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Abstract: The emergence of new technologies to incorporate and analyze data with high-performance
computing has expanded our capability to accurately predict any incident. Supervised Machine
learning (ML) can be utilized for a fast and consistent prediction, and to obtain the underlying pattern
of the data better. We develop a prediction strategy, for the first time, using supervised ML to observe
the possible impact of weak radiofrequency electromagnetic field (RF-EMF) on human and animal
cells without performing in-vitro laboratory experiments. We extracted laboratory experimental data
from 300 peer-reviewed scientific publications (1990–2015) describing 1127 experimental case studies
of human and animal cells response to RF-EMF. We used domain knowledge, Principal Component
Analysis (PCA), and the Chi-squared feature selection techniques to select six optimal features
for computation and cost-efficiency. We then develop grouping or clustering strategies to allocate
these selected features into five different laboratory experiment scenarios. The dataset has been
tested with ten different classifiers, and the outputs are estimated using the k-fold cross-validation
method. The assessment of a classifier’s prediction performance is critical for assessing its suitability.
Hence, a detailed comparison of the percentage of the model accuracy (PCC), Root Mean Squared
Error (RMSE), precision, sensitivity (recall), 1 − specificity, Area under the ROC Curve (AUC),
and precision-recall (PRC Area) for each classification method were observed. Our findings suggest
that the Random Forest algorithm exceeds in all groups in terms of all performance measures
and shows AUC = 0.903 where k-fold = 60. A robust correlation was observed in the specific
absorption rate (SAR) with frequency and cumulative effect or exposure time with SAR×time (impact
of accumulated SAR within the exposure time) of RF-EMF. In contrast, the relationship between
frequency and exposure time was not significant. In future, with more experimental data, the sample
size can be increased, leading to more accurate work.

Keywords: RF-EMF exposure assessment; machine learning; supervised learning; Bioelectromagnetics;
human and animal cells; in-vitro studies

1. Introduction

Advancing technologies that depend on wireless communication systems compel users to face
increased levels of exposure to radiofrequency electromagnetic field (RF-EMF). Throughout the past
decade, mobile phone use has dramatically expanded; hence, the RF-EMF exposure level to the
environment has increased as a consequence [1]. This development has raised concerns on the
potential hazards to human health. More than other body cells, the brain cells are vulnerable to a high
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specific absorption rate (SAR) because of the close proximity of the mobile phone to the users’ head in
conventional usage. Hence, the potential impacts of cell phone usage on human cells, including the
central nervous system (CNS) should be investigated [2]. Machine learning can be used to identify
patterns of this impact and a promising way for faster, effective, and more reliable data analytics.
The present study intends to investigate robust predicting techniques for identifying the impact of
RF-EMF on human and animal species.

For several decades, the concerns have been elevated on the safety on long-term use of mobile
phones [3–26]. The CNS is the principal concern for impacts of RF-EMF [2,27,28], as, generally, mobile
phones are used in close proximity to human head [29]. The biological effects of RF-EMF exposure on
human health remain vague due to inconsistent and contradictory findings of various studies [2,28].

In 2011, the World Health Organization (WHO) and the International Agency for Research on
Cancer (IARC) have characterized radiofrequency radiation (RFR) originating from mobile phones
as a “Possible Human Carcinogen” (Group 2B) [30] based on comprehensive in vitro, in vivo,
and epidemiological studies. The Interphone Study [31] provides some evidence to imply the
increased risk of glioma for heavy adult users >1640 h and the Hardell et al. study [32] shows
enhanced risk of malignant brain tumors for users concerning cellular and cordless phones. In contrast,
another study [33] proposes that there is no increase in risk, with several reviewing groups advising
that mobile phone use is safe for adults as well as children (SCENIHR [34], ICNIRP [35]). Besides,
ICNIRP [35] suggests that many experiments showed effects that neither had been independently
replicated nor reproduced.

1.1. Background

The volume of data on the planet and around our lives appears to be ever-expanding. Big data
is a phrase that defines an enormous volume of data (both structured and unstructured) that we
produce on a day-to-day basis. Advanced analytic methods are performed on big data sets to extract
useful information [36]. Yet, it is not the quantity but our interpretation, through the analysis of data,
which is powerful and matters. Large data sets can be computationally analyzed to obtain trends,
patterns, and associations. These analytics assist us in discovering what has been changed and how we
should respond. For the first time, various organizations are beginning to adopt advanced analytics
and, therefore, are puzzled how to utilize it.

Machine learning (ML) is the utilization of artificial intelligence (AI) [37] that produces systems
with the capability to learn and enhance from experience. ML methods may operate in iterations
where it attempts to discover the hidden pattern in data [38]. Discovery analytics toward big data can
be facilitated by different types of analytical tools, including text analytics, data mining, statistical
analysis, Structured Query Language (SQL) queries, data visualization, natural language processing,
and artificial intelligence [39]. These tools have been around for quite a long time, and a considerable
number of them have also been developed since the 1990s. The contrast today is that, unquestionably,
more user organizations are utilizing them in association with the availability of big data. It is essential
to know the analytic elements that are associated with the problem before determining which tool
type is suitable for their requirements. This study aims to address new prospects for utilizing ML
in Bioelectromagnetics space, allowing for the users to make intelligent judgments as they adopt it.
In contrast to conventional analysis, ML mechanisms have been exploited to obtain patterns from big
data that might not be feasible otherwise. Hence, algorithms can iteratively acquire hidden information
from data [40].

Studying the occurrence of non-thermal biological effects of RF-EMF is crucial for distinguishing
between the predictive nature of findings generated from experimental investigations in in-vitro
(cell-based) and whole animals, and those arising from clinical or epidemiological studies. The impacts
of past exposures and conditions can be shown in clinical or epidemiological studies. In contrast,
in-vivo and in-vitro studies can be used to predict and eventually limit impacts from arising in
the future [41]. Nevertheless, it cannot be expected that humans similarly react to RF-EMF as
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do cell cultures or animals. Numerous investigations of weak radiofrequency electromagnetic
fields and radiation have concentrated on animals, plants [42–44], human behavioral, and cell
cultures. Nevertheless, straightforward biological frameworks can contribute to our knowledge of the
underlying interaction mechanisms and which proteins in living things are vulnerable to RF-EMFs.
This information is essential for the advancement of the dose-response association on guidelines,
as required by scientific bodies, such as the International Commission on Non-Ionizing Radiation
Protection (ICNIRP) [45], IEEE, International Agency for Research on Cancer (IARC), and World
Health Organisation (WHO) [1].

The production of reactive oxygen species (ROS), which is intervened by radiofrequency radiation
(RFR), is considered as one of the essential bioeffect structures [46]. Mitochondria in stria marginal
cells (MCs) are susceptible to ROS attack and they are meant to be very sensitive to oxidative
damage [47]. A recent research finding by Yang et al. (2020) [48] into short-term exposure of mobile
phone RFR, on MCs in vivo, indicates no DNA damage in marginal cells. However, the reactive
oxygen species (ROS) production in the 4 W/kg exposure group was higher than that in the control
group (p < 0.05). Various investigations [49–52] have revealed that RF-EMF exposure of animals
enhances the blood-brain barrier (BBB) permeability, debilitates intracellular calcium homeostasis,
changes neurotransmitters, and increments neuronal loss and harm in brain tissue.

Our recent meta-analysis [41] cross-examined published experiments that considered the
non-thermal RF-EMF exposure effects (cytogenetic, gene, and protein expression analysis) on cell types
with various doubling times, including lymphocytes, epithelial, endothelial, and spermatozoa from
rat, mouse, and humans. Our investigation revealed that 45.3% of experiments concluded that an
expansion in such potential has an effect on cells exposed to RF radiation, while 54.7% concluded that
no such effects (p = 0.001) are observed. Nevertheless, it cannot be expected that humans similarly
react to RF-EMF as do cell cultures and animals.

There is extensive clinical and epidemiological proof [41] to propose that even low degrees
of radiofrequency may cause harmful consequences for the functioning of cells. Two such
significant epidemiological investigations are: population-based cohorts followed for a longer time,
and case-control investigations analyzing precise cases of disease and matched controls that do not
have the condition [41].

ML additionally improves the utilization of prediction tools to aid further health examinations
(in-vitro, in-vivo, and occupational and environmental epidemiology) and allows the researchers
to see how environmental properties may influence an ultimate decision. Figure 1 demonstrates
the potential features or variables or attributes of bioelectromagnetic experiments (in-vitro, in-vivo,
and epidemiological studies) that can be utilized by ML algorithms to predict the behavior.

