diversiform
gas diffusion. Thirdly, there is the cross-impact of multiple variables on a point, as well as multiple
positions. The complicated interaction effect is a severe problem in practical analysis. In brief, there
is a gap between practical demand and the existing methods. The correlation must be analyzed
dynamically in real-time. Besides, the spatial correlation should be conducted to excavate the pollution
source information intuitively and rapidly.

For the problems above, a dynamic spatio-temporal correlation analysis method is proposed
in a data-driven thought. The method in this paper emphasizes the correlation degree of pollutant
variables and positions, of which the process runs dynamically, and the results are direct for influence
relation and source tracing. The method is designed considering the inference of multiple positions in
the spatial dimension, and the dynamic real-time calculation in the temporal dimension. The case
experiment is carried out with the monitoring data of an industrial park in Hebei Province, China.

The rest of this paper is organized as follows. Section 2 introduces the related work, including the
spatial distribution model and correlation analysis method. In Section 3, the main spatio-temporal
framework and method are proposed. Experiments are conducted in Section 4, and the results are
discussed in Section 5. Finally, the study of the paper is concluded in Section 6.

2. Related Work

As mentioned in the Introduction, the main tools to analyze air pollutants in the spatial
and temporal dimensions include the gas diffusion model, spatial–temporal statistics, functional
data analysis, and correlation analysis method. The basic principle and related studies are
presented in this section. They are also analyzed under the management demand of an industrial
atmospheric environment.

2.1. Spatio-Temporal Analysis Method

2.1.1. Gas Spatial Diffusion Model

The spatial distribution is a fundamental feature of the atmospheric elements. It plays a vital role
in the analysis of pollutant diffusion and surrounding influence. The classical models have been built
for the gas diffusion analysis, in which the Gaussian plume model [5] and the Gaussian puff model [6]
have been the representatives, based on the probability model. The probability model makes posterior
probability statistics of gas diffusion at a specific time point through prior probability and judges the
diffusion parameters with the probability value. Many researchers use the Gaussian model to calculate
the concentration distribution of leakage media under different conditions, as well as the variation rule
in the time dimension.

In the study and application of the Gaussian model [17–19], some focus is done on the issue of gas
diffusion with the known emission source. The default coordinate system is set up taking the emission
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source as the origin, and the wind direction, and its vertical relations as axes. In the Gaussian model
with established parameters, only the position information of three directions and emission time are
needed to calculate the gas concentration at the specified position. Besides, others focus on the issue of
gas coverage. In the case of specified parameters (standard difference of source strength, etc.) and gas
concentration, the approximate gas coverage can be found based on the model.

The leading role of the Gaussian model is the forward analysis, in which the pollutant diffusion
and distribution can be obtained based on the source information. However, in demand for pollution
source tracing, the back-forward inference is needed to find out the source strength based on the
gas distribution. In the back-forward case, the Gaussian model is difficult to reverse because of the
hypothetical excess parameters. The reversed model will output different inference results of the
source when some of the parameters are inaccurate. Hence, there is a distinct shortage in the diffusion
model for the inference of variable influence and source tracing.

2.1.2. Spatial–Temporal Statistics and Functional Data Analysis

Spatial and temporal analysis has drawn attention based on various geographic information
systems, including atmospheric monitoring. The classical methods include spatial–temporal statistics
and functional data analysis. The spatial–temporal statistics [9–11] mainly analyze the mutual structure
of spatial distribution and the feature of time series. The spatial distribution pattern is estimated by the
first-order (large scale samples) structure and the second-order (small scale or local samples) structure,
and the non-sample spatial region is predicted or interpolated by the estimated results. The functional
data analysis [12,13] mainly transforms the original discrete data into a functional form, so as to explore
the correlation between the data through the analysis of function.

Scholars have applied the spatial–temporal statistics and functional data analysis methods to
environmental issues. In the method studies [20–22], the statistics parameters are obtained and
converted to form functions. The functions can fit the data trends with the least-squares, variance
analysis, maximum likelihood estimation, etc. Based on the functions, the data can be analyzed in the
mapping relation from the functions.

