
International  Journal  of

Environmental Research

and Public Health

Article

Simulation-Optimization for Conjunctive Water
Resources Management and Optimal Crop Planning
in Kushabhadra-Bhargavi River Delta of Eastern India

Madan K. Jha 1,*, Richard C. Peralta 2 and Sasmita Sahoo 1

1 Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur,
Kharagpur-721 302, India; sasmitaiit@gmail.com

2 Civil and Environmental Engineering, Utah State University, Logan, UT 84322-4110, USA;
peralta.rc@gmail.com

* Correspondence: madan@agfe.iitkgp.ac.in

Received: 13 February 2020; Accepted: 12 May 2020; Published: 18 May 2020
����������
�������

Abstract: Water resources sustainability is a worldwide concern because of climate variability,
growing population, and excessive groundwater exploitation in order to meet freshwater demand.
Addressing these conflicting challenges sometimes can be aided by using both simulation and
mathematical optimization tools. This study combines a groundwater-flow simulation model and
two optimization models to develop optimal reconnaissance-level water management strategies.
For a given set of hydrologic and management constraints, both of the optimization models are
applied to part of the Mahanadi River basin groundwater system, which is an important source of
water supply in Odisha State, India. The first optimization model employs a calibrated groundwater
simulation model (MODFLOW-2005, the U.S. Geological Survey modular ground-water model) within
the Simulation-Optimization MOdeling System (SOMOS) module number 1 (SOMO1) to estimate
maximum permissible groundwater extraction, subject to suitable constraints that protect the aquifer
from seawater intrusion. The second optimization model uses linear programming optimization to:
(a) optimize conjunctive allocation of surface water and groundwater and (b) to determine a cropping
pattern that maximizes net annual returns from crop yields, without causing seawater intrusion.
Together, the optimization models consider the weather seasons, and the suitability and variability
of existing cultivable land, crops, and the hydrogeologic system better than the models that do not
employ the distributed maximum groundwater pumping rates that will not induce seawater intrusion.
The optimization outcomes suggest that minimizing agricultural rice cultivation (especially during
the non-monsoon season) and increasing crop diversification would improve farmers’ livelihoods
and aid sustainable use of water resources.

Keywords: simulation-optimization model; integrated water resources management; optimal
cropping pattern; linear programming; deltaic aquifer; India

1. Introduction

Rapid population growth and climate change are likely to increase the risk of water shortage.
Changing seasonal patterns of water availability will adversely impact social and economic
development [1]. Water-energy-food system complexity, uncertain future climatic events, unsustainable
abstraction of groundwater, and contamination from different sources pose challenges to resource
planners and managers [2,3]. Coping with these challenges and strengthening water security require
an adaptive integrated framework that endorses and facilitates coordinated development and the
management of water, land, and related resources [4–6].
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Scientific planning involves the ability to predict system response without, and with, management
changes. Numerical simulation modeling is most commonly used to predict the dynamics and
states of heterogeneous aquifer systems [7–10]. Using simulation-optimization (S-O) models that
include influential physical or decision-making constraints and goals can help in selecting appropriate
management strategies [11–13].

The knowledge that mathematical optimization yields better solutions to well-formulated
optimization problems than does a trial-and-error approach, is so widespread that S-O modelling
has been extensively employed for designing optimal water systems and strategies [14]. Examples
are contamination remediation [14], conjunctive use of surface water and groundwater [14–17],
irrigation management [18,19], crop planning [20,21], seawater intrusion management [22,23],
groundwater-pumping optimization [24–26], drought analysis [27], climate impacts assessment [28],
management of total suspended solids [29], and aquifer recharge management [30].

Embedded within some of the above hydraulic S-O models were physically based finite numerical
flow equations or full numerical simulation models in order to represent hydraulic response to
hydraulic stimuli during the optimization process. When used for large physical systems, such
embedding approach S-O models addressed relatively large spatial discretization and few periods of
steady boundary conditions [31–33].

An alternative to the embedding approach is the use of surrogate simulators as substitute hydraulic
simulators during optimization [17,25,34–39]. The intent of using surrogate simulators is to replace
an original complex simulation model by a simple and computationally inexpensive model during
the optimization process. The response matrix method flexibly handles groundwater optimization
problems of varying scales, and is widely used [12,40–42], especially for confined aquifers by using
influence coefficients and discretized convolution equations as surrogate simulators. Refs. [14,26,34]
describe the procedure for adapting a response matrix approach to accurately simulate nonlinear
unconfined groundwater flow.

Classical optimization methods that are used in planning the management of surface water
and groundwater resources include: linear programming [43–45], non-linear programming [46,47],
dynamic programming [48,49], and hierarchical or multilevel optimization [50,51]. Systems engineering
textbooks and ref. [14] provide examples that are used for groundwater management. For linear or
linearizable management problems, linear programming (LP) requires the least computational expense
and calculation time to compute globally optimal solutions. Heuristic or evolutionary algorithms
(EA) and other metaheuristics are preferred for solving nonlinear, non-convex, and discrete water
problems for which deterministic search techniques fail [52–55]. Among the EAs, Genetic Algorithm
(GA) has been most commonly applied for water problems [56–58]. Ref. [38] used multi-objective
GAs for the conjunctive use of reservoir, stream, and groundwater resources. Ref. [59] used GA
and dynamic programming optimization for multi-purpose water management. Water systems
engineering textbooks and Ref. [14] compare application of alternative optimization techniques for
water management problems. Ref. [14] shows that using the response matrix with LP is much more
efficient than using heuristic optimization and fully embedded flow simulation models.