Figure 1. Potential features, attributes, or variables of bioelectromagnetic experiments (in-vitro, in-vivo,
and epidemiological studies) that could be utilized in ML algorithms.
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1.2. Motivation

The advancement of emerging technology is perceived as a means to enhance and strengthen
society. Advancing technologies that depend on wireless communication have begun showing higher
degrees of radiofrequency electromagnetic field (RF-EMF) exposure. This enhanced the enthusiasm in
the area of bioelectromagnetics, which is the examination of the impact of RF-EMF on living organisms.
Currently, it is the technological era where the maturation of technology guides humans to understand
the world more deeply. The insight into critical factors, which determine the impact of weak RF-EMF
on living organisms, helps in a broader way to capture the underlying pattern of the data better.

The use of reliable prediction techniques to identify the effect of weak RF-EMF on organisms is
turning out to be increasingly essential. An essential factor affecting the choice of algorithm is the
model complexity. In classification frameworks, a model is trained and utilized to obtain predictions
of an event of interest. Our previous studies used ML algorithms to predict the impact of weak
RF-EMF on plant species (Table 1). This study aims to present the merit of utilizing ML algorithms
(supervised learning, i.e., prediction) to develop higher accuracy classifiers for predicting the potential
impact of weak RF-EMF on human and animal cells in in-vitro studies without performing in-vitro
laboratory experiments. We intend to ascertain the possibility of a significant impact of the features or
variables (such as frequency of weak RF-EMF, specific absorption rate (SAR), and exposure time) of
weak RF-EMF exposure on human and animal cells.

The main contributions of this paper include the following:

1. Extract data from 300 peer-reviewed scientific publications (1990–2015) describing 1127 experimental
investigations in cell-based in vitro models (human and animal species).

2. Identify the most suitable features or attributes to be utilized in prediction models to provide
insight into key factors that determine the possible impact of RF-EMF in in-vitro studies while
using domain knowledge, Principal Component Analysis (PCA), and Chi-squared feature
selection techniques.

3. Develop a grouping or clustering strategies to allocate these selected features into five different
laboratory experiment scenarios. This will produce five different feature groups or distributions
for each laboratory experiment.

4. Develop a prediction model to observe the possible impact without performing in-vitro laboratory
experiments. This is the first time that the supervised machine learning approach has been used
for the characterization of weak RF-EMF exposure scenarios on human and animal cells.

5. Compare each classifier’s prediction performance while using seven measures to obtain the
decision on its suitability, while using the percentage of the model accuracy (PCC), Root Mean
Squared Error (RMSE), precision, sensitivity (recall), 1 − specificity, Area under the ROC Curve
(AUC), and precision-recall (PRC Area) for each classification method.

6. Identify a robust correlation between exposure time with SAR×time (impact of accumulated SAR
within the exposure period) and SAR with the frequency of weak RF-EMF on human and animal
species. In contrast, the relationship between frequency and exposure time was not significant.

The rest of the paper is organized, as follows: Section 2 introduces the dataset, including
its features, and how the data is collected and pre-processed, feature selection techniques,
prediction models (supervised ML algorithms), features grouping strategy and evaluation measures of
binary classifiers used. Subsequently, the classifier performance results are presented in Section 3 with
the analysis of the prediction model and feature selection techniques carried out. Section 4 provides a
related discussion. Section 5 explains potential future improvements in the area, and, finally, the paper
concludes in Section 6.
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Table 1. Supervised machine learning algorithms for in-vitro studies in Bioelectromagnetics: weak radiofrequency electromagnetic fields (RF-EMF) on living organisms.

Study
Experimental
Type for Data
Collection

Species

Data Size
(No of
Experimental
Observations)

Features/Attributes/
Variables

Machine
Learning
Technique

Algorithms
Prediction
Accuracy
(Highest)

Computation
Time/CPU
Time (sec)

Programming Languages, Tools
and Computer Details (System
Information)

Study 01—
Halgamuge
(2017) [53]

In vivo (RF-EMF
directly expose
to whole plants)

Plant 169

Species, frequency,
SAR, power flux
density, electric
field strength,
exposure durations,
and cellular response
(presence or absence)

Supervised
Machine
Learning
(classification)

Random Forest,
J48, JRip, Random
Tree, Bayes Net,
Naive Bayes,
Decision Table, OneR

95.26% 0.2

MATLAB (MathWorks Inc., Natick,
MA, USA) R2015b, one-way
ANOVA procedure in SPSS Statistics
(Version 23, IBM, Armonk, NY, USA)
and Weka tool (Waikato Environment
for Knowledge Analysis, Version 3.9,
University of Waikato, Hamilton, New
Zealand), on computer with 1.7 GHz
Intel Core i7 CPU, 4 GB 1600 MHz
DDR3 RAM

Study 02—
Halgamuge
and Davis
(2019) [54]

In vivo (RF-EMF
directly expose
to whole plants)

Plant 169

Species, frequency,
SAR, power flux
density, electric
field strength,
exposure durations,
and cellular response
(presence or absence)

Supervised
Machine
Learning
(classification)

k-Nearest
Neighbor (kNN),
Random Forest

91.17% 3.38–408.84

Python 3.6.0 on macOS Sierra (Version
10.12.6), on computer with 1.7 GHz
Intel Core i7 CPU, 4 GB 1600 MHz
DDR3 RAM

Study 03—
Halgamuge
(2020) (this
study)

In-vitro
(RF-EMF
directly expose
to human
and animal
cells/tissue)

Human
and
animal cells

1127

Species (year of
study, human and
animal cells/tissue),
frequency, SAR,
exposure durations,
and cellular response
(presence or absence)

Supervised
Machine
Learning
(classification)

Random Forest,
Bagging, J48, SVM
(Linear Kernel),
Jrip, Decision
Table, BayesNet,
Naive Bayes,
Logistic Regression

83.56% 0.3

MATLAB (MathWorks Inc., Natick,
MA, USA) R2019b and Weka tool
(Waikato Environment for Knowledge
Analysis, Version 3.9, University of
Waikato, Hamilton, New Zealand),
on a computer with macOS High Sierra
(Version 10.13.6, Apple, Cupertino, CA,
USA), on computer with 1.7 GHz Intel
Core i7 CPU, 4 GB 1600 MHz DDR3
RAM .



Int. J. Environ. Res. Public Health 2020, 17, 4595 6 of 27

2. Materials and Methods

In this study, nine principal classification algorithms or classifiers have been utilized,
for producing accurate prediction models and observing trends of human and animal cell
responsiveness to non-thermal weak RF-EMF using previously published experimental data.
This study follows a few steps: data collection and preparation, optimal feature selection
(attribute selection), classifier (algorithm) selection, parameter and model selection, training selected
classifier, and evaluation. The ten supervised ML algorithms that were used for this analysis are
(Table A1 in Appendix A): Random Forest, Bagging, J48, Decision Table, BayesNet, k-Nearest
Neighbour (kNN), JRip, Support Vector Machine (SVM), Naive Bayes and Logistic Regression, and six
different features (species, frequency of RF-EMF, SAR, exposure time, SAR×exposure time, and cellular
response (presence or absence)). By applying dimensionally reduction techniques or feature selection
methods, six major features were chosen out of all collected features. We removed two features
or attributes using (i) domain knowledge, (ii) Principal Component Analysis (PCA), and (iii) the
Chi-squared feature selection method. Using these techniques, we aim to gain more profound
insights into the features (such as year, species, frequency of weak RF-EMF, SAR, exposure time,
SAR×exposure time, and cellular response (presence or absence)) of weak RF-EMF exposure scenarios
on human and animal cells. The outputs are estimated using the k-fold cross-validation method for
each classifier. The most efficient classifiers have been chosen by considering the prediction accuracy
and computation time.

2.1. Feature Selection Methods for Classification

The act of recognizing the most significant features or variables that provide the best predictive
capability in modelling data is called feature selection. This is one of the key ideas in ML,
which tremendously impacts the model or classifier performance. This could mean, after undergoing
the feature selection process, adding or eliminating features to the model that do not enhance its
performance. Features will be selected automatically or manually to provide the best to the output,
or prediction features, which we are interested in. However, choosing which features we should use to
build a predictive model is a challenging problem that may need require in-depth knowledge of the
problem domain.

2.1.1. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is an unsupervised, non-parametric statistical strategy
that is predominantly utilized to reduce the dimension in a data set that consists of many features
(variables or attributes) that are correlated to each other. PCA is not a classifier, and it reduces the
number of features to help achieve computational and cost-efficiency. PCA does not adequately reduce
data if there is a weak association between features or variables. Only when features in a dataset are
highly correlated, PCA should be utilized. In contrast, using PCA is not significant if the majority of
the correlation coefficients are smaller than 0.3 [55].