For the spatial–temporal statistics and functional data analysis methods, there are some difficulties
in the application for the real-time analysis demand in our problem. Firstly, the methods mainly realize
the analysis during a period. The results are the description and representation of past conditions.
It still needs the exploration of the real-time conduction for the methods. Secondly, a fundamental
condition of the methods is sufficient data of many points over a long period. The statistics results may
be unauthentic if the available samples are not enough. Thirdly, the accurate regression of a function is
difficult because of the complex nonlinearity and being nonstationary. The analysis results are mainly
impacted by the fitting level of the function based on the data. Hence, the applications of the statistics
and functional methods become difficult for various concrete problems in dynamic demand.

2.2. Correlation Analysis Method

Correlation analysis of atmospheric pollutants is the simple and effective access to determine the
influencing factors and trace the pollution source. In a literature review, the mainstream of correlation
analysis methods includes partial correlation [14,23], principal component [15,24], and grey correlation
analysis [16,25], which have been applied widely in different fields.

The partial correlation analysis method focuses on the issue of more than three variables.
It analyzes the correlation relationship between two variables, independently, without the third one.
In partial correlation, the correlation coefficient R or R2 is set as the criterion for the correlation degree.
Li et al. [23] applied partial correlation analysis to the impact of market elements on the domestic
stock market. Porth et al. [26] studied the nutrient resource allocation between plant growth and
recuperation based on the partial correlation of gene expressions. Olszewski et al. [27] analyzed the
longitudinal correlation between two particles in heavy-ion collisions and extracted the relationship
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between partial covariance and conditional covariance. It proved the feasibility of the statistical method
in the physics field.

Principal component analysis aims at obtaining an independent comprehensive index, namely
principal component, by synthesizing a variety of indicators. The principal component index is
expected to map almost all the information on the initial data. Calce et al. [28] applied principal
component analysis to the standard evaluation of the osteoarthritis. Lionnie et al. [29] established a
biometric recognition pattern system, in which principal component analysis extracts features in the
mathematical and statistical solution. The cross-validation proved the validity of the fusion method.
Cai et al. [30] proposed a detection and location method for disturbances in the power system, in which
principal component analysis was fused with k-nearest neighbor analysis.

The grey system theory has been studied widely in various fields. Moreover, the grey relational
analysis method is broadly used in the assessment system. Grey relational analysis refers to the
quantitative description and comparison of the development and change trend of a system. It determines
the closeness by judging the geometric shape similarity of the reference and several comparative data.
Fu et al. [31] studied the relationship between the air quality indexes of Beijing and its surrounding
region with the grey convex relation model. Cao et al. [32] tried to determine the main influence
factors of the atmospheric corrosion of Q235 carbon steel with a grey relational analysis method.
Hashemi et al. [33] built a comprehensive green supplier selection model, in which the analysis
network process was used to deal with the interdependencies between the criteria, based on the
improvement of traditional grey relational analysis. Malekpoor et al. [34] applied grey relational
analysis to the sustainable electricity generation planning, in which the evaluation and rank of systems
were determined with grey interval values.

It can be found that correlation analysis methods perform differently in concrete applications.
An appropriate method should be selected with the specific demand. The grey correlation analysis
method has a simple and reliable structure with an appropriate calculation scale. Moreover, there
is not an excessive requirement for the sample size. It is more suitable for the demand of real-time
and fast analysis. Besides, most of the studies use the methods in a static view, in which a constant
correlation number is obtained based on a period of historical data. It is a practical demand to analyze
the real-time correlation in different time points. Then, the correlation analysis method should be
improved in the dynamic view along time.

3. Dynamic Spatio-Temporal Correlation Analysis Method

There are some practical demands for air quality management. Firstly, it is expected to explore
and trace the pollution source region, except for the existing real-time monitoring and future prediction.
Secondly, the data-driven correlation analysis method can help inferencing the influence variables and
possible source region, based on the review of related work. Thirdly, it is needed to obtain the analysis
result in time, of which multiple dimensions should be covered, including the pollutant variables
and locations. Therefore, the dynamic spatio-temporal correlation analysis method is designed.
The general framework and basic dynamic correlation method will be presented firstly, and Then,
the spatio-temporal correlation analysis algorithm will be concluded finally.

