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Abstract: The identification of unit hydrographs and component flows from rainfall, evapotranspiration
and streamflow data (IHACRES) model has been proven to be an efficient yet basic model to simulate
rainfall–runoff processes due to the difficulty in obtaining the comprehensive data required by
physical models, especially in data-scarce, semi-arid regions. The success of a calibration process
is tremendously dependent on the objective function chosen. However, objective functions have
been applied largely in over daily and monthly scales and seldom over sub-daily scales. This study,
therefore, implements the IHACRES model using ‘hydromad’ in R to simulate flood events with
data limitations in Zhidan, a semi-arid catchment in China. We apply objective function constraints
by time aggregating the commonly used Nash–Sutcliffe efficiency into daily and hourly scales to
investigate the influence of objective function constraints on the model performance and the general
capability of the IHACRES model to simulate flood events in the study watershed. The results of the
study demonstrated the advantage of the finer time-scaled hourly objective function over its daily
counterpart in simulating runoff for the selected flood events. The results also indicated that the
IHACRES model performed extremely well in the Zhidan watershed, presenting the feasibility of the
use of the IHACRES model to simulate flood events in data scarce, semi-arid regions.

Keywords: data-driven modeling; objective function selection; Zhidan watershed; IHACRES;
hydromad; China

1. Introduction

Arid and semi-arid regions are recurrently prone to be dominated by extreme rainfall events with
a high degree of spatial variability, usually resulting in rapid response profiles [1]. Thus, accurate
modeling of these events would facilitate proper flood forecasting in these areas to save lives and
property. Flood modeling remains one of the most challenging and important tasks of operational
hydrology due to spatial and temporal variations in rainfall distribution and the tremendously complex
and highly nonlinear nature of the rainfall–runoff relationship [2]. The ability to model river flow
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quickly and precisely is of critical importance in flood modeling [3], and the need to better understand
the earth’s hydrological system has led to the rise of numerous conceptual and physically based models.

Physically based models assume that the nature of the physical factors affecting streamflow
variations in a catchment are known or that some realistic approximations of the underlying physics
can be generated, and thus require detailed knowledge of watershed characteristics, information that
commonly is not known a priori [4]. This makes the application and calibration of conceptual and
physically based models associated with several difficulties: requiring sophisticated mathematical
tools, considerable amounts of calibration data and some degree of expertise and experience with the
model [5–7]. They are also characterized by often possessing a significant number of parameters which
could be challenging to measure or estimate due to insufficient field data [8,9].

The fact that the comprehensive hydrological data required by conceptual or physically based
models are rarely available in most watersheds has led to the rapid development of data-driven models
(DDMs) in hydrology and environmental sciences. Various developments in the recent data-driven
computing models have revealed their immense modeling capabilities amidst limited and flawed
input space [10]. This is because they are based on analyzing the data about a system without explicit
knowledge of the physical behavior by using machine-learning algorithms to determine the relationship
between a system’s inputs and outputs [11–13]. Therefore, DDMs require the least amount of different
kinds of data for model calibration, are often cheaper and simpler to implement and many times with
fewer parameters than their physically based counterparts [14,15].

The identification of unit hydrographs and component flows from rainfall, evapotranspiration
and streamflow data (IHACRES) model, a parsimonious hybrid conceptual-data-driven rainfall–runoff

model [16], developed by the Institute of Hydrology and the Australian National University’s Center
for Resource and Environmental Studies [17] has been proven to be an efficient yet basic rainfall–runoff

model to better simulate rainfall–runoff processes. It uses the simplicity of the metric model, requiring
typically between 5 and 8 parameters, to reduce the parameter uncertainty inherent in hydrological
models and has a high predictive accuracy, making it easier than complex models to be applied in
poorly gauged, arid and semi-arid regions [1,16,18–20].

However, the model has seldom been used in modeling flood events, with these previous studies
mostly focused on the performance of the model using continuous daily or monthly rainfall and
runoff data especially in semi-arid regions (see Croke and Jakeman [1] and Ye et al. [21]). Studies
performed using the IHACRES in event simulations are either not representative enough to ascertain
the versatility and robustness of the model (for example, Abushandi and Merkel [22]) or resulted in
unsatisfactory model results (work by Kan et al. [23]).

The time step dependency of parameters in hydrological modeling has been studied over time.
These studies have often highlighted the performance of models using parameters derived from the
one-time step for simulating runoff at another time step (mostly from daily or monthly time steps to
sub-daily time steps (for example, Littlewood and Croke [24], Reynolds et al. [25], Bennett et al. [26],
Littlewood et al. [27] and Littlewood and Croke [28]). The modeling in these studies, however, is done
employing a somewhat long calibration data time series to obtain parameters. Then the temporal data
resolutions are up-scaled or downscaled to compare parameter stability and independence, mostly
on a continuous modeling basis and, therefore, cases where sub-daily event data are available, but in
limited supply have not been researched.

The assessment of hydrologic model behavior and performance is generally made and reported
through comparisons of simulated and observed variables, which in the case of hydrology are
comparisons made between simulated and measured streamflow at the catchment outlet [29], referred
to as the calibration process. Objective functions or ‘goodness of fit’ criteria, which are mathematical
measures, are used to provide an objective assessment of the “closeness” of the simulated behavior
to the observed measurements [29]. Servat and Dezzetter [30] define an objective function as a
reference numerical “quantity” enabling calibration to be improved. Objective functions are used in
the generation of the response surface or objective criteria, which in many cases are geared towards
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minimizing or maximizing the selected objected function to measure the performance of the model
calibration [31,32]. In general, the purpose of the objective function in an optimization procedure is
to generate parameters in the response surface to obtain the largest or least objective function value
depending on its acceptable optimal ranges. Research has shown that the success of a calibration process
is tremendously dependent on the objective function chosen as a calibration criterion [33,34]. That
model performance is more closely related to the model structure and the objective function used than
model complexity or calibration data length [31]. It has also been indicated that simulated hydrographs
can be quite different, depending on which criterion is selected as the objective function [35].

The Nash–Sutcliffe Efficiency (NSE or E or R2) [36] is a very commonly used objective function
and hydrological model performance assessment measure. It is recommended for use in literature
by ASCE [37], Legates and McCabe [38] and Moriasi et al. [39] and suggested as the best objective
function for reflecting the overall fit of a hydrograph by Servat and Dezzetter [30]. The application of
the Nash–Sutcliffe efficiency (NSE) measure as the objective function in any optimization process is to
iteratively modify the model parameters in the parameter response space to obtain the highest NSE
value to improve the model simulation.