It is essential to normalize data before performing PCA. When the data are normalized, all of
the variables produce a similar standard deviation. Consequently, all of the variables have a similar
weight and PCA determines the essential ones. PCA is an approach to manage profoundly correlated
variables, so that there is no compelling reason to remove those. In the event that N variables are
profoundly correlated, then they will all place on the same Principal Component (Eigenvector) [36].
PCA is not appropriate for some classification scenarios. Assume that there are two classes of data;
however, the within-class variance is high when contrasted with between-class variance; here PCA may
discard the important data that isolates two classes. Consequently, if the data are noisy, and the noise
variance is more than the variance between the means of the two classes, at that point, PCA will keep
the noise parts, and let discard the distinctive segment (this is normal since PCA is unsupervised) [55].
In this study, we use PCA for feature selection before using ML (supervised learning) algorithms.
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2.1.2. Chi-Squared Feature Selection (χ2)

This is another filter-based strategy. In this method, the Chi-square metric between the target,
and the numerical variable will be calculated and then choose the features with the maximum
Chi-squared scores (χ2). If the number of observations in the class is close to the expected number
of observations in the class then two features are independent; hence, the Chi-squared value is small.
This is given by,

χ2 =
n

∑
i=1

(Oi − Ei)2

Ei

where Oi is the number of observations in the class and Ei is the number of expected observations
in class i [36]. The Chi-squared Ranking Filter technique is employed to determine the features that
are essential for the prediction. In our analysis, we used domain knowledge, Principal Component
Analysis (PCA), and Chi-squared techniques for the feature selection process.

2.2. Supervised Machine Learning

Machine Learning algorithms can be classified into two significant methods: supervised ML and
unsupervised ML. Classification and regression methods are known as supervised ML, while clustering
and association methods are known as unsupervised learning. An approach that lies in between
supervised and unsupervised ML method is called semi-supervised learning.

The most practical applications utilize supervised ML algorithms (classification algorithms) for
prediction. Supervised ML takes a known set of input variables, x (the training set), the known
responses to the data or output variable (Y), and an algorithm that learns the mapping function or
trains a model from the input to the output variables, Y = f (X). In this method, all of the data are
labelled, and the algorithms attempt to figure out how to predict the output from the input data. Thus,
the mapping function can be approximated adequately. With this, a classifier (ML algorithm) can
predict the output variables (Y) for that for new input data (x). Since we know the outcome of the
training data, we call this as supervised ML technique. The algorithm iteratively makes predictions on
the training data and learning ends when the algorithm delivers a satisfactory level of performance [36].

2.3. Data Collection

We extracted data from 300 peer-reviewed scientific articles that were published between 1990
and 2015 that included 1127 distinct laboratory experiments to predict the potential responsiveness of
human and animal cells to RF-EMF. We eliminated laboratory experiments that reported outcomes
when (i) no complete dosimetry is disclosed, (ii) SAR values are greater than 50 W/kg, or (iii) exposure
durations are greater than seven days and (iv) publication is not published in peer-reviewed scientific
journals. Subsequently, the cellular response (presence or absence) is observed from 1127 human,
rat/mouse, and other species cells. Seventy different tissue/cell types have been used to evaluate the
effect of weak RF radiation from mobile phones. All of the extracted data are from peer-reviewed
publications, which were published in PubMed or IEEE database.

The data employed in this analysis have been shown in our recent study (Tables 11–42,
Halgamuge et al., 2020 [41]) that extracted high levels of understanding from raw data using different
classification algorithms and performance evaluation methods. The collected dataset comprises of
five attributes of RF-EMF and 1127 experimental case studies or instances, such as: species (human
and animal cells/tissue), frequency of weak RF-EMF, SAR, exposure durations, and cellular response
(presence or absence).

2.4. Data Pre-Processing and Inclusion Criteria

Data pre-processing was performed prior to training the supervised ML algorithms or classifiers.
A portion of the data, from 300 peer-reviewed scientific publications published (1990–2015) that
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included 1127 distinct experimental case studies, was held as the testing part, and the remaining data
were used to build classification models (training).

Data inclusion criteria and data pre-processing criteria are as shown in our previous study [53].
We initially used six features or attributes (Table 2) for the analysis; then, we used domain knowledge,
PCA technique, and Chi-squared Feature Selection method to select the optimal attributes for
the classifier.

Table 2. Descriptions of the selected six features (attributes or variables) of the analysis.

Features Symbol Type Feature
Type

Description (Domain)

Species (human, animal) c Nominal Input Different cell types have been grouped into two (human
or animal cells)

Frequency of weak RF-EMF (Hz) f Numeric Input 800–2450 (MHz)
Specific absorption rate, SAR (W/kg) SAR Numeric Input Up to 50 W/kg—Specific Absorption Rate (SAR) is a

proportion of the rate at which energy is absorbed per
unit mass by a living organism when exposed to a
radiofrequency electromagnetic field (RF-EMF).

Duration of exposure time T Numeric Input 2 min–120 h
SAR×exposure time (Halgamuge et al.,
2020) [41]

ST Numeric Input Cumulative effect or impact of accumulated SAR within
the exposure period

Cellular response (presence or absence) R Binary Output Presence/Absence

Feature selection is the process of choosing features in a dataset to model the problem to be
answered and understand the underlying relationships of the data. Although we had a very high data
size to feature ratio (1127:6), which might not lead to overfitting on the training data, we performed the
feature selection technique using (i) domain knowledge or expert knowledge, (ii) Principal Component
Analysis (PCA) technique, and (iii) the Chi-squared feature selection method to select the optimal
features for the classifier.

2.5. Data Analysis

In this work, we utilize the binary classification method that classifies the data into two groups,
e.g., whether or not the non-thermal low power RF-EMF’s impact on the cellular response was
observable (presence or absence). Independent variables, such as the frequency of weak RF-EMF,
specific absorption rate (SAR), exposure time, and species impact on sensitive human and animal cells.
A principal assumption of ML is that the training data is the representation of the distribution from
which test data (future data) will be picked. The data are independent and distributed identically [36],
which remains an assumption of this study. The analysis is performed using MATLAB (MathWorks Inc.,
Natick, MA, USA) R2019b and Weka tool (Waikato Environment for Knowledge Analysis, Version 3.9,
University of Waikato, New Zealand), on a computer with macOS High Sierra (Version 10.13.6, Apple,
Cupertino, CA, USA), on a computer with 1.7 GHz Intel Core i7 CPU, 4 GB 1600 MHz DDR3 RAM.

The optimal feature selection protocol is useful for identifying critical parameters that should
be applied in in-vitro laboratory experiments. We used domain knowledge to select key features
or attributes in our previous study [53]. However, in this study, we used domain knowledge,
Principal Component Analysis (PCA) technique, and the Chi-squared feature selection method to
select six optimal features for the classifier.

Cross-validation is a resampling methodology that is used to assess machine learning algorithms
in a limited dataset [56]. In this work, we use the k-fold cross-validation, k = 10, method. Therefore,
it splits the data into ten equal parts and then uses the first nine parts for training, and the final fold is
for testing purposes. The cross-validation joins (averages) the proportions of fitness in prediction to
determine a precise estimate of model performance.
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2.6. Evaluation Measures of Binary Classifiers

We analyze RF-EMF sensitivity of human and animal cells while using classification algorithms.
After performing the feature selection procedure, test cases were chosen to demonstrate certain aspects
of the proposed method. Consequently, the k-fold cross-validation method was used to employ for
each classifier. Ten classification algorithms were used to make the best predictions for the given
dataset (please see Appendix A to see why each algorithm works differently). Then we analyze the
correctly classified percentages of each classification algorithm.

A confusion matrix is also associated as an error matrix and is a table that is frequently used to
illustrate the performance of a classifier or classification algorithm on a set of test data for when the true
values are known. This provides the number of true positives TP, true negatives TN, false positives
FP, and false negatives FN. We obtained the confusion matrix for each classifier, and estimated the
rate of each classifier that we have utilized to predict the actual human and animal cell sensitivity
and to understand if it varies using test data. The root means squared error (RMSE), mean absolute
error (MAE), a weighted average of precision, recall, and F-measure are estimated using the k-fold
cross-validation approach. Furthermore, correctly classified instances can be divided as TP and
FP. Additionally, the incorrectly classified instances can be grouped into TN and FN. Performance
evaluation measurements were used to avoid accuracy inconsistency. The confusion matrix provides a
further analysis than the insignificant proportion of accuracy (correct classifications).