The standard systems optimization procedure is to use the simplest and computationally least
costly approach that will yield the best solution for the problem. Widely available LP algorithms are
guaranteed to compute the best solutions for linear optimization problems. LP optimization is used
here to perform the reconnaissance evaluation.
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The study goal is to propose and demonstrate a simulation–optimization framework for integrated
water resources management in a deltaic river basin near the coast in Eastern India. First, the
proposed groundwater management model incorporates a calibrated and validated groundwater
flow simulation model (MODFLOW-2005: USGS Three-Dimensional Finite-Difference Groundwater
Model, [60]) within the Simulation-Optimization MOdeling System (SOMOS, [34]) module number 1
(SOMO1, [34]) to determine maximum simultaneous extraction rates from all existing irrigation wells,
subject to constraints for management and aquifer protection from seawater intrusion. The distributed
maximum pumping rates that will not cause salt water intrusion are used as the upper limits on
groundwater extraction in the next model. The second optimization model conjunctively allocates
surface water, groundwater, and land to develop a cropping pattern that maximizes net annual returns
from crop yield, without causing salt water intrusion. The second model uses linear programming
optimization while considering the types of climatic seasons, suitability of available cultivable land,
existing basin crops’ unit costs and benefits, and the hydrogeology-based groundwater pumping
constraints. The applicability and efficacy of the proposed S-O approach are demonstrated for a coastal
deltaic aquifer system.

2. Methodology

2.1. Study Area and Hydro-Climatic Settings

The target study area is the Kushabhadra-Bhargavi River Delta, bounded by the Kushabhadra
River and Bhargavi River (Figure 1a). It lies upstream of the Kuakhai River within the Mahanadi Delta
region of Odisha, Eastern India. The topographic elevation of the 620-km2 area varies from 0 to 26 m
MSL (above Mean Sea Level). The area has a tropical monsoon climate. Three distinct seasons prevail
in the study area: monsoon (rainy), winter, and summer. The monsoon (rainy) season spans from
mid-June to October-end. The winter season starts from November and lasts until the end of February,
and the summer season extends from March to mid-June. From the agricultural point of view, the
year can be divided into three cropping seasons, viz. Kharif, Rabi, and Summer. The average annual
rainfall in the study area is about 1416 mm with a majority of rainfall occurring in the monsoon season
from the southwest monsoon. The mean monthly maximum and minimum temperatures in the area
are 42 ◦C in the month of May and 17 ◦C in the month of December.

Canal water and groundwater generally irrigate approximately 40% and 60% of the total study
area, respectively. However, more groundwater is used in non-monsoon periods or in the years having
less than the normal rainfall. The surficial laterite and alluvium are underlain by an unconfined aquifer
at shallow depths and a confined aquifer at greater depths [61]. The water table in the unconfined
aquifer ranges from 1.02 to 8.74 m bgs (below the ground surface) in the pre-monsoon season to 0.98 to
7.14 m bgs in the post-monsoon season. The piezometric level of the confined aquifer varies between
0.68 and 9.05 m bgs before the monsoon season and 0.18 to 8 m bgs after the monsoon season. The
freshwater aquifers are appreciably recharged during the monsoon season [62]. Ref. [63] used lithology
and hydrogeologic data from the Orissa Lift Irrigation Corporation to build a conceptual model of the
study area (Kushabhadra-Bhargavi interbasin).
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wells; and (b) pumping wells in the unconfined aquifer (Aquifer-1) and confined aquifer (Aquifer-2)
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2.2. Integrated Simulation-Optimization Framework

2.2.1. Overview

The presented integrated Simulation-Optimization methodology involves three computer models.
First, to enable predicting system response to changes in groundwater extraction is a Groundwater
Simulation Model (GSM). GSM provides the initial aquifer heads that exist, and the ability to quantify
head response to abstraction. Working with GSM, the Simulation-Optimization Groundwater Model
(S-OGM) develops surrogate simulators of head response to pumping, and then computes the spatially
distributed maximum groundwater extraction rates that will not cause saltwater intrusion from the
ocean. The soil and water Resource Optimization Module (ROM) uses those extraction rates as the
upper limits on groundwater abstraction while computing optimal cropping patterns and strategies
for the conjunctive of groundwater and surface water. Subsequent sub-sections provide more details.

2.2.2. Groundwater Simulation Model (GSM)

Figure 2 depicts a cross section of the study area. To simulate flow, this study employed the
calibrated MODFLOW-2005 groundwater simulation model reported previously [62]. The top-most
aquifer layer (Aquifer-1) is unconfined and underlain by a leaky confining layer. Immediately below the
confining layer is the confined Aquifer-2 layer, the major source of groundwater in the area. Aquifer-2
has thickness varying from 3.1 to 80.3 m and is underlain by impermeable clay or bedrock.
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Figure 2. Conceptual model of the study area at B-B’ cross-section (adapted from [62]).