Legates and McCabe [38] stated, however, that NSE is overly sensitive to extreme values because
the differences between the observed and predicted values are calculated as squared values. Therefore,
larger values in a time series are strongly overestimated, whereas lower values are neglected. An
example in flood event modeling is when there is some challenge of a model to simulate peak flow
(one extreme outlier) and the NSE obtained is unsatisfactory due to the consideration of the extreme
low or high simulated peak flow and the rest of the accurately simulated low flow periods at the start
and end of the event are neglected by the NSE measure. Or in contrast, where the NSE estimated is
satisfactory due to the accurate simulation in peak flow and the poor low flow simulations at the start
and end of the event are neglected.

In addition. in much literature, NSE has been estimated mostly on daily and monthly scales
(literature review by Moriasi et al. [39]), where the NSE is estimated over the entire time–space.
Viney et al. [40] also state that modelers mostly calibrate their models using an objective function at the
daily or monthly time step. This means that the temporal structure of the NSE objective function is
applied to be maximized over daily or monthly scales over the entire calibration period. In such cases,
using NSE at a monthly scale as calibration criteria on one (1) year of data of daily time step, estimates
the NSE over a 12-month time scale, neglecting the three hundred and sixty-five (365) days built into
the data. This condition, in cases of modeling with limited data, especially in data-scarce regions, may
result in poor model performance because of the neglect of the intrinsically fine temporal resolution in
the data. In such cases, a refined form of the objective function is essential; that is, the NSE estimated
at a much finer scale is recommended to ameliorate this oversensitivity.

Hydrological modeling studies have generally revealed poor model performance results in the
Zhidan catchment, a semi-arid catchment located in Shaanxi Province in northern China, as observed
by Miao et al. [41], Liu et al. [42] and Li et al. [43]. However, most of the studies have involved the
application of distributed or semi-distributed physical models where better model performance means
the requirement of additional calibration data, which could be unavailable.

To the best of our knowledge, studies involving time aggregation of objective functions to obtain
improved model performance when the commonly used model simulation processes fail due to data
limitations are lacking. This study, therefore, implements the IHACRES model to simulate a series of
flood events over some years representing changes in land-use and landcover settings in the Zhidan
catchment using the Nash Sutcliffe Efficiency as the objective function of the optimization procedure
for parameter generation and fitting. The study applies objective function constraints on the Nash
efficiency objective function (R2 or rsq in this study) by time aggregating it into daily (rsq_daily) and
hourly (rsq_hourly) objective functions during the modeling process to investigate (1) the influence of
objective function constraints on the model performance and (2) the general capability of the IHACRES
model to simulate flood events in a data-scarce semi-arid region.
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This study focuses on limited data and a data-driven model because of data availability gaps
in many parts of the world, especially in semi-arid regions where data are considerably scarce, and
yet there is the need to properly understand watershed processes in light of climate change impacts,
vulnerability and adaptation.

2. Materials and Methods

2.1. Study Area

The study was conducted in the Zhidan watershed, geographically located in Shaanxi Province,
China (on latitude 36◦49′ N, longitude 108◦46′ E) [44]. The watershed (a subset of the Yellow River
watershed) is about 774 km2 [41] and includes a main river length of 81.3 km with an average elevation
of approximately 1230 m [44]. The area is a mountainous catchment with scant vegetation; the soil
texture of the catchment consists of loess soil, silt soil and saline soil. As a result, it suffers from
severe soil erosion [23,44]. The area lies in the middle temperate arid region and experiences a
continental monsoon climate classification according to the Köppen–Geiger climate and Kan et al. [23].
The watershed has six meteorological stations and one hydrometeorological station (outlet) located
downstream of the river (Figure 1).
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the river network with the meteorological stations and the hydrometeorological station (outlet).

2.2. Data

Data on yearly flood events that occurred in the study watershed for the period of 2000–2010 in
the form of hourly average areal rainfall and hourly point streamflow data at the catchment outlet
for each flood event of each year were obtained from the local hydrological bureau of the Zhidan
watershed. In addition, daily evapotranspiration data in the watershed from 2000–2010 were obtained
and transformed into hourly evapotranspiration by simple disaggregation (by dividing the daily values
by 24, as done by Bennett et al. [26] with rainfall data) for use in this study. This was done because
hourly evapotranspiration data were unavailable during this study, and the identification of unit
hydrographs and component flows from rainfall, evapotranspiration and streamflow data (IHACRES)
model requires temperature or evapotranspiration data for model calibration. The Zhidan watershed
is considered data-scarce because continuous time series data in the watershed over a long period
(data such as those before the 2000s and after 2010) are unavailable. For example, hourly data (rainfall
and runoff only) were available for only the flood events for the period of 2000–2010 without hourly
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data on evapotranspiration for the flood events. In addition, the continuous-time series of daily data
available (which is available from 2000 to 2010) is mostly incomplete with missing data. Furthermore,
another consideration of data limitation in the Zhidan watershed is the short duration of the flash
floods, which occur in the watershed due to its semi-arid climate. These flood events have only a few
data points that pose challenges to models to adapt to the quick runoff response in the watershed.

Six flood events with limited data (5 events with less than 72 h of data and 1 event with less than
24 h of data) spanning some years showing different landcover changes in the watershed were selected.
This was implemented to clarify the reason for the methodology applied in this study (that is, the need
for time aggregation of objective functions in modeling processes) and to investigate the flexibility and
robustness of the IHACRES model to simulate flood events.

2.3. Methods

Exploratory data analyses (EDA) in this study in the form of tables and graphs were performed
on the data to have a first view of the rainfall–runoff behavior in the study watershed in terms of the
rainfall and runoff characteristics to assess the changes taking place in the catchment better and to
understand the flood processes of the Zhidan study watershed.

The IHACRES model comprises two modules in series (a nonlinear loss module and a linear
routing module): the first module operates nonlinearly to calculate effective rainfall (that portion
which eventually reaches the stream prediction point) from total rainfall and evapotranspiration or
temperature data as a surrogate (nonlinear loss module) [1,45]. Various versions of the IHACRES
nonlinear loss module have been developed by Ye et al. [21] for ephemeral streams, Post and
Jakeman [46] for assessing different catchment attributes and hydrological response relationships and
Evans and Jakeman [47] first introduced the catchment moisture deficit (CMD) version which was
revised by Croke and Jakeman [16].

The remaining module of the IHACRES model operates linearly to convert and route effective
rainfall to total streamflow, having partitioned it into quick and slow flow components through
any configuration of stores in parallel or series [1,45]. The configuration of stores is identified from
the time series of rainfall and discharge. The configuration of stores is typically either one store
only, representing ephemeral streams or two in parallel, for catchments with significant baseflow
components, allowing baseflow or slow-flow to be represented as well as quick flow [1]. Only rarely
does a more complex configuration than this improve the fit to discharge measurements [48]. The
generic structure of the IHACRES model is presented in Figure 2.
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The IHACRES model has six (6) parameters used in runoff simulation with an additional two (2)
parameters for ephemeral streams [20,46]: the catchment drying rate at a reference temperature, τw,
which is a time constant for the decline in the catchment wetness index, the temperature modulation
parameter, f , which regulates the degree of evaporation dependence of the loss time constant, the mass
balance constant, c, which is selected to conserve the mass-balance of the catchment, the quick flow
recession time constant, τq, the slow flow recession time constant, τs, and the proportion of effective
rainfall which becomes slow-flow, Vs. For ephemeral streams [21]: the exponential loss parameter,
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p, to account for further loss of rainfall in the catchment and the soil moisture index threshold, l, a
nonzero threshold value for rain to give streamflow.