3.1. Spatio-Temporal Correlation Analysis Framework

Based on the demand analysis of the industrial atmospheric management, the correlation analysis
should meet three aspects of needs: (1) the interaction of multiple pollutant variables should be
explored, (2) the influence of different locations should be analyzed, and (3) the analysis should be
conducted in the real-time based on the monitoring system. Then, a comprehensive correlation analysis
framework is designed, as shown in Figure 1.
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Figure 1. Framework of spatio-temporal correlation analysis on atmospheric pollutants.

The framework in Figure 1 mainly consists of three parts, namely, the data source, core analysis
method, and result presentation.

For the data source, the atmospheric monitoring system is set as the infrastructure. Taking the air
monitoring grid in China as an example, monitoring stations have been established with a grid layout,
in which the equipment is placed at the intersection of the rectangular mesh. The monitoring grid
is expected to increase the measurement coverage, and each station can reflect the circumjacent air
conditions. The monitoring stations provide data in the framework, and the data consist of multiple
pollutant variables with a certain frequency.

For the core analysis method, a dynamic correlation method is studied in this paper, which is
introduced in Section 3.2. The method can output the correlation between the pollutant variables,
as well as the correlation between monitoring points.

For the result presentation, various forms can be selected, referring to the data types. The pollutant
variable correlation is the time series, which can be shown in the curve graph. The correlation of points
has the two-dimensional cross-relation with time features. Moreover, the two types of pollutant and
point correlations can be integrated, for example, pollutant variable A in point 1 can be analyzed with
variable B in point 2. Then, the integration result can be queried in an appropriate form.

3.2. Dynamic Correlation Calculation

In the spatio-temporal correlation analysis framework, the vital component is the dynamic
correlation analysis method. The concrete applications are conducted based on the correlation analysis.
For the need of dynamic calculation, the method is studied with information entropy and grey
relational analysis.

3.2.1. Adaptive Sliding Window with Information Entropy

In the traditional correlation analysis, the result is static based on all historical data. In the dynamic
method, the correlation should be calculated in time with a small time interval. The calculation cannot
cover all historical data repeatedly, considering the computing load and speed. Moreover, a sliding
window is a useful tool to reduce the calculated amount. However, a fixed-length window may lose
efficacy. The data feature may be lost if the window is short, while the computing load may increase if
the window is long. Then, information entropy is introduced to improve the sliding window in the
adaptive view.

Information entropy can extract data variation characteristics quantitatively and effectively.
The change of time-series data can be mapped to a scalar of data fluctuation based on information
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entropy. Then, a rational threshold can be set to distinguish the data fluctuation range, and it can guide
the sliding window length in the correlation analysis.

In the concrete design, the sliding window length should be adjusted according to the time-series
features. When the near-term data change smoothly, the sliding window should be lengthened to
expand the data range and cover more data characteristics. When the data fluctuate severely, the
interception window size should be shortened, the correlation analysis range will be reduced, and the
identification of instantaneous regional characteristics will be improved. Meanwhile, the adjustment
can improve the calculation efficiency, avoiding redundant computing. In the idea of window
adjustment, an adaptive sliding window determination method is proposed based on information
entropy [35].

(1) The default window length L0 is given firstly, and minimum of L0 should be 10, and its
maximum should be less than ten percent of the total data number. At each time point, the previous L0

of values are used to measure the time series variation. The mean value of the segment is calculated:

m =

∑L0
i=1 di

L0
(1)

where i is the time point, m is the mean value of the data segment, di is the i-th value in the data segment.
(2) The variation of the time series is measured with the definition of data fluctuation scalar zi:

zi =
m

zi − zi−1
(2)

(3) The data fluctuation scalar is converted into a probability measure pi, which reflects the change
degree of a single point relative to the change degree of whole intercept data segment. And it is
converted in the percentage form:

pi =
zi∑L0−1

i=1 zi
(3)