Binary classifiers are statistical and computational models that isolate a dataset into two groups:
positives and negatives [57]. The assessment of a classifier’s prediction performance is critical to get
the decision on its suitability. To date, numerous approaches have been developed and introduced
to measure prediction performance. Usually, we utilize accuracy, error rate, and computation time
for measuring classifier performance in terms of model development. When we consider the real
performance of a classifier, accuracy is not a stable metric. If the dataset is unbalanced, accuracy will
produce misleading results. Different extra measures are valuable for the assessment of the final
model. Class imbalance, or a distinction in the quantities of positive and negative instances, is common
in scientific areas, including the life sciences [58]. The classification of imbalanced datasets is a
generally new hurdle in the field of machine learning [59]. Binary classifiers are routinely assessed
while using different performance measures, for example, sensitivity and specificity, and performance
is represented using Area under the Receiver Operating Characteristics (ROC) curve (AUC) plots.
The ROC plots are visually attractive and they give a summary of a classifier execution over a wide
scope of specificities [59]. ROC plots could be deceiving when applied in imbalanced classification
situations; although, in our case, we have a balanced binary classification problem, where 45.3%
indicated cell changes and 54.7% indicated no changes. The visual interpretability of ROC plots with
regards to imbalanced datasets can be misjudging concerning decisions regarding the reliability of
classification performance with a wrong understanding of specificity. Precision-Recall (PRC) plots,
then again, can present with a precise prediction of future classification performance because of the
way that they assess the portion of true positives among positive predictions [59]. Hence, in this study,
we analyzed: (i) accuracy (PCC—Percent Correct Classification), (ii) error rate (RMSE), (iii) precision,
p is the percentage of predictive items which are correct, p = TP = (TP + FP), (iv) sensitivity or recall
(true positive rate), TP = (TP + FN), (v) 1− specificity (false positive rate, FP/(FP + TN), (vi) area
under the ROC Curve, and (vii) precision-recall (PRC Area).
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3. Results

Obtaining an understanding of the data is one of the goals of developing ML models. In order to
predict the possible impact of RF-EMF on human and animal cells in in-vitro studies, feature selection
techniques, different classifier model evaluation techniques, such as model accuracy (PCC), Root Mean
Squared Error (RMSE), precision, sensitivity (recall), 1 − specificity, Area under the ROC Curve (AUC),
and precision-recall (PRC Area) using the k-fold cross-validation method were used in this study.
The knowledge into key components of analysis was obtained, which decide the effect of weak RF-EMF
on living organisms, in order to grasp the basics of the data better, and this study is a part of it.

An overview of the utilized laboratory experiments that provided a positive association
(cellular response—presence) between weak RF-EMF and for human cells (Table 3) and animal cells
(Table 4).

Table 3. An overview of the utilized laboratory experiments that provided positive association (cellular
response—presence) between weak RF-EMF and cells.

No Affected Cells Frequency
(Hz)

Specific
Absorption Rate,
SAR (W/kg)

Exposed Time
(min)

Radiation Exposure Facility
Details

1 Human peripheral blood mononuclear
cells (PBMC)

900, 1800 0.024, 0.18, 0.4, 2, 5 15, 120, 880 Waveguide, anechoic chamber,
cavity resonator

2 Human Blood Lymphocytes 800, 830, 895,
900, 905, 910,
915, 954, 1300,
1800, 1909.8,
1950, 2450

0.0054, 0.037, 0.05,
0.18, 0.21, 0.3, 0.5,
0.77, 1, 1.25, 1.5, 2,
2.5, 2.6, 2.9, 3, 3.6,
4.1, 4.3, 5, 6, 8.8, 9,
10, 12.3, 50

TEM cell, waveguide,
horn antenna, wire patch
cell (WPC), rectangular
waveguide (R18), rectangular
waveguide (WR 430), waveguide
with cavity resonator,
anechoic chamber with horn
antenna, trumpet-like aerial

3 Human Monocytes, monocytic cells
(U937), Human Mono Mac 6 cells (MM6)

900, 1300,
1800

0.18, 0.77, 1, 2, 2.5 15, 20, 60, 880 Rectangular waveguides (R18)
with cavity resonator, anechoic
chamber with horn antenna

4 Human B lymphoblastoid cell (TK6,
CCRF-CEM)

1800 2 40, 480 Rectangular waveguides

5 Human T lymphoblastoid cells (Molt-4 T) 813.5, 836.5,
900

0.0024, 0.0026,
0.0035, 0.024,
0.026, 3.2

120, 1260, 2880 TEM cell

6 Human Leukocytes, human blood
neutrophils, human white blood cells

900, 1800,
1909.8

2, 5, 10, 1909.8 15, 160, 180, 1440 TEM cell, waveguide, microstrip
transmission line

7 Human leukemia cells (HL60), human
erythroleukemic cells (K562)

900, 1800,
2450

0.000025, 0.000041,
1.8, 2, 2.5, 10

120, 180, 240, 360,
480, 880, 1440

GTEM cell, circular waveguide
with cavity resonator, waveguide
(TM01)

8 Human Whole Blood Samples, blood
platelets, hemoglobin (HbA), human
blood serum

835, 900, 910,
940, 2375

0.24, 0.6, 1, 1.17,
2.4, 12

1, 3, 5, 7, 15, 30, 60,
90, 120

Cavity resonator, spiral antenna
setup

9 Glial cells: Astroglial (astrocytes) cells,
astrocytoma cells and microglial cells

835, 900, 1800 1.8, 2.4, 2.5, 12 420, 480, 880 waveguide with cavity resonator

10 Human glioma cells (LN71, MO54, H4,
SHG44)

900, 954, 2450 1.2, 1.5, 5, 10, 50 60, 120, 240, 480,
1056, 3000

GTEM cell, circular waveguide
with cavity resonator

11 Human glioblastoma cells (U87MG,
U251MG, A172, T98, U87)

835 2.4, 12 420

12 Human neuroblastoma cells (NB69,
SK-N-SH, SH-SY5Y, NG108-15)

872, 900, 1760,
1800, 2200

0.023, 0.086, 0.77,
1, 1.5, 1.8, 2.5, 5, 6

5, 15, 20, 30, 60,
120, 240, 480, 1440

Waveguide, wire-patch cell
(WPC), waveguide with cavity
resonator, chamber with a
monopole antenna
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Table 3. Cont.

No Affected Cells Frequency
(Hz)

Specific
Absorption Rate,
SAR (W/kg)

Exposed Time
(min)

Radiation Exposure Facility
Details

13 Human primary,
epidermal keratinocytes,
keratinocytes cells (HaCaT)

900 2 2880 Wire-patch antenna

14 Human fibroblasts, human diploid
fibroblasts, human dermal fibroblasts,
human skin fibroblasts

900, 1800,
1950, 2450

0.05, 0.2, 1, 1.2, 2, 3 20, 60, 80, 320, 480,
580, 2880

Waveguide, anechoic chamber,
wire-patch antenna, rectangular
waveguides

15 Jurkat Cells, Jurkat human T
Lymphoma cells

1800, 2450 2, 4 160, 2880 Waveguide, antenna horn

16 Embryonic carcinoma (EC-P19),
Epidermoid carcinoma

1710, 1950 0.0036, 0.4, 1.5, 2 60, 120, 180, 480 Waveguide, waveguide (R14)

17 Hepatocarcinoma cell line HepG2 900, 1800,
2200

0.023, 2 20, 40, 60, 80, 1440 Waveguide, horn antena

18 Human lens epithelial cells (HLECs),
eye lens epithelial cells

1800 1, 2, 3, 3.5, 4 10, 20, 30, 40, 120,
180, 480, 560, 1440

Waveguide, rectangular
waveguide (R18)

19 Human epithelial amnion cells (AMA),
bronchial epithelial cells (BEAS-2B),
human ovarian surface epithelial cells
(OSE-80PC), epithelial carcinoma cells,
Human HeLa, HeLa S3

960, 1800 0.0021, 1, 2.1, 3 20, 30, 540, 3900 TEM cell , waveguide, dipole
antenna

20 Human amniotic cell, amniotic epithelial
cells (FL)

960, 1800 0.0002, 0.002, 0.02,
0.1, 0.5, 1, 2, 4

15, 20, 30, 40, 240 TEM cell , waveguide

21 Human breast carcinoma cells (MCF-7) 900, 1800,
2450

0.00018, 0.00036,
0.00058, 0.36, 2

60 Exposure chamber, antenna with
falcon tube holder

22 Human breast epithelial cells (MCF10A),
breast fibroblasts

2100 0.607 240, 1440 Horn antenna

23 Human Spermatozoa 850, 900, 1800,
1950

0.0006, 0.4, 1, 1.3,
1.46, 2, 2.8, 3, 4.3,
5.7, 10.1, 27.5

4, 10, 60, 180, 960 Waveguide, exposure chambers,
omni-directional antenna,
waveguide in TE10 mode with
cavity resonator and monopole
antenna

24 Human Endothelial cells (EA.hy926,
EA.hy926v1 and EA.hy296)

900, 1800 0.77, 1.8, 2, 2.2, 2.4,
2.5, 2.8

20, 60, 480 Waveguide, exposure chamber,
waveguide with resonator
(TE10 mode), waveguide with
cavity resonator

25 Human Trophoblast cells (HTR-8/SV
neo cells)/Human lipid membrane
(liposomes)

1800, 1817,
2450

0.0028, 0.0056, 2,
38

3, 10, 60, 80, 160,
320, 480

TEM cell , waveguide, dipole
antenna, waveguide with
cavity resonator

26 Mast cell lines (HMC-1)—mast cell
leukemia

864.3 7 140 Resonant chamber

27 FC2 cells, human-hamster hybrid cells
(AL)

835, 900 0.0107, 0.0172, 2 30, 120 TEM cell

28 Human adipose derived stem cells 2450 0.24 3000

29 Human dendritic cells 1800 4 20, 240, 480

30 Human embryonic kidney cells
(HEK 293 T)

940 0.09 15, 30, 45, 60, 90 Waveguide

31 Human umbilical vein endothelial cells
(HUVEC)

1800 3 20, 500 Waveguide

32 Human hair cell, human scalp hair
follicle, human dermal papilla cells
(hDPC)

900, 1763 0.974, 2, 10 15, 30, 60, 180, 420 Rectangular cavity-type chamber
(TE102 mode)
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Table 4. An overview of the utilized laboratory experiments that provided a positive association
(cellular response—presence) between weak RF-EMF and for animal cells.