The IHACRES model was incorporated into an open software environment for hydrological model
assessment and development called ‘hydromad’ (Hydrological Model Assessment and Development)
run in the R software system environment. The ‘hydromad’ package is focused on a top-down, spatially
lumped, empirical approach to environmental hydrology [49].

In addition, the ‘hydromad’ package provides a set of functions that work together to construct,
manipulate, analyze and compare hydrological models [50]. The class of hydrological models
considered are dynamic (typically at a daily time step), spatially aggregated conceptual or statistical
models [50]. The notable hydrological models incorporated into ‘hydromad’ include IHACRES
catchment wetness index (CWI) model, IHACRES catchment moisture deficit (CMD) model, Sacramento
soil moisture accounting model, the modele du Genie Rural a 4 parametres Journalier (GR4 J model), the
Australian water balance model (AWBM), the single-bucket models of Bai et al. [51] and a degree-day
factor snowmelt model of Kokkonen et al. [52].

The ‘hydromad’ package includes numerous varying routing models and several different
optimization algorithms to simulate runoff from input data of rainfall, temperature/potential
evapotranspiration and streamflow making it very efficient for this purpose. Details of the ‘hydromad’
package can be found in Andrews at al. [50]. The implementation of this study was done in R version
3.6.1 [53,54] using the formatR [55], zoo [56], latticeExtra [57], polynom [58], car [59], Hmisc [60],
reshape [61], dream [62], coda [63], DEoptim [64], chron [65], hydromad [66] and sensitivity [67]
packages with all their dependencies. The daily evapotranspiration data acquired were transformed
by simple disaggregation into hourly evapotranspiration data (as done by Bennett et al. [26] with
rainfall data) to use in this study since the temporal data resolution was in hours. We implemented the
IHACRES CWI model for this study and the Nash–Sutcliffe Efficiency (R2 in IHACRES and ‘hydromad’)
as the objective function.

The model implementation in RStudio [68] was initialized by importing the data (a time series in
this case) into the program. This was done after the installation and loading of the required R packages
necessary for the success of the model application in the R statistical software environment. The time
series imported into R had to be in a usable format. This means the structure of the imported data
should be recognized by R in the way the user intends, especially in the date format and data units for
the purpose at hand. For example, when data considered as a time series by a user was imported into
the program, R may recognize the data as a data frame with the date column as factors as witnessed in
this study. Therefore, the user needs to transform the imported data into a time series in R to be able to
be used for the intended purpose. Since the data used in this study were hourly, the date column in
this study was transformed into an R recognizable format using the chron package with the POSIXct
function and setting the time zone of the imported data. The zoo package was then used to transform
the data into an R available time series and also set the time resolution frequency. This allows you to
plot and visualize the imported data properly in R.

In addition, ‘hydromad’ model fitting functions require that rainfall and streamflow were given
in the same units [49]. Therefore, the runoff in m3/s, was converted to mm/hour, the same units as the
rainfall data in this study. The conversion of the runoff from m3/s to mm/hour was done by averaging
the flow volume over the watershed area (given in km2); which must be applied when converting
between measures of depth and measures of volume. The ‘hydromad’ model object to be applied for
the modeling purpose was then specified.

At this stage, the Nash–Sutcliffe efficiency measure (NSE or E or R2) [36] calculated as:

NSE or R2 = 1−

∑n
i = 1(Oi − Pi)

2∑n
i = 1

(
Oi −O

)2 . (1)
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where O = observed values, P = predicted values, O = mean observed values and n = number of cases,
with R2 ranging from −∞ to 1 and R2 > 0.50 considered acceptable [39], was used as the objective
function in this study. This means that the R2 was used in the optimization procedure as the stopping
criteria when the parameters sampled from the parameter response surface produced the highest
efficiency value.

The preferred time aggregation of the objective function; that is the objective function at the daily
scale (rsq_daily) or hourly scale (rsq_hourly), was then selected before the model was calibrated by
optimization. The results were then plotted and visualized for interpretation.

The Morris global sensitivity analysis [69] was run after the model calibration to investigate
and compare the parameter sensitivities when the rsq_daily and rsq_hourly objective functions were
employed in the modeling process. The Morris global sensitivity analysis generates sensitivity indices
in the form of the mean (µ) (absolute mean (µ∗) in ‘hydromad’ which resolves the problem of the effects
of opposite signs due to a model’s non-monotonic characteristics suggested by Campolongo et al. [70])
and standard deviation (σ) values, which designate the influence of each parameter on the target
function [71]. A high µ∗ value suggest that a parameter has an important overall influence on the
target function, and a high value of σ indicating that a parameter has strong interactions with other
parameters (that is how strongly one parameter interacts with other parameters) or that the effect of
the parameter is nonlinear [69,72].

The sensitivity analysis was performed on events that produced acceptable model performance
results based on the goodness of fit measures obtained after model calibration, notwithstanding the
objective function applied (objective function at a daily scale or hourly scale). This was done to
reflect on the sensitivities of feasible calibrated parameters for the model as a whole regardless of the
objective function scenarios. That is, the sensitivity analysis was performed to assess whether there
were changes in the parameter sensitivities between the objective functions used. Details on the use
of IHACRES in ‘hydromad’ in R can be obtained in Andrews [49] and the use of the Morris global
sensitivity analysis in ‘hydromad’ in R in Shin et al. [71]. The default R2 in ‘hydromad’ used to assess
model performance is the monthly R2, although other functions are also available. ‘hydromad’ also
automatically provides the relative bias (i.e., bias as a fraction of the total observed flow), R2 square
root (R-squared using square-root-transformed data) and R2 log (R-squared using log-transformed
data, with an offset) measures.

Several different model combinations were run to obtain the best model structure to model the
flood events in the Zhidan catchment. The simple, refined instrumental variable (SRIV) routing model
(which allows the user to select the configuration of stores that best describes the catchment of interest)
of a single exponential store (1, 0) was selected. The default monthly R2 in ‘hydromad’ could not be
applied as the objective function for the data in this study because the event data periods were not up
to a month for any of the events, as presented in the exploratory data analysis results of Table 1. Thus,
the need to generate objective functions with different temporal aggregations for this study and in
cases with data such as this. The temporal aggregation or time aggregation of the objective function is
done to change the default time structure of the objective function, which is monthly in ‘hydromad’,
into the preferred time of the user (hourly and daily in this study).