(4) The information entropy is applied to transform the probability measure to the data fluctuation
characteristic. Concretely, the changes of each point data are transformed to the probability,
and information entropy is calculated with change characteristics carried in the intercept data.
The information entropy H is calculated as following:

H = −

L0−1∑
i=1

pi × log2 pi (4)

(5) The adjustment proportion of sliding window length is defined as

s =
H
H0

(5)

where H0 = log2 L0 is the maximum information entropy value in the current data segment, and the
new window length L is defined as 

L = L0, smin < s < smax

L = L0
s , smax < s

L = s× L0, s < smin

(6)

where smin and smax are the stability threshold, and smin = min
{
pi
}
, and smax = max

{
pi
}
.
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3.2.2. Grey Relational Analysis

As introduced in the related work, the grey relational analysis, which is based on grey theory,
seeks and defines the quantitative relationship between the factors of a system. It is one of the few
methods which can reflect the geometric relationship between the data intuitively. The process of grey
relational analysis [16] is introduced briefly here.

(1) Define the object variable y and its potential associated variables xk, k is the serial number of
associated variables, and 1 ≤ k ≤ n. The time series values in y and xk are denoted as y(i) and xk(i).

(2) The original data of object variable and associated variables should be normalized to remove
the effect of different measurement units.

(3) The object variable y(i) is set as the reference sequence, and a comparison matrix is built by
conducting subtraction operation on the reference sequence and the associated variable sequence xk(i).

(4) Calculate the maximum difference between the two levels in the matrix max
k

max
i
|y(i) − xk(i)|

and the minimum difference min
k

min
i
|y(i) − xk(i)|.

(5) The item value of each variable corresponding to the reference sequence is obtained, and the
mean value of the correlation coefficient is calculated. Then, the correlation sequence ξk(i) can be
formed, as the following formula:

ξk(i) =
min

k
min

i

∣∣∣y(i) − xk(i)
∣∣∣+ ρ max

k
max

i

∣∣∣y(i) − xk(i)
∣∣∣∣∣∣y(i) − xk(i)

∣∣∣+ ρ max
k

max
i

∣∣∣y(i) − xk(i)
∣∣∣ (7)

where ρ is the resolution ratio, 0 < ρ < 1. The greater the difference between correlation coefficients,
the stronger the ability to distinguish, in which the difference is positively related with ρ. ρ can be
defined as about 0.5 according to the experience.

(6) According to the correlation sequence in Formula (7), the correlation degree between the object
variable and the k-th associated variable is calculated:

rk =
1
L

L∑
i=1

ξk(i), i = 1, 2, . . . , L (8)

where L is the data size in the sliding window determined with the method in Section 3.2.1.

3.3. Dynamic Spatio-Temporal Correlation Algorithm

Based on the correlation analysis framework, two basic tasks should be conducted with the
correlation analysis methods, including the correlation of variables in one monitoring point and the
correlation of different points. The algorithm is designed in this subsection for the two tasks by
organizing the theoretical algorithms in Section 3.2 based on the framework in Section 3.1.

The algorithm consists of two parts, one is the single-point pollutant variables correlation, and the
other is the multiple points correlation. The flow of the dynamic spatio-temporal correlation algorithm
is shown in Figure 2.
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Figure 2. Flow chart of dynamic spatio-temporal correlation algorithm.

For the algorithm shown in Figure 2, the analysis on points and variables are conducted respectively.
For the left column, the loop of points is designed to obtain the variable correlation information at each
point. For the right column, the loop of variables is for the point correlation information.

There is the time recurrence in both extrinsic loops to calculate the correlation dynamically. In the
time recurrence, the data before the current moment, of which the size is L0, are used to determine the
sliding window firstly. The window length can be adjusted according to Equations (1)–(6), and the
new length is L. Then, the L values before now are used to calculate the correlation degree following
the grey relational method in Section 3.2.2. Finally, the results can be presented with different forms
which will be shown intuitively in the experiment section.