Initial estimates of aquifer parameter values came from pumping-test data of 15 sites [64], and
other sources [62]. Model calibration and validation targets included observed groundwater-levels at
24 sites from 1997 to 2006, and 2007–2011, respectively Ref. [62]. The resulting calibrated and validated
parameters are the hydraulic conductivity of Aquifer-1 and Aquifer-2, vertical hydraulic conductivity
of the leaky confining layer, specific yield of Aquifer-1, storativity of Aquifer-2, groundwater pumping,
and aquifer recharge. Ref. [62] provides details of model calibration, validation, and sensitivity analysis.

This MODFLOW-2005 implementation enabled the prediction of aquifer head response to
groundwater abstraction. The MODFLOW-2005 model supported the development of Optimization
Model-1 discussed next.

2.2.3. Simulation-Optimization Groundwater Model (S-OGM)

The goal of this model was to mathematically determine, for agriculturally productive weather
seasons, sets of spatially distributed simultaneous maximum groundwater pumping rates that could
be extracted from existing wells without causing undesirable consequences. Figure 3 shows the general
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process that is involved in computing such a set of maximum simultaneous pumping rates. Step (Ia)
is preparation and validation of the previously described finite difference groundwater-flow model
(MODFLOW-2005) for the study area. Step (Ib) defines decision variables (groundwater pumping
extraction rates for each well and time period, and a group of decision variables), and state variables
(groundwater heads at selected aquifer control locations for each period). The SOMO1 module of
the SOMOS software maps simulator inputs and outputs to and from an optimization algorithm (the
Optimizer). SOMO1 also develops surrogate simulation equations that can compute groundwater
heads that result from a set of pumping rates. These surrogate simulators are discretized convolution
equations consisting of pumping rates and influence coefficients (a Response Matrix is an array
of such coefficients), as detailed in Section 2.2.3.1. During subsequent mathematical optimization,
the surrogates are used instead of the MODFLOW-2005 simulator to relate pumping rates to heads.
In Step (Ic), inputs to SOMO1 define the optimization problem objective function and constraints
(including upper and lower bounds on state variables, and individual and groups of decision variables).
Step (Id) invokes the Optimizer that solves the optimization problem. Finally, Step (Ie) reports the
optimal pumping strategy and resulting heads.

Int. J. Environ. Res. Public Health 2020, 17, x 6 of 21 

module of the SOMOS software maps simulator inputs and outputs to and from an optimization 

algorithm (the Optimizer). SOMO1 also develops surrogate simulation equations that can compute 

groundwater heads that result from a set of pumping rates. These surrogate simulators are 

discretized convolution equations consisting of pumping rates and influence coefficients (a Response 

Matrix is an array of such coefficients), as detailed in Subsection 2.2.3.1. During subsequent 

mathematical optimization, the surrogates are used instead of the MODFLOW-2005 simulator to 

relate pumping rates to heads. In Step (Ic), inputs to SOMO1 define the optimization problem 

objective function and constraints (including upper and lower bounds on state variables, and 

individual and groups of decision variables). Step (Id) invokes the Optimizer that solves the 

optimization problem. Finally, Step (Ie) reports the optimal pumping strategy and resulting heads. 

The below Subsection 2.2.3.1 illustrates a convolution equation, such as is formed by Step (Ib) 

of Figure 3. Subsequent Subsection 2.2.3.2 describes the mathematical optimization problem that S-

OGM solves. 

 

Figure 3. Schematic representation of integrated modeling framework for optimal land and water 

resources allocation to crops: (I) Simulation-Optimization Groundwater Model (S-OGM) for 

computing optimal groundwater abstraction strategies; and (II) Resources Optimization Model 

(ROM) for determining optimal cropping patterns and land and water resources allocations. 

2.2.3.1. Response Matrix Approach 

In groundwater simulation, a Response Matrix is an array of influence coefficients, each of which 

describes how a particular state variable will respond to a specific hydraulic stimulus. Each row of a 

Response Matrix has the coefficients of the discretized convolution equation that estimate one state 

variable’s value. For example, Equation (1) computes hydraulic head h at one location ô and time n 
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Figure 3. Schematic representation of integrated modeling framework for optimal land and water
resources allocation to crops: (I) Simulation-Optimization Groundwater Model (S-OGM) for computing
optimal groundwater abstraction strategies; and (II) Resources Optimization Model (ROM) for
determining optimal cropping patterns and land and water resources allocations.