No Affected Cells Frequency (Hz) Specific
Absorption Rate,
SAR (W/kg)

Exposed Time
(min)

Radiation Exposure Facility
Details

1 Rat primary microglial cells, mouse
microglial cells (N9)

1800, 2450 2, 6 20, 60, 120, 240 Waveguide, rectangular horn
antenna in an anechoic chamber

2 Rat glioblastoma cells (C6, C6BU-1) 1950 5.36 720, 1440, 2880 Dipole antenna

3 Rat astrocytes 872, 900, 1800,
1950

0.3, 0.46, 0.6, 1.5, 2,
2.5, 3, 5.36, 6

5, 10, 20, 60, 120,
240, 480, 520, 720,
1440, 2880, 5760

Waveguide, dipole antenna, horn
antenna, rectangular waveguide

4 Rat brain capillary endothelial cells
(BCEC)

1800 0.3, 0.46 2880, 5760 Rectangular waveguide

5 Mouse neuroblastoma cells (N2a,
N18TG-2, NG108-15)

915 0.001, 0.005, 0.01,
0.05, 0.1

30 TEM cell

6 Rat neurons, murine cholinergic
neurons (SN56)

900, 1800 0.25, 1, 2 120, 480, 1440,
2880, 4320, 5760,
7200, 8640

TEM cells, wire-patch cell,
rectangular waveguides

7 Rat/mouse brain cells 1600, 2450 0.00052, 0.23, 0.48,
1.19, 1.2, 2.99, 6.42,
11.21

Cylindrical
waveguide (T11
mode), cylindrical
waveguide (T11
mode)

8 Rat/mouse bone marrow 2450 12 5, 10, 15 Waveguide

9 Mouse spermatozoa, Murine
spermatocyte-derived cells (GC-2)

900, 1800 0.09, 1, 2, 4 20, 5040 Waveguide, rectangular
waveguide

10 Embryonic mouse fibroblasts cells
(C3H10T1/2, NIH3T3, L929), Mouse
embryonic skin cells (M5-S), Rat1
cells

835.62, 847.74, 872,
875, 900, 915, 916,
950, 1800, 2450

0.0015, 0.024, 0.03,
0.1, 0.13, 0.24, 0.33,
0.6, 0.91, 1, 2, 2.4,
2.5, 4.4, 5

5, 10, 15, 20, 30,
40, 60, 80, 240, 480,
960, 1440, 5760

Waveguide, radial transmission
line, chamber with monopole
antenna, magnetron, rectangular
waveguide

11 Mouse embryonic carcinoma cells
(P19), Mouse embryonic stem cells,
Mouse embryonic neural stem cells
(BALB/c)

800, 1710, 1800 1, 1.5, 1.61, 2, 4, 5,
50

20, 60, 120 Waveguide, rectangular
waveguide (R18)

12 Mouse lymphoma cells (L5178Y
Tk+/-), Rat basophilic leukemia
cells (RBL-2H3), Murine Cytolytic T
lymphocytes (CTLL-2)

835, 915, 930, 2450 0.0081, 0.6, 1.5, 25,
40

5, 15, 30, 120, 240,
420

Waveguide, GTEM cell, anechoic
chamber, aluminium exposure
chamber

13 Rat granulosa cells (GFSH-R17) 1800 1.2, 2 80, 320, 480 Rectangular waveguides

14 Rat pheochromocytoma cells (PC12) 1800 2 80, 320, 480 Waveguide

15 Chinese Hamster Cells (CHO),
Ovary (CHO-K1), Chinese hamster
lung cells (CHL)

1800 3 20, 480 Waveguide

16 Chinese hamster fibroblast
cells (V79)

864, 935, 2450 0.04, 0.08, 0.12,
0.51

15, 60, 120, 180 TEM cell, GTEM cell

17 Melanoma cell membrane (B16) 900 3.2 120 Wire patch cell (WPC)

18 Rat chemoreceptors membranes 900 0.5, 4, 12, 18 15 Waveguide (TE10 mode)

19 Hamsters pineal glands cells 1800 0.008, 0.08, 0.8, 2.7 420 Radial wave guide

20 Chick embryos 915, 2450 1.2, 1.75, 2.5, 8.4,
42.6

3, 120 TEM cell, coaxial device

21 Rabbit lens, Rabbit lens epithelial
cells (RLEC)

2450 0.0026, 0.0065,
0.013, 0.026, 0.052

480 TEM cell

22 Guinea pig cardiac myocytes,
pig astrocytes

900, 1300, 1800 0.001 8 TEM cell

23 Isolated frog auricle 885, 915 8, 10 10, 40 Coplanar stripline slot irradiator

24 Isolated frog nerve cord 915 20, 30

25 Snail neurons 2450 0.0125, 0.125, 85 30, 45 Waveguide, waveguide in
TE10 mode

3.1. Feature Selection Methods for Classification

Irrelevant or less essential features can severely affect model performance. We developed a
feature selection protocol using essential domain knowledge of impact of RF-EMFs on living organism
(using five different groups, as shown in Table 5). We also capture the other two approaches
(Principal Component Analysis (PCA) technique and Chi-squared feature selection method) when
performing feature selections techniques before utilizing in prediction models.

The SAR×exposure time is the impact of accumulated SAR within the exposure period, so we used
that feature for this analysis. Finally, our analysis selects six key features (specie, frequency of weak
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RF-EMF, SAR, exposure time, SAR×exposure time, cellular response (presence or absence) for our
dataset. Some features were removed in this analysis, for example, exposure system (GTEM cell, TEM
cell, waveguide, etc.), modulation techniques of mobile communication (AM, FM, GSM, etc.), and cell
line (human blood lymphocytes, breast cancer cell line, human spermatozoa, etc.).

Table 5. Grouping or clustering strategies to allocate these selected features into five different
laboratory experiment scenarios. This will produce five different feature groups or distributions
for each laboratory experiment.

Group Selected Features

A Specie, frequency of weak RF-EMF, SAR, exposure time, SAR×exposure time, cellular response (presence or absence)
B Specie, frequency of weak RF-EMF, SAR, exposure time, SAR×exposure time, cellular response (presence or absence)
C Frequency of weak RF-EMF, SAR, exposure time, SAR×exposure time, cellular response (presence or absence)
D Specie, frequency of weak RF-EMF, exposure time, cellular response (presence or absence)
E Specie, SAR, exposure time, SAR×exposure time, cellular response (presence or absence)

3.2. Prediction Using Supervised Machine Learning

Various additional measures are useful for the evaluation of the final model. Receiver Operating
Characteristics (ROC) curves can be utilized to choose the most appropriate prediction model. Hence,
in this study, we utilized accuracy, error rate (RMSE), precision, sensitivity, or recall (true positive rate),
1− specificity (false positive rate), area under the ROC Curve, and precision-recall (PRC Area).

Table 5 shows grouping or clustering strategies for allocating selected features into five groups
for different laboratory experiment scenarios. First, we analyzed the accuracy of all classification
algorithms for all groups, separately. The k-fold cross-validation was employed for each classifier.
The Random Forest algorithm outperformed (83.56%, 0.3 s) in terms of high prediction accuracy and
low computation time. Accuracy values greater than 75% are demonstrated in Table 6 (PCC > 75%).
We observed that the computation time was very low (less than a minute) in all algorithms for
all combinations of features. Hence, the computation time for each classification algorithm was
not analyzed.

Moreover, RMSE for the best performing algorithms was plotted in Figure 2 where RMSE
value <0.42.

Subsequently, we analyzed Area under the ROC curve. The ROC curves are generally used
to determine, graphically, the connections/trade-offs between sensitivity and specificity for every
possible combination of tests. The area under the ROC Curve can be categorized based on the values:
an area of 1 shows a perfect test and an area lower than 0.5 shows a worthless test. A rough guide
for classifying the accuracy of a diagnostic test is the traditional academic point system is shown in
Figure 3: excellent (0.9–1), good (0.8–0.9), fair (0.7–0.8), poor (0.6–0.7), and fail (0.5–0.6). This clearly
demonstrates seven algorithms (Random Forest, Bagging, J48, Decision Table, BayesNet, kNN, and
JRip) perform better, on the other hand, SVM, Naive Bayes, and Logistic Regression algorithms show
as worthless tests, as the Area under ROC curve was less than 0.5 (Table 7). Hence, for the rest of
the analysis, we only used these seven classification algorithms. The possible explanations for this
result might be that each algorithm works a bit differently and each follow different computation
complexities. Please see Table A1 in the Appendix A. Moreover, some of the algorithms work well in
all numeric data when compared to the mixed data.
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Table 6. Correctly classified instances where PCC > 75% for each classification algorithm for all groups
using k-fold cross-validation (Train 90% : Test 10%).