To execute the objective function constraints in this study, the Nash–Sutcliffe Efficiency (R2 in
IHACRES) objective function applied in this study was diversified into daily efficiency measures (the
efficiency measured at a daily scale (rsq_daily)) and hourly efficiency measures (the efficiency measured
at an hourly scale (rsq_hourly)) for all the selected events to assess the implications of this objective
function constraint on the performance of the model. ‘hydromad’ in R allows the user to generate
objective functions with temporal aggregation with the buildTsObjective() function and this was used
to build the daily and hourly R2 objective functions. More information about the time aggregation of
objective functions in ‘hydromad’ can be found at http://hydromad.catchment.org/#buildTsObjective.

http://hydromad.catchment.org/#buildTsObjective
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The relative bias and root mean square error (RMSE) measures were also added to the model
performance measures to evaluate the general performance of the IHACRES model, calculated as:

Relative bias =

∑n
i = 1(Pi −Oi)∑n

i = 1 Oi
. (2)

Root Mean Square Error (RMSE) [39,73]:

RMSE =

√√
1
n

n∑
i = 1

(Oi − Pi)
2. (3)

where O = observed values, P = predicted values and n = number of cases.
Finally, in modeling event flows, an accurate prediction of peak flows also imperative to investigate

the ability of the built models to suitably predict flood event runoff peaks and so the Percent Error in Peak
Flow (PEPF) [74,75] calculated below was introduced as an additional model performance measure.

PEPF = 100

∣∣∣∣∣∣∣
∣∣∣(OP) − (PP)

∣∣∣
(OP)

∣∣∣∣∣∣∣. (4)

where OP and PP are observed and predicted peak discharge, respectively. PEPF closer to zero means
a better estimation of peak flow by the IHACRES model. The satisfactory value of PEPF in this study is
considered as ≤25% of the difference in observed and simulated peak flows.

The parameter uncertainty associated with the results of the model simulation based on the
different objective function choices, which in IHACRES is assessed with the percent average relative
parameter error (% ARPE) measure, used to evaluate the correctness of the calibration [76] is also
considered. The ARPE is an integral part of the simple, refined instrumental variables (SRIV) calibration
method and is given by Jakeman et al. [17] as:

ARPE(n, m) =
1

(m + n + 1)

 n∑
i = 1

σ̂2
i

â2
i

+
m∑

i = 0

σ̂2
i+n+1

b̂2
i

. (5)

where m and n are the orders of the polynomials of the transfer function indicating the most appropriate
model structure and parameterization, σ̂2

i is the estimated parameter variance which is the estimated
variance of the i-th element in â = (a1, a2, . . . , an, b0, b1, . . . , bm)T, with the superscript T denoting the
vector transpose. These variances are available as byproducts of the SRIV algorithm [17].

The code used for executing the modeling process in this study in R is provided in Appendix A.

3. Results

3.1. Exploratory Data Analysis Results

The period statistics of the selected flood events of the Zhidan watershed modeled in this study
are presented in Table 1.

As observed from Table 1, the flood events with the longest data points are the years 2002b and
2005 with 61 h of data translating into about 2.5 days of data while the flood event with the least data
points occurred in 2000, with 22 h of data and not making up to one (1) day. The variation occurring
in the Zhidan catchment is presented in Table 1. Table 1 demonstrates that the short duration and
somewhat low rainfall peak of the flood event in the year 2000 resulted in quite a significant runoff

peak, showing the close proportionality of the rainfall–runoff relationship in the catchment in that year.
This could be as a result of uninterrupted flow throughout the catchment to the catchment outlet and
thus suggesting fewer human interventions in the watershed in that period.
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Table 1. Observed statistics of the periods of the selected flood events of the Zhidan watershed.

Year Start Time End Time
Number of
Event Days

(days) *

Number of Data
Points and Time

Steps (hours)

Rainfall Peak
(Rpeak) (mm)

Flow Peak
(Qpeak)
(m3/s)

2000 27 July 2000
3:00:00 a.m.

28 July 2000
12:00:00 a.m. 0.9167 22 (0–21) 2.8586 162

2002a 8 June 2002
2:00:00 PM

10 June 2002
2:00:00 PM 2.0417 49 (0–48) 6.7914 202

2002b 26 June 2002
8:00:00 a.m.

28 June 2002
8:00:00 PM 2.5417 61 (0–60) 2.8786 156

2003 7 August 2003
8:00:00 a.m.

9 August 2003
5:00:00 a.m. 1.9167 46 (0–45) 1.9529 24.89

2005 18 July 2005
8:00:00 a.m.

20 July 2005
8:00:00 PM 2.5417 61 (0–60) 3.5429 97.59

2006 5 August 2006
8:00:00 a.m.

7 August 2006
8:00:00 a.m. 2.0417 49 (0–48) 5.9486 65.80

* Number of event days were calculated using the number of data points.

In addition, the year 2002 is seen to be dominated by more events than the other years with
some high rainfall and runoff peaks. This suggests the impacts of climate variability in the Zhidan
watershed leading to a wet year. Furthermore, the rainfall and runoff peaks of the year 2003 are
seen to be considerably low, suggesting more climate variability and the development of hydraulic
infrastructures in the watershed, their effects being visible in succeeding years (2005 and 2006). This is
the result of studies reporting 615 warping dams (soil-retaining dams for sediment control) with a total
storage of 830 million m3 built-in Zhidan County, where the Zhidan catchment is located [41].

In addition, the changing catchment characteristics from the year 2000 to the year 2006 is evident
in Table 1, where the runoff peaks in the latter years are observed to diminish substantially, regardless
of the rainfall intensity or duration of the flood. For example, the runoff peak of the 2005 flood event is
lower than that of the 2000 and 2002b flood events even though the rainfall peak of the 2005 flood
event is greater than that for the events of 2000 and 2002b. This indicates the effects of significant
land-use changes on the catchment properties in the latter event years.

The results of the visual exploratory data analysis performed on the selected flood events of the
Zhidan watershed are presented in Figure 3, which illustrates the rainfall–runoff relationship for each
selected year with the blue and red lines signifying rainfall and runoff, respectively.

The results of the visual exploratory data analysis display the rainfall–runoff relationship in
the Zhidan watershed to be extensively complex. For example, in the 2000 flood event (Figure 3a),
the runoff peak is observed to be occurring immediately after the rainfall peak without much delay,
meaning the somewhat high-intensity rainfall from the start of the event was quickly transferred to the
catchment outlet to have this form of rainfall–runoff relationship. In addition, for the 2002a (Figure 3b)
and 2002b (Figure 3c) flood events, the runoff peaks are witnessed to closely follow the rainfall peaks
showing a short lag time between the rainfall and runoff in the watershed for these events due to less
anthropogenic interventions.