The below Section 2.2.3.1 illustrates a convolution equation, such as is formed by Step (Ib)
of Figure 3. Subsequent Section 2.2.3.2 describes the mathematical optimization problem that
S-OGM solves.
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2.2.3.1. Response Matrix Approach

In groundwater simulation, a Response Matrix is an array of influence coefficients, each of which
describes how a particular state variable will respond to a specific hydraulic stimulus. Each row of a
Response Matrix has the coefficients of the discretized convolution equation that estimate one state
variable’s value. For example, Equation (1) computes hydraulic head h at one location ô and time n
in response to initial and background conditions and the pumping from all decision variables until
that time [14,65,66]. Each convolution equation is a substitute or surrogate simulator that accurately
predicts the groundwater head in confined aquifers [34]. Refs. [14,63] provide details of adapting use
of such equations within SOMO1 for application to nonlinear unconfined aquifers.

hô,n = hi
ô,n

+
n∑

k=1

M∑
û=1

∂h
ô,û,n−k+1

pû,k

put
û

(1)

where, h = hydraulic head (m MSL) at location ô at the end of time period n; ô = index denoting an
observation location at which system response is being evaluated; n = number of stress periods up to
the time for which head is computed; hi = background head that will exist at specified location and time
if no pumping occurs at the M candidate wells (m MSL); k = index for stress period; M = total number
of candidate wells at which groundwater can potentially be pumped from the aquifer; û = index
denoting a candidate pumping well location; ∂h

ô,û,n−k+1 = influence coefficient describing the effect of a
unit of groundwater pumping at pumping well location û in stress period k on the hydraulic head at
location ô by the end of time period n; pû,k = pumping rate (m3/day) at pumping well location û during
stress period k; and, put

û = magnitude of unit pumping stimulus (m3/day) in pumping well location
û that occurs during period one. SOMO1 used the calibrated MODFLOW-2005 to develop transient
influence coefficients ∂h

ô,û,n−k+1 by subjecting each candidate pumping well to a unit-pumping stimulus.
SOMO1 was used within the Simulation-Optimization Groundwater Model (S-OGM) described next.

2.2.3.2. Formulation of Simulation-Optimization Groundwater Model (S-OGM)

S-OGM, a Simulation-Optimization Groundwater Model, is designed to determine, for assumed
initial and boundary conditions, a set of maximum simultaneous physically feasible extraction rates
from existing pumping wells that will at least satisfy historic groundwater need, without permitting
seawater intrusion from the ocean. The groundwater management model determined simultaneous
optimal abstractions from 77 pumping wells [31 tapping unconfined aquifer (Aquifer-1) and 46 tapping
confined aquifer (Aquifer-2)]. Over the study area S-OGM for two seasons (monsoon season and
non-monsoon season) per year for the 1997–2011 period while ensuring that the resulting heads at
24 sites, pumping rates of individual wells, and total pumping constraints described below are satisfied.
The objective function of S-OGM is expressed as:

Maximize Qk =
77∑

û=1

Cp
kpû,k for k = 1, 2 for each year (2)

where, Qk = total groundwater extraction (m3) from 77 existing pumping wells during the kth stress
period (k = 1 for monsoon period, and k = 2 for non-monsoon period); pû,k = pumping rate (m3/day) of
the pumping well û during the kth stress period; and, Cp

k = coefficient to convert flow rate into volume.
Optimization was performed subject to the following constraints.

(i) Aquifer Head Constraint:

At 24 locations, aquifer head constraints establish lower and upper limits on aquifer hydraulic
heads (hô,k), at head control points, allowed to result from optimal pumping. In both aquifers, the
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lower bound of head was 1 m above the mean sea level to prevent seawater intrusion into the aquifer.
The upper bound of head was 2 m below the ground surface.

(ii) Constraints on Individual Wells and Total Pumping Capacity:

The pumping in each well cannot be injection and groundwater abstraction cannot exceed the
pumping capacity of a well. The lower bound of pumping was zero and the upper bound was the
pumping capacity. The upper bound on total system-wide pumping extraction is the sum of 77
well capacities.

(iii) Water Demand Constraint:

The total pumping from the basin should satisfy the total groundwater needs of the crops grown
in the study area. In this study, the right-hand side of Equation (3) is the average 1997–2006 seasonal
irrigation water demand.

77∑
û=1

Cp
kpû,k ≥WDk for û = 1, 2, 3, . . . . . . , 77 and k = 1, 2 for each year (3)

where, WDk = groundwater demand of the crops (m3) during the kth stress period (k = 1 for monsoon
period and k = 2 for non-monsoon period). A SIMPLEX linear programming (LP) algorithm [67],
available with GAMS is used here to compute the optimal solution to the above optimization
problem [68].

2.2.4. Formulation of Resource Optimization Model (ROM)

Figure 3 shows the procedures developed to determine optimal cropping patterns in Kharif, Rabi,
and Summer cropping seasons by maximizing net annual returns subject to relevant constraints. The
developed ROM code considered the conjunctive use of surface water and groundwater resources and
efficiently utilized the cultivable land to produce crops, without abstracting so much groundwater
that seawater would intrude into the aquifers. The data concerning existing seasonal crops, gross
irrigation requirements, cost of cultivation for different crops, and annual income from different crops
were obtained from the Directorate of Economics and Statistics, Odisha. Table 1 summarizes the area
covered and gross irrigation requirement for the crops presently cultivated in the study area during
Kharif season (mid-June to October-end), Rabi season (November to February-end), and Summer season
(March to mid-June). It is apparent from this table that the type of crops grown in the study area and
the areas covered by the crops vary considerably from one season to another. The gross irrigation
requirements of the crops range from 0.36 to 0.48 m in the Kharif season, 0.18 to 2.04 m in the Rabi
season, and 0.24 to 0.54 m in the Summer season. Further, the largest water requirements are for the
sugarcane (2.04 m) and paddy (1.44 m) crops grown in the Rabi season.