4. Experiment and Result

4.1. Dataset and Experiment Setting

The experiment is designed and conducted to verify the proposed correlation analysis method.
The monitoring data have been collected in an industrial park in Hebei Province, China. As shown
in Figure 3, 9 monitoring points are set up in the national air monitoring grid, in which the central
point (named HS station, abbreviation for HengShui station) is of higher management lever than
circumjacent points. For the points, the atmospheric indexes are measured and recorded every hour,
and the time range is from 1 May 2016, to 6 September 2017. The indexes consist of pollutant variables
and meteorological factors. The pollutants include PM10, PM2.5, SO2, NO2, CO, O3, O3-8H (mean
concentration of O3 in 8 h) and TVOC (Total Volatile Organic Compounds). The meteorological factors
include temperature, humidity, wind direction, and wind speed.
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Three parts of the experiments are designed in this paper, including multiple pollutant correlation,
multiple point correlation, and multidimensional correlation. In the three experiments, parts of the
monitoring indexes and points are selected as the representative application of the method.

For the correlation analysis of multiple pollutants, various variables are focused on by selecting
just a monitoring point (HS station). PM2.5 is set as the object variable, and the relative variables
include PM10, CO, temperature, and humidity. Then, the correlation degree between PM2.5 with the
other four variables is calculated. In the experiment, three sections of a period (10 days) in different
seasons, are analyzed, namely, the middle ten days in July 2016, December 2016, and May 2017.

For the correlation analysis of multiple points, the pollutant variable is fixed (PM2.5), and the
points are the main analysis object. On the one hand, the relation of any two points is tested. On the
other hand, HS station is mainly analyzed with four circumjacent points, including No.1 (500 m in the
east), No.2 (1000 m in the northeast), No.3 (500 m in the west), and No.4 (1000 m in the southeast).
The time period is the same as the previous experiment.

For the multidimensional correlation analysis, the correlation degree of different variables in
various points should be analyzed. For the paper length limit, a few variables and points are selected
from the previous two experiments. The selected relation to be analyzed is shown in Table 1, in which
the star mark means the related matric elements will be analyzed.

Table 1. Variable and point selected as the analysis object of multidimensional correlation.

Point No.1 Point No.2

PM2.5 SO2 PM2.5 CO

Point No.1
PM2.5 F
SO2 F

Point No.2
PM2.5 F

CO F

F: The related matric elements will be analyzed.

Moreover, the performance of the proposed method is interpreted comparing with other methods.
Firstly, the traditional static correlation analysis is set as the contrast, in which one constant degree
is output based on the whole data segment. The first method is abbreviated as “static correlation”.
Because the proposed method consists of the adaptive sliding window and grey relational analysis,
the two parts are replaced with the classical methods respectively to form the contrast methods.
Secondly, the sliding window length is fixed, referring to the traditional calculation. Then, the second
contrast method is grey relational analysis with a fixed sliding window, abbreviated as “FSW-GRA”.
Thirdly, another correlation method is tried to replace grey relational analysis. The classical partial
correlation is selected to form the third contrast method, namely partial correlation with adaptive
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sliding window, abbreviated as “ASW-PC”. The proposed method in this paper is abbreviated as
“ASW-GRA”. The contrast methods are conducted in some of the three experiments above.

4.2. Results

4.2.1. Correlation of Multiple Pollutants

In this part of the experiment, the correlation between different variables is analyzed in one
monitoring point. Based on the experimental settings, the correlation degrees between PM2.5 and
PM10, CO, temperature and humidity are calculated in three periods. The results are shown in
Figure 4, in which the three subfigures are corresponding to the middle ten days of three months in
different seasons.
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humidity are abbreviated as Tem and Hum, respectively.

Results in Figure 4 show the change of the influence factor on PM2.5 along the time. In each
subfigure, the correlation degree between PM2.5 and the other four variables is calculated every hour,
and the total number of data is 240 (10 days). The correlation degree can be ranked at each time point,
and the main influence factor is not fixed at different time points. Moreover, the correlation trends
are different in multiple seasons. It can be inferred from the results that a certain variable should
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not be determined as the only and the most important impact factor generally, but according to the
time change.