However, for the 2003 (Figure 3d) and 2005 (Figure 3e) flood events, the runoff is observed to be
unaffected by several rainfall peaks, having a single abrupt peak in the middle of the event, which then
decreases abruptly towards the end of the event. This observation depicts that multiple rainfall peaks
do not result in multiple runoff peaks, possibly due to interception storage in the Zhidan watershed
caused by land-use changes in the watershed during these years following the numerous warping
dams reported.

Finally, the rainfall–runoff relationship for the 2006 flood event (Figure 3f) returns to having a
single rainfall peak and a single runoff peak with a short lag time between the rainfall peak and the
runoff peak similar to the 2002a and 2002b flood events.



Int. J. Environ. Res. Public Health 2020, 17, 4132 10 of 26
 10 of 28 

Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 

Int. J. Environ. Res. Public Health 2020, 17, x; doi: FOR PEER REVIEW www.mdpi.com/journal/ijerph 
 

 
Figure 3. Rainfall–runoff relationships of the (a) 2000, (b) 2002a, (c) 2002b, (d) 2003, (e) 2005 and (f) 2006 
flood events. 

The results of the visual exploratory data analysis display the rainfall–runoff relationship in the 
Zhidan watershed to be extensively complex. For example, in the 2000 flood event (Figure 3a), the runoff 
peak is observed to be occurring immediately after the rainfall peak without much delay, meaning the 
somewhat high-intensity rainfall from the start of the event was quickly transferred to the catchment outlet 
to have this form of rainfall–runoff relationship. In addition, for the 2002a (Figure 3b) and 2002b (Figure 
3c) flood events, the runoff peaks are witnessed to closely follow the rainfall peaks showing a short lag time 
between the rainfall and runoff in the watershed for these events due to less anthropogenic interventions. 

However, for the 2003 (Figure 3d) and 2005 (Figure 3e) flood events, the runoff is observed to be 
unaffected by several rainfall peaks, having a single abrupt peak in the middle of the event, which then 
decreases abruptly towards the end of the event. This observation depicts that multiple rainfall peaks do 
not result in multiple runoff peaks, possibly due to interception storage in the Zhidan watershed caused 
by land-use changes in the watershed during these years following the numerous warping dams reported. 

Finally, the rainfall–runoff relationship for the 2006 flood event (Figure 3f) returns to having a single 
rainfall peak and a single runoff peak with a short lag time between the rainfall peak and the runoff peak 
similar to the 2002a and 2002b flood events. 

Figure 3. Rainfall–runoff relationships of the (a) 2000, (b) 2002a, (c) 2002b, (d) 2003, (e) 2005 and (f)
2006 flood events.

Looking at the rainfall–runoff relationship of the flood events of the Zhidan catchment, it can
be concluded that meteorological variability affecting rainfall and land-use changes, affecting runoff,
played extremely significant roles affecting floods in the region. Therefore, studies into these role
players will aid in better understanding and management of flood risks and water resources in the
watershed. These observations of the Zhidan watershed deepens the requirement of further study
into the hydrological characteristics and changes in semi-arid regions since they seem to be majorly
affected by the slightest changes in their environments.

3.2. Model Results

Table 2 displays the identification of unit hydrographs and component flows from rainfall,
evapotranspiration and streamflow data (IHACRES) model performance statistics after simulating
the different flood events with the rsq_daily and rsq_hourly objective function constraints. From
Table 2, the large differences in the model performance of the different objective functions are observed,
especially in the R2 measures. The average relative parameter error (ARPE) results are also witnessed to
improve extensively from rsq_daily to rsq_hourly, especially for the 2002a, 2003, and 2005 flood events.
Furthermore, the use of the rsq_hourly objective function saw an improvement in the simulation of the
peak flows in all the studied events, however with most estimated peak flow values to be above the
maximum acceptable value in this study except the 2003 and 2006 flood events using the rsq_hourly
objective function.
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Table 2. IHACRES model performance statistics with objective function constraints.

Year
Rsq_Daily Objective Function Rsq_Hourly Objective Function

R2 Rel.
Bias

RMSE
(mm/hour)

PEPF
(%)

ARPE
(%) R2 Rel.

Bias
RMSE

(mm/hour)
PEPF
(%)

ARPE
(%)

2000 – – – – – 0.5728 0.2780 0.1307 39.5621 0.2740

2002a 0.3249 −0.0036 0.1356 58.3754 94,207 0.8366 0.0168 0.0672 30.9741 1.087

2002b 0.6643 −0.0252 0.0618 50.0675 1.7280 0.6705 −0.0119 0.0612 45.8568 0.5453

2003 −0.2561 −0.9102 0.0295 98.6450 NAN * 0.7873 0.1925 0.0122 23.9683 0.1531

2005 0.4860 0.2313 0.0511 59.6843 5.5330 0.5215 0.2116 0.0493 54.3359 0.0101

2006 0.7835 0.0349 0.0283 31.4869 0.1352 0.8491 −0.1115 0.0236 20.8359 0.4330

* NAN = Not A Number, meaning the number is immeasurable. IHACRES—identification of unit hydrographs and
component flows from rainfall, evapotranspiration and streamflow data.

The changes in the relative bias (rel. bias) and root mean square error (RMSE) measures are
however minor, and they showed good performance for all modeled events irrespective of the objective
function applied, although the RMSE for the rsq_hourly events is better.

The graphical representation of the model simulation results in Table 2 is illustrated in Figures 4–9
where Figures 5a–9a represent observed and simulated hydrographs using the rsq_daily objective
function and Figures 4 and 5b–9b display the observed and simulated hydrographs using the rsq_hourly
measure, with the blue and red lines showing the observed and modeled hydrographs, respectively.
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The application of the rsq_daily objective function to the flood event of the year 2000 resulted
in non-convergence in the optimization of the R2 objective function because the data points of that
particular flood were not more than 1 day (24 h). Therefore, the rsq_daily objective function failed
(Table 2). Figure 4, therefore, shows the results of modeling the 2000 flood event with the rsq_hourly
objective function. It can be witnessed from Table 2 and Figure 4 that the application of the rsq_hourly
objective function to the flood event of the year 2000 produced satisfactory model simulation results,
thus showing the efficacy of the rsq_hourly objective function in limited data situations.
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In addition, Figure 5 exhibits the observed and simulated hydrographs for the 2002a flood event.
Figure 5b demonstrates the tremendous enhancement in model performance from Figure 5a in terms of
the overall hydrograph shape from the beginning to the end of the event and the better-estimated peak
flow by the application of the rsq_hourly objective function in Figure 5b. This overall improvement of
model performance is also observed in differences in R2, Percent Error in Peak Flow (PEPF) and ARPE
values in Table 2 for the 2002a flood event.
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for the 2002a flood event.