The ROM resource management objective function was to maximize total net annual
economic return:

Max Z =
3∑

i=1

26∑
c=1

(PcYi,c −Cc)Ai,c (4)

where, Z = net total annual return (Rs.); Pc = market price of the cth crop (Rs./kg); Yi,c = yield of the cth
crop (kg/ha) in the ith type of land (ha); Cc = cost of cultivation including irrigation cost per unit area
for the cth crop (Rs./ha); Ai,c = area under the cth crop in the ith type of land (ha); i = index denoting
land type (1 for high land, 2 for medium land, and 3 for low land); and, c = index for crop type.
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Table 1. Area covered and Gross Irrigation Requirement for the crops grown in Kharif, Rabi, and Summer
cropping seasons.

Crop Growing Season
(Period) Type of Crop Area Covered (ha) Gross Irrigation

Requirement (m)

Kharif Season
(mid-June to
October-end)

Paddy 22,893.37 0.36

Vegetables 4973.34 0.48

Rabi Season
(November to
February-end)

Cereals
Paddy 2919.8 1.44
Wheat 28.34 0.456
Maize 16.34 0.66

Pulses

Green Gram 5870.1 0.18
Black Gram 7773.6 0.18
Horse Gram 640.2 0.3

Gram 52.69 0.3
Cow Peas 45.6 0.384

Oilseeds

Groundnut 1788.4 0.42
Sesamum 396.34 0.24
Mustard 631.34 0.42

Sunflower 177.52 0.36
Linseed 105.6 0.24

Vegetables

Potato 658.94 0.48
Onion 115.36 0.72

Tomato 267.7 0.48
Other Vegetables 1812.3 0.42

Spices
Chilli 247.3 0.312
Garlic 71.08 0.54

Coriander 274.23 0.36

Sugarcane 376.9 2.04

Summer Season
(March to mid-June)

Sesamum 41.23 0.24
Okra 85.7 0.48

Cucumber 94.5 0.36
Watermelon 95.6 0.54

Optimization was performed using the following constraints.

(i) Constraints on Individual Well and Total Pumping Capacity:

The pumping capacity of each well was used as the upper limit for extraction at that well. The
upper limit on total groundwater pumping is the sum of the individual well capacities.

(ii) Land Availability Constraint:

Only crops that were suitable for a particular land category (high, medium, and low) were
available for assignment to that land category. In each season, the total land area assigned to all crops
within cultivable land category i, cannot exceed Ai, the total cultivable land of that category. Because
two crops are suitable for the Kharif season and 24 additional crops are suitable for Rabi and Summer
seasons, land availability constraints are expressed as:

For Kharif season:
2∑

c=1

Ai,c ≤ Ai for i = 1, 2, 3 (5)
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For Rabi and Summer seasons:

26∑
c=3

Ai,c ≤ Ai for i = 1, 2, 3 (6)

where, Ai,c = area under the cth crop in the ith type of land (ha), Ai = total cultivable area of the ith type
of land (i = 1 for high land, i = 2 for medium land, and i = 3 for lowland), and Ai,c ≥ 0 for all i and c.

(iii) Water Availability Constraint

In each stress period, the total provided irrigation water cannot exceed the sum of groundwater
pumped and SW provided during that stress period. This equals total maximum permissible
groundwater extraction from all of the pumping wells plus the maximum surface water extraction from
all the sources, such as river, canal, surface lifts, tank storages, etc. The water availability constraints
are expressed as:

For Monsoon (Kharif season) period:

3∑
i=1

2∑
c=1

Wi,cAi,c ≤ GWk=1 + SWk=1. (7)

For non-monsoon (Rabi and Summer seasons) period:

3∑
i=1

26∑
c=3

Wi,cAi,c ≤ GWk=2 + SWk=2 (8)

where, Ai,c = area under the cth crop in the ith type of land (ha), Wi,c = water requirement of the cth

crop in the ith type of land (ha), GWk =
77∑

û=1
Cp

kpû,k= maximum S-OGM groundwater extraction via

all candidate wells in the stress period k = 1 (monsoon period) or k = 2 (non-monsoon period), and
SWk = maximum surface water utilized for irrigation historically in the kth stress period.

For each of years 2004–2011, this optimization problem was solved using LP via the MATLAB
optimization tool. Here, we discuss the optimization that utilized the information from 2009. That
data included utilizable crops, irrigated crop yield, cultivation cost, including irrigation cost per
unit area, net annual return, seasonal gross irrigation requirement per unit crop area, upper limit
on total surface water diversion, and maximum permissible groundwater abstraction (from the
Simulation-Optimization Groundwater Model). The LP model output was the maximum net annual
benefit from the cultivated crops, and the associated optimum land and water utilization.