Group Model Fold = 10 Fold = 20 Fold = 30 Fold = 40 Fold = 50 Fold = 60 Fold = 70 Fold = 80 Fold = 90

Group A Random Forest 82.362 82.203 83.240 83.399 82.841 83.559 83.081 83.240 83.240
Group A kNN 76.457 76.696 76.856 76.696 76.856 77.015 76.935 76.536 76.616
Group A Bagging 79.090 79.649 80.766 79.888 79.968 80.367 79.729 80.048 81.165
Group A J48 78.532 78.851 78.133 79.649 78.931 78.611 79.729 79.249 78.691
Group A Decision Table 75.579 75.658 75.419 75.020 75.738 75.579 75.977 74.940 75.179

Group B Random Forest 80.447 81.484 80.607 81.006 80.766 81.165 81.804 81.405 80.926
Group B kNN 79.888 80.607 80.607 80.766 80.527 80.686 80.447 80.686 80.447
Group B Bagging 77.574 78.292 77.494 78.452 78.532 79.329 78.053 78.931 78.372
Group B J48 75.898 78.212 77.893 78.133 77.175 78.133 78.292 78.053 77.574
Group B Decision Table 75.658 75.339 75.738 75.339 76.297 75.818 75.818 75.579 76.058

Group C Random Forest 82.203 82.682 82.841 83.160 82.841 83.959 83.001 83.160 83.639
Group C kNN 78.532 78.851 78.851 79.010 79.090 79.329 79.170 78.931 78.931
Group C Bagging 79.0902 79.569 79.809 79.489 79.888 80.048 79.649 79.569 79.729
Group C J48 76.377 77.175 78.053 77.095 77.095 78.452 77.334 77.813 78.212
Group C Jrip 75.020 75.579 75.578 75.499 74.860 75.499 74.940 75.419 76.217

Group D Random Forest 80.447 81.484 80.607 81.006 80.766 81.165 81.804 81.405 80.926
Group D kNN 79.888 80.607 80.607 80.766 80.527 80.686 80.447 80.686 80.447
Group D Bagging 77.574 78.292 77.494 78.452 78.532 79.329 78.053 78.931 78.372
Group D J48 75.898 78.212 77.893 78.133 77.175 78.133 78.292 78.053 77.574
Group D Decision Table 75.658 75.339 75.738 75.339 76.297 75.818 75.818 75.579 76.056

Table 7. Area under the Receiver Operating Characteristics (ROC) curve (AUC) using excellent (0.9–1)
and good (0.8–0.9) values in all groups (Train 90% : Test 10%).

Group Model Fold = 10 Fold = 20 Fold = 30 Fold = 40 Fold = 50 Fold = 60 Fold = 70 Fold = 80 Fold = 90

Group A Random Forest 0.899 0.901 0.902 0.901 0.900 0.903 0.902 0.902 0.902
Group A Bagging 0.872 0.879 0.882 0.874 0.878 0.878 0.874 0.882 0.879
Group A BayesNet 0.809 0.814 0.814 0.815 0.813 0.813 0.813 0.814 0.812
Group A J48 0.853 0.853 0.841 0.855 0.852 0.850 0.849 0.854 0.849
Group A Decision Table 0.827 0.838 0.836 0.836 0.840 0.839 0.839 0.834 0.833

Group B Random Forest 0.894 0.896 0.895 0.897 0.896 0.896 0.897 0.897 0.897
Group B kNN 0.873 0.874 0.873 0.876 0.877 0.873 0.874 0.875 0.873
Group B Bagging 0.872 0.872 0.870 0.872 0.873 0.875 0.870 0.877 0.873
Group B BayesNet 0.807 0.810 0.810 0.810 0.808 0.807 0.806 0.808 0.807
Group B J48 0.834 0.841 0.838 0.841 0.838 0.837 0.832 0.837 0.834
Group B Decision Table 0.822 0.819 0.818 0.815 0.815 0.820 0.813 0.812 0.822

Group C Random Forest 0.895 0.898 0.902 0.899 0.900 0.903 0.897 0.902 0.901
Group C kNN 0.800 0.802 0.808 0.804 0.808 0.811 0.811 0.806 0.808
Group C Bagging 0.870 0.876 0.881 0.874 0.876 0.874 0.872 0.88 0.878
Group C BayesNet 0.808 0.813 0.812 0.812 0.810 0.810 0.810 0.809 0.809
Group C J48 0.848 0.847 0.849 0.842 0.841 0.852 0.840 0.843 0.842
Group C Decision Table 0.818 0.816 0.813 0.810 0.812 0.804 0.811 0.811 0.813

Group D Random Forest 0.894 0.896 0.895 0.897 0.896 0.896 0.897 0.897 0.897
Group D kNN 0.873 0.874 0.873 0.876 0.877 0.873 0.874 0.875 0.873
Group D Bagging 0.872 0.872 0.870 0.872 0.873 0.875 0.870 0.877 0.873
Group D BayesNet 0.807 0.810 0.810 0.810 0.808 0.807 0.806 0.808 0.807
Group D J48 0.834 0.841 0.838 0.841 0.838 0.837 0.832 0.837 0.834
Group D Decision Table 0.822 0.819 0.818 0.815 0.815 0.820 0.813 0.812 0.822



Int. J. Environ. Res. Public Health 2020, 17, 4595 15 of 27

Figure 2. Root-mean-square error (RMSE) values <0.42 for different classifiers.

Figure 3. The area under the ROC Curve for all classifiers: excellent (0.9–1), good (0.8–0.9), fair (0.7–0.8),
poor (0.6–0.7) and fail (0.5–0.6).

We selected the top seven classification algorithms that were performed in terms of Area under
the ROC Curve and accuracy (Figure 4) out of ten algorithms that we used in this study.

Subsequently, we estimated the classification model performance while using Group details
that are shown in Table 5. This study shows negligible fluctuation with the top seven classification
algorithms Area under the ROC Curve (0.93–0.8) (Figure 5 and Table 8), except Group E, demonstrating
that the outcomes are crucial. Hence, this result demonstrates that the frequency of the weak RF-EMF
(Hz) feature is critically important for prediction, and to better obtain the underlying pattern of
the data.
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Figure 4. Top seven classification algorithms performed in terms of Area under the ROC Curve and
accuracy out of ten algorithms that we used in this study. Group details are shown in Table 5.

Figure 5. Random Forest algorithm outperforms all groups and demonstrated (AUC = 0.903 when
fold = 60).

Table 8. Evaluation measures of binary classifiers: assessment of a classifier’s prediction performance
where k-fold = 60 (Train 90% : Test 10%).

Classification Modle PCC RMSE Precision Sensitivity
or Recall

(1− Specificity) Area under the
ROC Curve

Precision-Recall
(PRC Area)

Random Forest 83.559 0.352 0.815 0.843 0.829 0.903 0.878
kNN 77.015 0.456 0.748 0.774 0.767 0.800 0.741
Bagging 80.367 0.375 0.783 0.809 0.799 0.878 0.845
SVM 52.514 0.689 0.496 0.319 0.709 0.514 0.480
Naive Bayes 51.317 0.563 0.313 0.025 0.950 0.521 0.472
Bayes Net 74.701 0.419 0.746 0.704 0.785 0.813 0.782
J48 78.611 0.399 0.752 0.816 0.759 0.850 0.803
Jrip 75.020 0.428 0.745 0.716 0.781 0.785 0.772
Decision Table 75.579 0.403 0.731 0.764 0.749 0.839 0.792
Logistic Regression 52.993 0.498 0.505 0.275 0.758 0.545 0.486
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Although these results reveal that the general performance of the seven classifiers, it is still
interesting to know how these assessments of a classifier’s prediction performance of each algorithm
are met. Hence, more importantly, the performance evaluation measures of binary classifiers are further
computed while using the confusion matrix using k-fold = 60. Table 6 demonstrates the confusion
matrix (weighted average) for classification model performance. Detailed comparison of the percentage
of the model accuracy (PCC), Root Mean Squared Error (RMSE), precision, sensitivity (recall),
1 − specificity, Area under the ROC Curve, and precision-recall (PRC Area) for each classification
method were shown here.

Precision explains how many of the positively classified instances were suitable for all algorithms
or classifiers. Sensitivity (recall) shows how suitable analysis is for detecting the positives while
specificity demonstrates how beneficial a test is at avoiding false alarms. Hence, all of these
measures are valuable. By considering all measures, seven algorithms (Random Forest, Bagging,
J48, Decision Table, BayesNet, kNN, and JRip) show high prediction performance; on the other
hand, three algorithms (SVM, Naive Bayes, Logistic Regression) show unsuitability for this dataset.
Computational time (CPU time) appears to be low in all classifiers due to the smaller sample size.