The ARPE for the 2002a flood event when the rsq_daily objective function was applied is highly
abnormal, which shows the difficulty of the IHACRES model to obtain feasible parameters for that
particular event in the application of the rsq_daily objective function. This challenge is rectified by the
use of the rsq_hourly objective function, as observed in Table 2. The differences in model performance
of the 2002b flood event are subtle in the hydrograph comparison graph of Figure 6. However, a
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closer look at Figure 6b shows a peakier and enhanced simulated peak using the rsq_hourly objective
function leading to slightly enhanced R2 and PEPF values than when the rsq_daily objective function
was applied (Table 2).  14 of 28 
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Figure 6. IHACRES model simulation results with (a) rsq_daily and (b) rsq_hourly objective functions
for the 2002b flood event.

Furthermore, the exceptional turnaround of the model performance in the 2003 flood event
between the objective functions is witnessed in Figure 7. Figure 7a showed extremely poor model
performance when the rsq_daily objective function was employed in the simulation of the 2003 flood
event; the simulated hydrograph seen as a straight line. This is presented clearly in Table 2, where
the R2 is −0.26, the PEPF is 98.65%, and the ARPE—the parameter error measure—is immeasurable,
portraying the worse model performance throughout the entire study.

However, Figure 7b shows a whole different model performance status when the rsq_hourly
measure was adopted where the simulated hydrograph follows the shape of the observed hydrograph
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and the simulated peak observed to be close to the observed peak. This is witnessed in Table 2, where
the R2 is 0.79, the PEPF is 23.97%, well within the acceptable range, and the ARPE is a minor value
of 0.15%. This upgrade of model performance in the 2003 flood event shows the advantage of the
application of the rsq_hourly objective function to make use of the fundamental time steps of the data. 15 of 28 
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Figure 7. IHACRES model simulation results with (a) rsq_daily and (b) rsq_hourly objective functions
for the 2003 flood event.

Similar to the 2002b flood event (Figure 6), the differences in the model performance between
the two objective functions in the 2005 flood event illustrated in Figure 8 are faintly detected, except
the boost in the simulated peak flow of Figure 8b, meliorating the model performance using the
rsq_hourly measure. This slight enhancement in model performance is also observed in Table 2
where all the improvements are small (the R2 upgrading from a poor simulated value of 0.49 with
rsq_daily to a satisfactory value of 0.52 according to Moriasi et al. [39] using rsq_hourly). However, the
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ARPE value improves from 5.53% in the use of the rsq_daily objective function to 0.01% when the
rsq_hourly measure was applied, considered significant in this study because of the volatile nature of
parameter changes.

Finally, Figure 9 represents the observed and modeled event runoff of the 2006 flood event.
Figure 9b shows a better estimation of the peak flow than Figure 9a, while all other estimations remain
approximately the same. Because of this upgraded peak flow simulation in Figure 9b, an improvement
in R2 and PEPF is recorded in the model performance with rsq_hourly objective function in Table 2.
However, it can be witnessed from Table 2 that the ARPE value increased from 0.14% in the application
of rsq_daily to 0.43% in using rsq_hourly, although marginally. This depreciation in ARPE values from
rsq_daily to rsq_hourly could represent a greater non-uniqueness of the rsq_hourly parameters than
their rsq_daily counterpart.  16 of 28 
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for the 2005 flood event.
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Using the stated consideration for the sensitivity analysis, the events occurring in 2002b and
2006 were the only flood events that produced acceptable R2 model performance values for both
objective function scenarios, as witnessed in Table 2. The calibrated parameters for the selected events
are displayed in Table 3 to clarify the results of the sensitivity analysis and Table 4 illustrates the
sensitivities of the parameters obtained for the rsq_daily and rsq_hourly objective functions during the
2002b and 2006 flood events.
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Table 3. Calibrated parameters for the 2002b and 2006 flood events with different time aggregated
objective functions in the Zhidan watershed.

Calibrated Parameters

Year 2002b 2006

tw f scale tau_s v_s tw f scale tau_s v_s

Rsq_daily 30 4 0.0137 2.1335 1 0 1.3146 0.3587 2.9339 0.0271

Rsq_hourly 22.7258 0.7214 0.1323 2.0703 0.1196 28.7393 3.9612 0.1774 1.5291 0.0142

where: tw = Catchment drying rate at a reference temperature, τw; f = Temperature modulation parameter, f ;
scale = A scale factor estimated by mass balance with observed streamflow; tau_s = Slow flow recession time
constant, τs; v_s = Proportion of effective rainfall which becomes slow-flow, Vs

Table 4. Parameter sensitivities of the rsq_daily and rsq_hourly objective functions for the 2002b and
2006 flood events.

2002b 2006

Rsq_Daily Rsq_Hourly Rsq_Daily Rsq_Hourly

µ∗ σ µ∗ σ µ∗ σ µ∗ σ

tw 0.2837 0.8055 0.2837 0.8055 0.0164 0.1268 0.0164 0.1268

f 0.0622 0.1547 0.0622 0.1547 0.0011 0.0040 0.0011 0.0040

scale 0.7913 1.2566 0.7913 1.2566 0.6120 1.3991 0.6120 1.3991

tau_s 0.2304 0.8443 0.2304 0.8443 0.0428 0.1492 0.0428 0.1492

v_s 0.6632 1.1002 0.6632 1.1002 0.1598 0.5262 0.1598 0.5262

The sensitivity analysis results of the 2002b calibration flood event in the Zhidan catchment in
Table 4 reveals the scale parameter as the most sensitive parameter with the highest µ∗ and σ values
(highly influencing the objective function results and having substantial interaction with all other
parameters) followed by the v_s parameter whose interaction with the other parameters is more than
its influence on the objective function, both being significantly high. The tw and tau_s parameters seem
to have medium sensitivities, both having higher σ values than µ∗ values, and the f parameter appears
to be the least sensitive parameter influencing the model simulation results of the 2002b flood event in
the Zhidan watershed. This observation is seen to be unchanging for both time aggregated objective
function scenarios for the 2002b flood event. That is, the parameter sensitivities of the rsq_daily
objective function are the same for the rsq_hourly objective function.

Table 4 also demonstrates the scale parameter as the most sensitive parameter for the 2006 event in
the Zhidan catchment with the highest µ∗ and σ values, with its interaction with the other parameters
higher than its influence on the objective function. This is followed by the v_s parameter, also having a
stronger interaction with the other parameters than influences the objective function. The tw, f and
tau_s parameters appear to be the lesser sensitive parameters influencing the model simulation results,
with the f parameter being least sensitive. The parameter sensitivities are also witnessed to be similar
for both time aggregated objective functions for the 2006 flood event as for the 2002b flood event.
The parameter sensitivity analysis results in Table 4 shows that the interaction between parameters
has a stronger influence in the model process than their influence on the objective function for both
selected flood events. This depicts the high interdependence of the model parameters on each other in
simulating the streamflow events in the Zhidan watershed.