3. Results and Discussion

3.1. Relations between Rainfall, River Stage, and Groundwater Levels

Figure 4a shows the monthly rainfall depths in the study area over 21 years (1990–2010) at six
rainfall stations. The rainy season spans from mid-June to the end of October. The greatest rainfall
variation occurred from May to October, and the least variation occurred from November to April.
Satyabadi station had the highest rainfall in August. Nimapara, Gop, and Satyabadi stations had
less rainfall in December and January than the other three stations. Figure 5a also shows monthly
variation in Kushabhadra River water stage at the Nimapara gauging station during 1990–2011. The
stream stage varied significantly with time. The minimum river stage occurred during December–May
when rainfall is lowest. The maximum river stages occurred during July–October, followed by June
and November. The standard error bars show that the greatest river stage variability was in August,
followed by July, September, October, and June. The river stage varied little from November to May.
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Aquifer-1, and (c) between river stage and groundwater levels.

Figure 4b shows that during the 14 years of 1997–2010, rainfall greatly influenced Aquifer-1
groundwater levels—the regression R2 values vary from 0.46 to 0.79. However, Aquifer-2 head was
much less affected by rainfall—the R2 values range from 0.30 to 0.59.

Figure 4c shows that monthly mean measured Kushabhadra River stages strongly affected
monitored Aquifer-1 heads. River stage at Balianta affected Aquifer-1 heads with R2 values ranging
from 0.46 (site O-1) to 0.71 (site O-16). River stage at Nimapara affected head with R2 values of 0.49 (site
O-15) to 0.74 (site O-7). However, the river stage has slight to no influence on Aquifer-2 groundwater
levels, with R2 varying from 0.03 to 0.39.

In summary, recharge from rainfall and recharge from the Kushabhadra River significantly
contribute to the groundwater in an unconfined aquifer (Aquifer-1). Rainfall and the river contribute
much less water to Aquifer-2.

3.2. Groundwater-Flow Simulation Results Computed by MODFLOW-2005

The accuracy of the model was graphically examined by the simultaneous plots of simulated and
observed groundwater levels while using the pooled data (for each well and in each stress period)
of groundwater levels at 13 shallow wells (Figure 5a) and 11 deep wells (Figure 5b). The correlation
coefficient values of 0.89 (unconfined aquifer) and 0.87 (confined aquifer) signify good correlation
between the simulated and observed groundwater levels. Comparing simulated versus observed
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hydrographs at individual wells shows that the simulation model represents groundwater level trends
well at all sites, validating the model’s prediction ability [62].
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aquifer and (b) confined aquifer during model validation period (modified from [62]).

Ref. [62] reported the calibration of the groundwater-flow simulation model. Both statistical and
graphical indicators suggested a reasonably good calibration. All of the calibrated aquifer property
values are within the ranges of observed field values [62]. The calibrated hydraulic conductivity values
vary from 8.3 to 48.6 m/day in Aquifer-1, and from 13 to 85 m/day in Aquifer-2. Calibrated Aquifer-1
specific yield ranges from 0.03 to 0.23 and Aquifer-2 storage coefficient values vary from 1.46 × 10−6

to 7.76 × 10−4. Calibrated aquifer recharge ranges from 213.7 to 333.7 mm/year. Simulated Aquifer-1
groundwater-levels for pre-monsoon and post-monsoon seasons indicated that the groundwater flow
direction in the unconfined aquifer is from north to east in the northern portion of the study area,
and from north to south in the southern part of the study area. The groundwater flow direction
in the confined aquifer (Aquifer-2) is from north to south. Sensitivity analysis revealed that model
outputs are the most sensitive to changes in the confined aquifer hydraulic conductivity, followed
by unconfined aquifer hydraulic conductivity, semi-confining layer vertical hydraulic conductivity,
unconfined aquifer specific yield, confined aquifer storativity, and unconfined aquifer recharge [62].

The recharge from rainfall considerably contributes to area groundwater resources. Most of
the 4.41 Mm3 recharge from the Kushabhadra and Bhargavi Rivers to Aquifer-1 occurs during
the post-monsoon season. Groundwater discharge to rivers occurs as baseflow, mostly within the
middle and downstream river reaches—0.85 Mm3 and 1.12 Mm3 during the pre-monsoon season and
post-monsoon season, respectively.

3.3. Maximum Groundwater Abstraction Strategy Computed by S-OGM

The objective function values computed by S-OGM are the maximum total seasonal extraction
rates from 77 existing wells that satisfy constraints and will not cause salt-water intrusion into aquifers
near the coast. For 2009 conditions, these totals are 19.25 × 106 m3 during the monsoon season (Stress
Period-1) and 37.22 × 106 m3 during the non-monsoon season (Stress Period-2). Figure 6 shows both
seasonal rates for each well. The non-monsoon period’s pumping rate of each well is larger than the
monsoon period’s pumping rate.
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Figure 6. Monsoon season (Stress Period-1) and non-monsoon season (Stress Period-2) optimal pumping
rates for the existing 77 wells in 2009, obtained from S-OGM.