Figure 6 demonstrates correlations among features for RF-EMF on human and animal cells
(maroon indicating strong correlation and blue signaling weak correlation). The features selected for
this analysis were frequency, SAR, exposure time, and SAR×exposure time. A robust correlation was
seen between exposure time with SAR×time and SAR with the frequency of weak RF-EMF. In contrast,
the relationship between the frequency and exposure time was not notable. Using ML techniques,
this study demonstrated more profound insights into the features of weak RF-EMF exposure scenarios
on human and animal cells.

Figure 6. Correlations among attributes for RF-EMF on human and animal cells (maroon indicating
strong correlation and blue signaling no correlation). Features that were selected for this analysis
were frequency, SAR, exposure time, and SAR×exposure time (impact of accumulated SAR within the
exposure period).

Except for the complexity of the selected algorithm, Figure 7 clearly demonstrates computation
time depends on processor speed (CPU) and memory capacity (RAM size) of computer that we use to
run ML algorithms. Computer with higher processor speed and RAM size provide low computation
prediction time. This is essential when we use a bigger data set with more features.
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Figure 7. Influence of computer processor speed (CPU) and memory capacity (random-access memory
(RAM) size) on prediction accuracy and computation time for Study 1, Study 2, and Study 3 (this study)
shown in Table 1.

4. Discussion

We develop up a prediction strategy to examine the possible impact of RF-EMFs on human and
animal cells without performing in-vitro laboratory experiments. This is the first occasion when the
supervised machine learning approach has been utilized for the characterization of weak RF-EMF
exposure scenarios. In our study, we use ten different classifiers, and the outputs are estimated
using the k-fold cross-validation method. The results of our study indicate that seven algorithms
(Random Forest, Bagging, J48, Decision Table, BayesNet, kNN, and JRip) perform better, while SVM,
Naive Bayes, Logistic Regression algorithms are shown as worthless tests, as the Area under ROC
curve was less than 0.5. Our findings suggest that the Random Forest algorithm exceeds in all groups
in terms of all performance measures and shows AUC = 0.903, where k-fold = 60. There are a few
potential clarifications for this result. The data do not require to be re-scaled or transformed in the
Random Forest method. Primarily, Random forest tackles outliers by binning them. It also handles
unbalanced data. It can balance the error in class populations with unbalanced data sets. Principally,
each decision tree has a high variance, though low bias. Nevertheless, since it averages all of the trees in
a random forest, it also averages the variance. Hence, the Random Forest classification method has low
bias and average variance model. Another possible explanation for this is that Random Forest attempts
to limit the total error rate. For example, if we have an unbalanced dataset, the big class provides
a low error rate, and small class provides a significant error rate. This finding also supports our
previous research [53] into a prediction model that shows the Random Forest classification algorithm
outperforms, with highest classification accuracy, by 95.26%.

The execution efficiency of the Random Forest algorithm increases with the number of trees.
A large number of trees diminishes the danger of overfitting and variance in the model. After some
point, in the Random Forest algorithm, the excess of trees can make model training inefficient by
increasing the computation time [60], which results in substantial execution costs. This study does
not cover memory usage for the chosen dataset. Nevertheless, a generous number of trees expends a
bigger RAM space [60] when we utilize the Random Forest strategy.

We extract data from 300 peer-reviewed scientific publications (1990–2015) describing 1127
experimental investigations in cell-based in vitro models (human and animal species). A small sample
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was chosen because of the limitation of the in-vitro experiments that were published during the chosen
period. Hidden information can be gained if we have sufficient data. ML helps to understand and
verify the structure of data through mining information from data. The mechanics of learning should
be automatic, as there are lots of data to be supplied by individuals themselves. Related applications
(such as medical, irrigation, natural disasters) will not come from PC programs, ML specialists, or from
the data itself, however, from the individuals who work with the data [36]. The utilization of data,
especially data regarding individuals, has substantial ethical implications, and data mining specialists
must be mindful of the ethical issues [36]. Nevertheless, when sensitive data are disposed, there is a
chance that models will be built that depends on factors that can be appeared to fill in for racial or
sexual attributes.

We recognize the most appropriate features or attributes to be used in prediction models to
give understanding of crucial factors that decide the possible impact of RF-EMF in in-vitro studies
utilizing domain knowledge, Principal Component Analysis (PCA), and Chi-squared feature selection
techniques. Picking a classifier relies upon the requirements of the application. Features or attributes
of classified data sets directly impact the classifier performance or the prediction rate. This is essential
when using large datasets with a high number of features. We observe a very high data size to feature
ratio (1127:6), which might not lead to overfitting on the training data. However, there is, in contrast to
our study, a study [38] that reported a very low data size to feature ratio when predicting corn yield
with ML approach.

It is becoming increasingly difficult to ignore the impact of selecting small sample sizes on
prediction accuracy. Recent research by Vabalas et al. [61] has argued K-fold Cross-Validation (CV)
exhibits heavily biased performance estimates with small sample sizes. Despite small sample sizes
being standard, other components, which impact bias, include data dimensionality, hyper-parameter
space, number of cross-validation folds, and data discriminability. For the most part, the higher the
ratio of features to sample size, the higher the likelihood that a machine learning model will fit the
noise in the data as opposed to the unknown underlying pattern. Additionally, the higher the quantity
of adjustable parameters, the more probable that the machine learning model will overfit the data [62].
No single algorithm dominates while picking a machine learning model. Some work better with larger
datasets, and some work better with the high dimensional dataset. Essentially, in this manner, it is
critical to examine model viability in a specific data set.

We compare each classifier prediction performance utilizing seven measures to get the choice on
its suitability, utilizing the percentage of the model accuracy (PCC), Root Mean Squared Error (RMSE),
precision, sensitivity (recall), 1 − specificity, Area under the ROC Curve (AUC), and precision-recall
(PRC Area) for each classification method. The assessment of a classifier’s prediction performance is
essential to obtain the decision on its acceptability. Even though ROC requires exceptional care when
using imbalanced datasets, it is a standard and robust measure to evaluate the performance of binary
classifiers [59]. Similar to our work, previous evidence [59] suggests that precision-recall (PRC) plots
can generate precise predictions of future classification performance, because of the way that they
assess the portion of true positives among positive predictions.

Various correlations have been made on different classifiers executed over various datasets to
find a sensible classifier for a given application. Even with high performing computers dealing
with complex issues, it requires the most fitting classification algorithms to decrease the time and
computation resources wastage [63]. Machine learning is an exceptional tool, since it discovers some
unexplained correlations in different features in applications [53,63,64]. Nevertheless, the data type
(text, numeric, images, audio, and video) [63], feature dimensions, and complexity of algorithms
could impact on the performance. We build up grouping or clustering strategies to assign chosen
features into five diverse laboratory experiment scenarios. This will deliver five different feature
groups or distributions for every laboratory experiment. Tognola et al. found [65] cluster analysis
(unsupervised learning) is a reasonable way to find features that are best at identifying the exposure
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situations. Supervised learning is better tailored to discover features in occupational and environmental
epidemiology and public health studies [54].

More research in this space is crucial to learn whether and how some RF-EMF features
(e.g., frequency of weak RF-EMF, SAR, exposure time) influence the prediction of reactions in living
organisms [53]. Our previous studies used supervised ML algorithms to observe RF-EMF exposure on
plants species (i) Bayes Net, NaiveBayes, Decision Table, JRip, OneR, J48, Random Tree, and Random
Forest [53] and (ii) Random Forest and kNN [54]; nevertheless, this study observed performance
contrasts on human and animal species. Previously developed [54] optimization technique was to
characterize the trade-off among prediction accuracy and computation time based on the classification
algorithm used (the Best Accuracy-Computation-time pair (BAP)). This is very vital as in many medical
applications, where often prediction accuracy holds precedence over processing or computation time.
In contrast, computation time is more significant in time-sensitive fields, such as natural disaster
prediction.

Long-term RF-EMF exposure studies are, in general, limited in both plant and animal studies.
Usually, long-term animal investigations are carried out utilizing rats and mice (both male and
female) exposed for two years of RF-EMR varying between 10 and 2000 MHz, and this gives a
sensible substitute to human exposure. Despite the success of short-term studies, no pathological
or carcinogenic effects have been found in long-term RF-EMR studies at non-thermal levels.
This includes histopathology in lifespan and hematology studies at 800 MHz, 835/847 MHz, 2450 MHz
(1.3 W/kg [66] and 0.3 W/kg [67]. Nonetheless, a few pathological impacts have been published at
thermal levels [68,69]. Besides, a previous study [70] has observed an increased tumor occurrence
with long-term RF-EMR exposure at non-thermal levels using animals. Researchers might apply
ML algorithms (supervised and unsupervised) to long-term laboratory studies utilizing whole
organisms (in-vivo), and epidemiology studies to improve the accuracy of the prediction. Figure 1
shows potential features, attributes, or variables of Bioelectromagnetic experiments (in-vitro, in-vivo,
and epidemiological studies) that could be utilized in ML algorithms.