Parts of the correlation above are selected to be re-analyzed with contrast methods. Concretely,
the correlations of PM2.5—PM10 in July 2016 and PM2.5—temperature in December 2016 are calculated
with four methods, including “Static correlation”, grey relational analysis with fixed sliding window
“FSW-GRA”, partial correlation with adaptive sliding window “ASW-PC” and the proposed method
“ASW-GRA”. The results are shown in Figure 5. Besides, the deviation between the dynamic methods
(the latter three) and the static correlation degree is calculated. The deviation is shown in Figure 6.
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Figure 6. Correlation degree deviation between dynamic and static methods.

In Figure 5, the traditional static correlation degree cannot reflect the change over time. In fact,
the main influence factor is not fixed, as shown in Figure 4. The static correlation degree may mislead
the verdict of the influence factor. For dynamic performance, an obvious distinction is expected
to for different time points. In this view, the fluctuation of our method (ASW-GRA) is bigger than
others, which means it can represent the change more markedly. For ASW-GRA and FSW-GRA,
they distinguish in the sliding window length. There is seemingly a delay for the fixed window
length, which is evident in Figure 6b. For ASW-GRA and ASW-PC, they distinguish in the correlation
calculation method. The deviation of ASW-GRA is larger than ASW-PC, although they perform
similarly in the whole trend. The deviation shows the discrimination ability of grey relational analysis
and partial correlation.

4.2.2. Correlation of Multiple Points

In the experiment of multiple point correlation, the points are analyzed for the pollutant variable
PM2.5. The correlation degree of any two points can be calculated along time, where a two-dimensional
matrix will be formed at each time point. For simplicity, some results of cross-correlation degree of any
two points are presented in Figure 7.
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Figure 7. Cross-correlation degree of any two monitoring points at 4 moments.

In Figure 7, the three-dimensional mesh is drawn for the cross-correlation of any two points,
where the right planar graph is the x–y view of the left 3-D mesh. The color in Figure 7 represents the
value of the correlation degree. For the selected time points in four days, the maximum correlation
degree appears in different cross points. The yellow blocks are Point 7–8 in (a), Point 3–7 in (b), Point
5–HS, Point 7–HS in (c), and Point 1–8 in (d). It means the interaction between different positions over
time, and the correlation analysis can help to ascertain the spatial influence dynamically.
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Except for the general presentation of correlation between any two points, the object point HS
station is analyzed solely with four points, and four sets of correlation degrees are obtained. The results
of the three periods are shown in Figure 8.Int. J. Environ. Res. Public Health 2020, 17, x 14 of 19 
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Figure 8. Correlation degrees between any two points.

For the correlation degree between HS station and circumjacent points, the season factor
significantly reacts. There is a bright distinction in the general trend of different periods. The impact
level of points can be ranked with the correlation degree. Then, it can help to deduce the direction of
the pollution source. Besides, the effect of points may vary at different times. For example, in Figure 8c,
Point 4 dominates from the 50th to the 60th hour, but Point 2 surpasses at the 60–70th hour.

Different dynamic contrast methods are analyzed in one period (July 2016) for HS station and
No.1 point. The results of contrast methods are shown in Figure 9, of which the subfigures show the
direct result and the deviation from the static correlation.
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Figure 9. Correlation degrees between two points by contrast methods (data of July 2016).

The contrast methods perform similarly with the first experiment (Figures 5 and 6). The values of
the deviation from ASW-GRA fluctuate more sharply than the other two. It reflects that the proposed
method can distinguish the correlation degree at different time points. The dynamic property of our
method can be proved again with the set of data in this part.

4.2.3. Multidimensional Correlation

The previous two experiments were conducted by controlling the analysis objects, either for
variables or for points. The variables and points are analyzed crosswise in this part. Following the
selected elements in Table 1, the correlation degrees between PM2.5 in Point 1 and CO in Point 2, SO2

in Point 1 and PM2.5 in Point 2 are calculated in three periods. The results are shown in Figure 10.
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The contrast methods are also conducted for the elements above (one set of data in a period is
selected). The static correlation degree between PM2.5 (Point 1) and CO (Point 2) is 0.332, and static
degree between SO2 (Point 1) and PM2.5 (Point 2) is 0.247. The deviations between the static degree
and dynamic methods are shown in Figure 11.
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Figure 11. Correlation degree deviation between dynamic and static methods of data in July 2016.