Figure 7 shows the total optimal seasonal groundwater withdrawals for the conditions of 1997–2011
computed by S-OGM. The greatest total non-monsoon extraction (46.5 × 106 m3) occurs during 2004,
followed by 2001 and 2006. During the monsoon season, the greatest total abstraction (27 × 106 m3)
occurs in 2000, followed by 2003 and 2005.
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Figure 7. Seasonal total optimal groundwater withdrawals for 1997 to 2011, computed by S-OGM.

The hydraulic head values computed by S-OGM to occur at the end of each season satisfy the limits
imposed within the maximum pumping optimization problem. Table 2 shows that all of the heads are
above the −1 m lower limit needed to prevent seawater intrusion. Because groundwater pumping is
greater during the non-monsoon period (Stress Period-2); heads at the end of Stress Period-2 are lower
than the heads at the end of Stress Period-1.
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Table 2. Optimal hydraulic heads (m MSL) at the head control locations.

Head Control
Location Aquifer Layer Row Column Optimal Head

(Stress Period-1)
Optimal Head

(Stress Period-2)

1 Aquifer-1 17 13 12.78 12.3
2 Aquifer-2 42 44 12.57 12.25
3 Aquifer-2 44 51 10.26 9.87
4 Aquifer-2 43 51 12.15 11.78
5 Aquifer-1 45 31 12.14 11.67
6 Aquifer-2 49 17 6.25 5.87
7 Aquifer-1 50 17 12.01 11.78
8 Aquifer-1 53 45 8.15 8.02
9 Aquifer-1 58 54 9.68 9.23
10 Aquifer-2 58 55 10.8 8.55
11 Aquifer-1 65 48 8.18 7.45
12 Aquifer-1 16 24 8.45 7.56
13 Aquifer-1 68 40 11.15 10.8
14 Aquifer-1 79 33 11.25 10.5
15 Aquifer-1 81 24 8.09 7.6
16 Aquifer-2 64 24 9.45 8.65
17 Aquifer-2 50 41 4.41 4.2
18 Aquifer-2 17 40 5.06 4.5
19 Aquifer-2 19 41 6.43 5.87
20 Aquifer-1 23 23 7.53 6.45
21 Aquifer-2 32 20 5.03 4.5
22 Aquifer-1 33 47 4.17 4.05
23 Aquifer-1 37 23 5.08 4.6
24 Aquifer-2 41 41 8.45 7.65

It is worth mentioning that the groundwater pumping maximization problem is designed in order
to determine the maximum simultaneous pumping at all wells that will not induce salt-water to intrude
into the aquifer. Determining the actual optimal seasonal pumping from each well depends upon
the cropping pattern for that season. Consequently, it is necessary to use the Resource Optimization
Model (ROM) to determine the optimal cropping pattern and groundwater pumping rates needed to
maximize net benefits from the available land and water resources.

3.4. Optimal Plan for Land and Water Resources Computed by ROM

The Resource Optimization Model (ROM) estimates a Rs. 3.7 billion total net annual income
from the optimal cropping pattern proposed for 2009 conditions. Table 3 shows the contributing
optimal allocation of individual crops to different land types, the optimal allocation of surface
water and groundwater to different crops, and the net annual benefits from the optimal cropping
patterns. The total gross annual irrigation water requirement is the sum of the annual total of
487.58 × 106 m3–172.05 × 106 m3 during the Kharif (monsoon) season and 315.52 × 106 m3 in the Rabi
plus Summer season. Much more rice area is assigned for the Kharif season than for the Rabi season,
because the rice irrigation requirement per unit area is greater during the non-monsoon (Rabi) season.
The Rabi season has more area being allocated to groundnut, green gram, and other vegetables that
require less water than rice.

Figure 8a–c show the optimal allocation of available land (high land, medium land, and low land)
to different crops grown in Kharif, Rabi, and Summer seasons. These figures reaffirm that the ROM
(Resource Optimization Model), solved by LP, allocates more of the available land to rice during the
Kharif season when the southwest monsoon brings rain and reduces dependence on groundwater.
During the Rabi season, ROM emphasizes allocation to crops having low water demand and providing
greater net income (vegetables, green gram, black gram, horse gram, groundnut, mustard, garlic, and
sunflower). For high land, ROM allocates more area to leguminous crops (green gram, black gram,
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and horse gram) than to rice (Figure 8a, Rabi season). In medium land and low land, more total area is
allocated to vegetables, potatoes, and sugarcane than to rice (Figure 8b,c, Rabi season).

Table 3. Optimal cropping patterns, gross irrigation requirement, and annual income computed
by ROM.