4. Discussion

The reason for the results obtained above is because: in the application of the rsq_daily objective
function, the optimization algorithm searches the parameter space for optimal parameters which
maximize R2 for each day represented in the data, whereas the rsq_hourly objective function seeks to
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maximize the R2 value for each hour represented in the data. Therefore, the use of rsq_hourly in this
study resulted in consideration of the R2 value at every hour to be maximized rather than maximizing
the R2 value for entire days in the case of rsq_daily and thus produced parameters accordingly for
this purpose.

In this case, although the data are limited for the flood events, the rsq_hourly searches the
parameter space considering ‘more data’ than its rsq_daily counterpart. For example, in this particular
study, the flood events with the most data points have 61 h of data translating into about 2.5 days.
Therefore, the rsq_hourly objective function searches the parameter space for optimal parameters to
maximize R2 for 61 h. In contrast, the rsq_daily objective function generates parameters to maximize
R2 for about 2.5 days. Likewise, in the 2000 flood event where the data period of the flood was less than
one day, the application of the rsq_hourly objective function did not only result in convergence but
obtained an R2 value of 0.57, considered satisfactory by Moriasi et al. [39] while the rsq_daily objective
function failed.

This consideration of ‘more data’ by the rsq_hourly objective function is somewhat comparable
to work by Bennett et al. [26], where model performance was better when calibrated with hourly
data disaggregated from daily data because they gave the model more information. Moreover, since
in data-driven modeling, data adequacy is one of the most crucial conditions influencing model
performance, the rsq_hourly objective function has an advantage. Finally, the rsq_hourly objective
function is especially useful when the available data are so scarce. It is not up to 24 h or more, which
makes a typical day and thus making the rsq_daily measure inapplicable.

The main enhancement in model performance using the rsq_hourly objective function is observed
to be the superior simulation of the high flows, which is the peak period for all the events. This
enhancement is also because of the ‘more data’ concept, which appears to resolve the deficiency in
peak flow simulation in the application of the rsq_daily objective function. This improvement in peak
flow simulation is the reason behind the upgrade in R2 value from the rsq_daily to the rsq_hourly
objective function because R2 is highly sensitive to high flows, and low flows tend to be neglected [38].
Nevertheless, all the simulated peaks for all the studied events, despite the objective function used, are
underestimated and could be a weakness in the identification of unit hydrographs and component
flows from rainfall, evapotranspiration and streamflow data (IHACRES) model for modeling flood
events since its applications have been mostly for continuous modeling.

The average relative parameter error (ARPE) results which represent the parameter error and
uncertainty obtained during the modeling of the flood events showed that the parameters obtained for
the 2002a and 2003 flood events using the rsq_daily objective function may be exceptionally volatile
resulting in significant errors in the parameters estimated or in the case of the 2003 flood event, this
error could not be quantified. This could be as a result of the challenge of the IHACRES model to better
quantify the considerable catchment changes during these flood events when the rsq_daily objective
function is employed.

As can be witnessed in Table 1, the 2002a flood event possessed the highest rainfall and runoff

peaks. In contrast, the 2003 flood event had the lowest rainfall and runoff peaks of all the studied
events showing crucial changes in both meteorological variability and anthropogenic activities in the
Zhidan catchment in those event years. The implementation of the rsq_hourly objective function is
witnessed to aid the IHACRES model in this light with exceedingly satisfactory ARPE results for the
2002a and 2003 flood events (Table 2).

It should be noted that the main objectives for this study were the implementation and investigation
of model performance using different time aggregations of the Nash–Sutcliffe objective function in
a data-driven model for flood event modeling in a semi-arid watershed with data limitation issues
to obtain enhanced model performance and feasible parameters for catchments when the default or
commonly used model simulation processes fail due to data limitations. This is especially true in
regards to semi-arid regions, which are mostly data-scarce, and studies focusing on the methodology
in this work are lacking in hydrology.
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However, to associate this study to time resolution dependency of parameters of studies as
Littlewood and Croke [24], Reynolds et al. [25], Bennett et al. [26], Littlewood et al. [27], Littlewood and
Croke [28] and Finnerty et al. [77] among others, a longer time series (both daily and sub-daily) from the
Zhidan watershed would be required to test the hypothesis on this methodology to investigate whether
parameters obtained from time aggregation of objective functions are independent of the data time
step. That is, seeking to answer the question: can parameters obtained by employing time aggregations
to objective functions be transferred successfully to data with the same temporal resolutions? For
example, applying parameters acquired from implementing daily time aggregated objective functions
to data of daily temporal resolution or parameters obtained with hourly time aggregated objective
functions used on data with hourly temporal resolution. This would be the scope of future studies.

Taking into account the parameter sensitivity results, it is generally observed that although the
different studied flood events using the different time aggregated R2 objective functions produced
different parameters (Table 3), the parameter sensitivities remain the same for the different objective
functions applied for each event. The sensitivity analysis results demonstrated the scale parameter as
the most sensitive parameter followed by the v_s parameter, and the f parameter possessing the least
sensitivity for all the considered events. This shows that both time aggregated objective functions had a
good correlation as to the parameters. Therefore, there arises minimum or no uncertainty in parameter
sensitivity changes across objective functions when the time aggregated R2 objective function is applied
in later studies proving that the parameters continuously represent the catchment processes regardless
of the objective function employed.

The work from this study has shown that it can be a challenging task to model streamflow in
catchments with data limitations, especially in semi-arid regions, which mostly have rapid streamflow
responses. However, the application of time aggregations to the objective functions selected during
the calibration process could resolve this issue by obtaining better model performances and feasible
parameters for use in these catchments without the requirements of additional data.

In this study, it has also been made evident that for a semi-arid region with much data limitations
such as the Zhidan watershed where physical models have failed to simulate flood events better, the
IHACRES model has proven successful and has satisfactorily modeled some flood events even with
the rsq_daily objective function. This has proven the feasibility and capability of data-driven models
as useful and efficient tools in modeling flood events in data-scarce semi-arid regions.

5. Conclusions

The comprehensive hydrological data required by conceptual or physically based models are
rarely available in most watersheds and has led to the rapid development of data-driven models
(DDMs) into hydrology and environmental sciences, which have demonstrated to be useful tools. In
addition, the success of a calibration process is tremendously dependent on the objective function
chosen as a calibration criterion and objective function constraints were applied in modeling to enhance
variable simulations by models.