The third experiment is conducted in the cross analysis on different pollutants in various monitoring
points. The trend of correlation degree is similar to the previous experiments, including the data
change and the contrast method performance. The results can help in analyzing the major influence
factor from different positions.
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5. Discussion

Correlation analysis works weightily in atmospheric pollutant monitoring and source trace.
The problem is emphatically considered; how to find out the main pollution influence factor in real-time
with direct results. For a direct measurement and convenient analysis method, a dynamic correlation
calculation method is proposed, which has been tested with the practical monitoring data in an
industrial park of Hebei province, China.

The method can be evaluated from two aspects. On the one hand, it can reach the basic function
of the traditional correlation analysis, which is reflected by that the dynamic correlation degrees
distribute around the constant line in Figures 5 and 9. On the other hand, the most striking feature of
the proposed method is the dynamic performance, which can be found in the results of different tests.
Unlike traditional statistical result, the correlation degree varies along time. It means that the impact
factor on a certain pollutant variable or monitoring station is not fixed. Therefore, it is essential to
obtain a real-time correlation degree to judge the main impact factor for the pollution source trace
and control.

For dynamic performance, some similar methods were formed. For a quantitative comparison,
the information entropy is introduced to represent the fluctuation degree. The results of the last
experiment in Section 4.2.1 are analyzed with information entropy. The entropy is transformed and
presented in Table 2, in which the larger the value, the larger the fluctuation degree. It reflects that
the proposed method distinguishes the correlation degrees of each time point. The apparent change
helps to find out the most relevant influence factors over time. The feature of the results is the specific
performance of the dynamic property in the proposed method.

Table 2. Information entropy of contrast methods in experiment 1 (Section 4.2.1).

Period FSW-GRA ASW-PC ASW-GRA

PM2.5-PM10 in July 2016 0.476 0.598 0.869
PM2.5-temperature in December 2016 0.511 0.547 0.763

FSW-GRA: grey relational analysis with a fixed sliding window; ASW-PC: partial correlation with adaptive sliding
window; ASW-GRA: the proposed method in this paper, namely gray relation analysis with adaptive sliding window.

For the paper length limitation, only some variables and points are selected and presented. In fact,
the proposed method can be applied to the correlation analysis of any two factors in the same type.
For example, PM2.5 is analyzed with four variables in Section 4.2.1, but any two of the five variables
can be calculated following the proposed algorithm. In general, the proposed method is essential for
the correlation between variables, which is not limited by the examples in the experiment. In fact, the
method has been encapsulated as a program in the information management system of an industrial
park in Hebei Province [36]. In the information system, multiple variables can be analyzed following
the proposed method, from the view of pollutants and positions. The function of dynamic correlation
analysis in the information system has helped administrators to trace the pollution source. Besides,
the proposed method can provide the decision-making support with other system functions of the
real-time monitoring and trend prediction [37,38].

For the method to calculate the monitoring data iteratively in real-time, there is a requirement for
the computing resource with high performance. In the future, the improvement can be carried out to
reduce the calculated amount. Then, the method can be applied widely in small-scale systems and
low-performance terminals. Besides, the method analyzes the correlation degree in discrete points.
When there is a need for the continuous distribution of the atmosphere, other gas diffusion methods
should be explored to integrate with the method.

6. Conclusions

For the atmospheric management issue of pollutant interaction and source tracing, a dynamic
correlation analysis method is proposed. It is designed with a convenient process and direct result
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measurement. The proposed method realizes the relation extraction for pollutant variables in real-time,
as well as the space factors, which have been tested with the practical monitoring data. The method
is an effective support for air quality management in the modern information era. It provides the
reference framework for the emerging pollutant and source for air quality. The correlation result can
help pollution control and sustainable planning. In future work, the method can be applied in other
analyses of new variables, such as particulate matter, nitrogen oxides, traffic emission, and consumer
products. Besides, the method can be explored with the continuous analysis models, which can output
the fine-grained results of the atmosphere diffusion. The improved correlation analysis method will
support pollution management with information mining.
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