Season Crop Optimally Allocated Area (ha) Gross Irrigation
Requirement

(106 m3)

Annual
Income
(107 Rs.)High

Land
Medium

Land Lowland Total

Kharif Rice 11,231.52 11,167.37 14,031.2 36,430.09 131.15 92.90
Vegetables 2933 5590 8523 40.91 71.93

Rabi

Rice 896 7590.8 3916 12,402.8 178.60 17.36
Wheat - 36.04 - 36.04 0.16 0.03
Maize - 24.54 - 24.54 0.16 0.02

Green Gram 1785.1 - - 1785.1 3.21 1.68
Black Gram 4663.6 - - 4663.6 8.39 6.72
Horse Gram 485.2 - - 485.2 1.46 0.03

Gram 72.69 - 72.69 0.22 0.09
Cow Peas - 68.6 - 68.6 0.26 0.06

Groundnut 794.4 - - 794.4 3.34 1.15
Sesamum - - 195 195 0.47 0.08
Mustard - - 405 405 1.70 0.04

Sunflower 192.2 - - 192.2 0.69 0.50
Linseed - - 105.6 105.6 0.25 0.01
Potato - 1258.94 781.84 2040.78 9.80 8.12
Onion - 514.36 175.36 689.72 4.97 4.16

Tomato - 187.7 477.7 665.4 3.19 5.29
Other Veg - 6571.5 10,976.3 17,547.8 73.70 147.75

Chilli 282.3 - 297.3 579.6 1.81 1.94
Garlic - 95.08 - 95.08 0.51 0.58

Corriander 304.23 - - 304.23 1.10 0.63
Sugarcane - 798.9 - 798.9 16.30 1.95

Summer

Sesamum - - 78.7 78.7 0.19 0.05
Okra - - 258.5 258.5 1.24 0.22

Cucumber - - 387.5 387.5 1.40 1.05
Water melon - - 445.5 445.5 2.41 1.78

Total 487.58 366.13

These findings suggest that the ROM provides reasonable results in terms of optimal annual
income and the utilization of available land and water resources. Rice requires more water than other
crops, and produces less profit per unit area than some other crops. Thus, the ROM suggests reducing
the area currently used for rice cultivation and increasing areas for other suitable crops.

In other words, rice cultivation should be minimized, especially during the Rabi season, and
crop diversification should be encouraged. These actions will enhance annual income and conserve
water resources.

Furthermore, using model results to aid water use decision-making can help assure farmers of a
dependable supply of irrigation water throughout the year. This will enable farmers to adopt more
sustainable cropping systems and to grow crops and vegetables throughout the year without sacrificing
profit or livelihood. Farmers’ livelihoods will improve by improving the sustainable utilization of
basin’s land and water resources.
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4. Conclusions

A numerical groundwater-flow simulation model for the Kushabhadra–Bhargavi River Delta
of Eastern India was applied to quantitatively evaluate the connection between groundwater
pumping rates and groundwater levels during pre-monsoon and post-monsoon seasons. By using
convolution techniques to link the simulation model with an optimization algorithm, a resulting
simulation-optimization (S-O) model used linear programming (LP) optimization to solve groundwater
hydraulic optimization management problems. For the monsoon and non-monsoon seasons of
1997–2011, the S-O groundwater management model determined the optimal groundwater extraction
patterns and maximum pumping rates from the existing irrigation wells that would satisfy specified
management constraints. One constraint assured that any increased groundwater extraction would
not induce saltwater intrusion into the aquifer from the ocean.

The computed maximum permissible seasonal groundwater withdrawal from the existing
pumping wells (46.5 × 106 m3) was for the non-monsoon season of 2004, followed by the non-monsoon
seasons of 2001 and 2006. For monsoon seasons, the greatest computed groundwater extraction was
27× 106 m3 for year 2000, followed by 2003 and 2005. In other words, the maximum permissible seasonal
groundwater abstractions were higher during the non-monsoon months of November through May,
than through the monsoon months of June–October. The computed maximum pumping abstraction
values were used as upper limits in the second optimization model.

Another optimization model was formulated to determine the optimal seasonal cropping patterns
and associated water allocations, which would maximize the basin’s net annual economic return,
subject to suitable land and water related constraints. This resource optimization model considered
the conjunctive use of surface water and groundwater resources, the suitability of available cultivable
land, and the types of crops historically grown in the basin. By using LP, this optimization model
provides reasonable results in terms of annual income and utilization of available land and water
resources. The optimal cropping patterns of the non-monsoon Rabi and Summer seasons have larger
gross irrigation requirements than those of monsoon Kharif season. For 2009, the total annual gross
irrigation requirement was estimated at 487.58 × 106 m3.
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Assuming 2009 conditions and unit costs and benefits, the optimal net annual economic return
from the optimal cropping patterns and optimal water allocations are estimated to be Rs. 3.7 billion.
The resource optimization model results suggest a reduction in the area that is allocated to rice and an
increase in the area allocated to leguminous crops, sugarcane, potato, vegetables in the non-monsoon
Rabi season. Rice cultivation consumes more water and provides less economic benefit per unit area.
Reducing the Rabi season rice and diversifying crops would conserve vital natural resources and
increase economic benefit.

In summary, the developed integrated simulation-optimization modeling framework and approach
can aid the long-term planning and management of water resources (surface water and groundwater).
The approach helps devise best management strategies for the conjunctive utilization of groundwater
and surface water resources. Such scientific approaches help fill the gap between complex water
resources modelling and real-world decision making. The demonstrated methodology can be replicated
elsewhere for developing efficient groundwater management strategies to ensure groundwater
sustainability under changing climatic conditions.
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