This study, therefore, applies the identification of unit hydrographs and component flows from
rainfall, evapotranspiration and streamflow data (IHACRES) model, a hybrid conceptual-data-driven
rainfall–runoff model to simulate a series of flood events with limited data over some years representing
changes in land-use and landcover settings in Zhidan, a semi-arid catchment in northern China, applying
objective function constraints in the form of diversifying the Nash–Sutcliffe efficiency (R2 in IHACRES)
into daily (rsq_daily) and hourly (rsq_hourly) scales during the modeling process to investigate (1) the
influence of objective function constraints on the model performance and (2) the general capability
of the IHACRES model to simulate flood events in a data-scarce semi-arid region. The following
conclusions were reached from the obtained results:

1. The model simulation results with the application of the rsq_hourly objective function were
extensively better than the model performance with rsq_daily objective function because the
rsq_hourly objective function seeks to maximize the R2 value for each hour represented in the
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data (which in this case is hourly flood data with limited data points). In contrast, the rsq_daily
objective function maximizes R2 for each day represented in the data producing parameters
accordingly. This provides the rsq_hourly measure an advantage over the rsq_daily objective
function, such that in the present study, the optimization process with the utilization of the
rsq_hourly measure considers ‘more data’ than its rsq_daily counterpart;

2. The IHACRES model struggled to satisfactorily simulate the flood peaks with a somewhat more
accurate estimation of the flood at the start and end of each event, notwithstanding the objective
function employed and thus could be considered a general model weakness in this study;

3. The IHACRES model implementation performed in simulating the selected flood events
demonstrated the overall capability of the model to satisfactorily simulate flood events under
changing land-use situations in a data-scarce semi-arid region with highly accurate parameters
based on the parameter uncertainty results. This, therefore, endorses the use of data-driven
models as hydrological models in data-scarce regions where physical models are inapplicable;

4. Finally, it is recommended that possible changes in time aggregation of objective functions be
incorporated into models to account for modeling flood events with limited data like the Zhidan
study area to make flood simulations in regions like this a possibility;

5. Further research could also be conducted with flood event data from other regions with data
limitation constraints using time aggregated objective functions to compare the estimated R2 and
parameter results; performing these comparisons across different climatic settings to investigate
the behavior of objective function aggregations on data with different hydrological characteristics,
however with more emphasis on semi-arid regions.
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Appendix A

R code used in this study.
install.packages(c(“formatR”, “zoo”, “latticeExtra”, “polynom”, “car”, “Hmisc”,”reshape”))
install.packages(“hydromad”, repos = “http://hydromad.catchment.org”)
install.packages(c(“DEoptim”, “coda”))
install.packages(“dream”, repos = “http://hydromad.catchment.org”)
install.packages(“chron”)
install.packages(“sensitivity”)
## Comment the above after installation

library(zoo)
library(dream)
library(coda)
library(DEoptim)
library(hydromad)
library(chron)
library(sensitivity)

http://hydromad.catchment.org
http://hydromad.catchment.org
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#setting my working directory
setwd(“D:/RESEARCH/All things R/IHACRES”)

# Load in data
mdwhydromadtrialraw <- read.csv(file = file.choose(), header = F)
View(mdwhydromadtrialraw)

names(mdwhydromadtrialraw) <- c(“Date”, “P”, “Q”, “E”)
View(mdwhydromadtrialraw)

mdwhydromadtrial <- mdwhydromadtrialraw

# Chron can only use character or numeric dates, but R reads my dates as factors. So we convert
to characters

datetimes = as.character(mdwhydromadtrial$Date)

# Create zoo object
chron_dt = as.chron(as.POSIXct(datetimes, format = “%d-%m-%Y %H:%M”, tz = “UTC”))
mdw_zoo = zoo(mdwhydromadtrial[, 2:4], order.by = chron_dt)
View(mdw_zoo)

# in hydromad the flow units must be the same as the rainfall units
# converting the flow
mdw_zoo$Q = convertFlow(mdw_zoo$Q, from = “cumecs”, to = “mm / hour”, area.km2 = 774)

mdwtrialts = zoo(mdw_zoo, frequency = 24)
summary(mdwtrialts)

# ploting the data to make sure everything worked
xyplot(mdwtrialts)

# Set seed value for reproducible results
set.seed(21)

# Using hydromad
# set warmup this way
hydromad.options(warmup = 0)

# The IHACRES CWI model in ‘hydromad’ was built this way
mdwtrialMod = hydromad(mdw_zoo,

sma = “cwi”,
routing = “expuh”, rfit = list(“sriv”, order = c(n = 1,m = 0)),
tw = c(0,30),
f = c(0,4),
tau_s = c(0, 500),
scale = c(0,0.5),
v_s = c(0, 1))

# Changing the objective function time structure to daily instead of the default monthly. Use this
function in the application of rsq_daily as objective function. Comment if not in use

rsq_daily <- function(Q, X, . . . ) {
.(buildTsObjective(Q, groups = cut(time(Q), “days”)))(Q, X, . . . )
}
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# Changing the objective function time structure to hourly instead of the default monthly. Use
this function in the application of rsq_hourly as objective function. Comment if not in use

rsq_hourly <- function(Q, X, . . . ) {
.(buildTsObjective(Q, groups = cut(as.POSIXct(time(Q)), breaks = “hour”)))(Q, X, . . . )
}

# Calibration using rsq_daily. Comment if not in use
mdwtrialFit = fitByOptim(mdwtrialMod, objective = rsq_daily, method = “PORT”, samples = 500)

# Calibration with rsq_hourly. Comment if not in use
mdwtrialFit = fitByOptim(mdwtrialMod, objective = rsq_hourly, method = “PORT”, samples

= 500)

xyplot(mdwtrialFit)
summary(mdwtrialFit) #hydromad automatically generates the R2 and rel. bias values at this step
summary(mdwtrialFit,stats = c(“ARPE”,”RMSE”))
fit = fitted(mdwtrialFit) #To obtain simulated runoff for PEPF calculation
bfit = as.data.frame(fit)
View(bfit)
OQ = (mdw_zoo$Q) #To obtain converted observed runoff for PEPF calculation
View(OQ)

## Run Morris Sensitivity analysis
mm <- morris(
## Utility function to evaluate parameters on a model
model = evalPars,
## Names of factors/parameters
factors = names(getFreeParsRanges(mdwtrialMod)),
## Number of repetitions
r = 100,
## List specifying design type and its parameters
design = list(type = “oat”,levels = 10,grid.jump = 2),
## Minimum value of each non-fixed parameter
binf = sapply(getFreeParsRanges(mdwtrialMod), min),
## Maximum value of each non-fixed parameter
bsup = sapply(getFreeParsRanges(mdwtrialMod), max),
## Hydromad model object to use to evaluate parameters
object = mdwtrialFit,
## NSE* objective function
objective = ~ hmadstat(“r.squared”)(Q, X) /

(2-hmadstat(“r.squared”)(Q, X))
)

print(mm)
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