Similar to animal studies, to date, there have been limited investigations exploring the long-term
impacts of the RF-EMF exposure on plants, in addition to acquiring a viable conclusion on whether
there is a considerable impact or not [71]. Nevertheless, there is a considerable number of short-term
exposure studies demonstrate that plants have encountered physiological or morphological changes
on RF-EMR (up to 13 weeks) and show statistically significant changes [71]. Conversely, the outcomes
from the long-term exposure investigations demonstrate no physiological consequences for plants
exposed to RF-EMR due to mobile phone radiation. This comparison of both animal and plant studies
demonstrates a crucial point to the discussion on the apparent absence of long-term exposure that
could interpret as, perhaps as an adaptation to RF-EMR.

Biological effects of RF-EMR from the mobile phones may depend on the frequency, mean power
level and modulation of the EM signal. Numerous studies examined the health effect of the use of
mobile phones. These findings are revealed from epidemiological, living organism (in vivo), and
tissues in a petri dish or test tube (in vitro) studies. A lesser number of studies investigated the impacts
of RF-EMF radiation on plants.

In-vitro findings are necessary to investigate natural and induced events, yet, the energies (SAR)
and induced effects due to confounding elements are challenging to avoid. For example, background
electromagnetic fields are non-homogenous, and temperatures inside laboratory incubators have been
shown to skew results [72]. This fundamental criticism can be connected to various examinations that
appear or do not exhibit biological effects. Nonetheless, organisms have in-built systems to repair the
damages and maintain homeostasis [73]. The limitation of this study is the generally low sample size
(1127 reported experimental case studies) to the robustness of outcomes.

Few epidemiologic studies [74–77] have associated exposure from mobile phones with
neurological and cognitive dysfunctions. More repeated laboratory experiments and field studies are
required [78–80] for future studies to additionally examine critical physical parameters that impact the
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biological impacts of RF-EMF. Nevertheless, the cumulative effect of mobile phone radiation is yet to
be confirmed.

This study further contributes knowledge to the potential benefit of ML in the Bioelectromagnetics
space. With time, a bigger sample size can be collected. Hence, further evaluations in this space are
yet to be performed. We recognize a strong correlation between exposure time with SAR×time (effect
of aggregated SAR within the exposure time frame) and SAR with the frequency of weak RF-EMF
on human and animal species. Interestingly, the connection between frequency and exposure time
was not notable. Hence, varying responses (either cellular response presence or absence) made it
harder to identify [81] and measure the complex effects of weak RE-EMF. Now is the era where the
progression of technology shapes how people perceive everything. Future applications in public
health and occupational and environmental epidemiology should utilize ML algorithms. Additionally,
the cumulative impact of weak RF-EMF demands inquiry. With time, a more significant sample size
can be gathered, consequently, further assessments in this space are yet to be achieved. However, none
of these findings can be directly associated with human.

5. Future Directions

The potential adaptability of ML algorithms in the field of Bioelectromagnetics research for human
and animal cells has been explored in this study. Decision making employing predicting techniques
could be the best approach. Yet, there are many factors to be investigated with regards to computation
and cost-efficiency. This can be further extended by utilizing these techniques in other topics, such as
in-vivo and epidemiological studies using living beings (cells, animal, plant, and human populations),
as mentioned in our previous study [54]. Thorough knowledge of correlation factors between features
in these studies is also essential.

5.1. Data, Data Size, Data Quality, Parallel, and Distributed Computing Challenges

Predicting future events by utilizing ML can be limited by poor data quality and data governance
challenges. Training a classifier with poor data presents the genuine chance of producing a framework
with inherent bias and unreliable or unsatisfactory results. Data researchers need to take care that the
data they utilize to train their models to be as reliable and as unbiased as could be.

5.2. Feature Selection Strategy

Feature selection is one of the critical factors in ML, which hugely impacts model performance or
classifier performance. Which features should we employ to build a predictive model is a challenging
query that might need an in-depth knowledge of the problem domain? This could either mean adding
features or variables to the model or removing features that do not improve model performance.
Features will be chosen automatically or manually to deliver the best prediction accuracy or outputs
that we prioritize. This is something to be further investigated, as predictions with more comprehensive
input features is essential. In our data set, we had a very high data size to feature ratio (1127:6),
which might not lead to overfitting of the training data. However, many possible future applications,
such as occupational and environmental epidemiology studies, inherently provide more features in
their datasets with low data size to features ratios. Hence, feature selection is an essential requirement;
otherwise, built models may not hypothesize well enough to extract potentially hidden observations.

5.3. Machine Learning, Deep Learning, and Artificial Intelligence for Future Bioelectromagnetics

Deep learning additionally has great potential in its use in the medical field. It is “deep”,
since it forms data through a wide range of layers. Hence, with a more substantial amount of
data, it usually requires a high-performance computing (HPC) facility with many graphics processing
units (GPUs), which are essential for calculations that are necessary for deep learning. More or less,
artificial intelligence (AI) includes instructing computers to think in ways that a human might think.
This is one of the emerging technologies of the modern era, and many are rushing to integrate AI with
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their systems. Hence, adopting AI into the bioelectromagnetics space exists as an exciting avenue
to explore. The inherent adaptability of ML in the bioelectromagnetics field for human and animal
cells (in-vitro) has been demonstrated and, hence, increased the likelihood that ML that could be
implemented to other topics such as in-vivo and occupational and environmental studies, using animal,
plant, and human populations. The still uncertain cumulative impact of weak RE-EMF demands
inquiry, in-terms of laboratory experiments, in both occupational and environmental epidemiology.
ML is a viable strategy for discovering features best characterizing the RF-EMF exposure scenarios;
hence, it might be beneficial to better tailor occupational and environmental epidemiology and public
health studies accordingly, as indicated in our previous research [54].

6. Conclusions

The progress of emerging technology and digital transformation are recognized to increase and
intensify in the coming years. Modernized technologies that rely on wireless communication may
cause increased levels of radiofrequency electromagnetic field (RF-EMF) exposure. This resulted in
research interest in the space of bioelectromagnetics, which aims to investigate the consequence effect
of RF-EMF on living organisms. Hence, using robust predicting methods to identify the impact has
become increasingly more critical. Strong correlations were observed between SAR and exposure time
of weak RF-EMF, while an insignificant relationship was observed between frequency and exposure
time. As reported in our previous study (ML algorithms to predict the effect of weak RF-EMF on
plants), this study (ML algorithms to predict the effect of RF-EMF on human and animal cells) also
supports that the Random Forest algorithm outperforms most traditional learning algorithms in the
bioelectromagnetics space. The results show that good predictive accuracy can be achieved when
using feature selection methods. This study further confirmed that supervised ML is a viable strategy
for discovering features best characterizing the RF-EMF exposure scenarios. Technologies are changing
with time and, therefore, utilizing and recognizing the time of the study as a feature is significant.
In spite of the low sample size of the study (1127 reported experimental case studies—human and
animal cells in in-vitro studies) that restricted its statistical potential, this analysis demonstrates that
ML algorithms can be utilized to effectively predict the impact of weak RF-EMF on human and
animal cells. Feature selection is an essential strategy employing ML in bioelectromagnetics research,
especially in occupational and environmental studies using animal, plant, and human populations.
This is the first time that the supervised ML approach has been employed for the characterization
of weak RF-EMF exposure scenarios on human and animal cells. Machine learning techniques
(supervised, semi-supervised and unsupervised algorithms) contributes to innovative and practical
RF-EMF exposure prediction tools. The inherent adaptability of ML in the bioelectromagnetics field
for human and animal cells (in-vitro) has been demonstrated. It increases the likelihood that ML could
be implemented in other areas, such as in-vivo and occupational and environmental studies, while
using animal, plant, and human populations. This investigation further contributes to knowledge
of the potential advantage of ML in bioelectromagnetics. This analysis may potentially improve our
understanding of which features (data variables) should be gathered in the future to explain the causes
of high or low weak RF-EMF exposures. In future, with more experimental data, the sample size can
be increased, leading to more accurate work.
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Appendix A

Table A1. Supervised machine learning or classification algorithms for the analysis were used to
generate the results.

Algorithm/
Classifier Name

Classifier
Type

Description Capabilities
(Features/Attributes
Allowed by
the Algorithm)

Citation

K-nearest
neighbours’
classifier (kNN)

Lazy The appropriate value of K, based on cross-validation, can be
selected. The kNN (k-number of neighbours) uses the
nearest neighbour search algorithm. Using cross-validation,
the algorithm chooses the best k value between 1 and the value
mentioned as the kNN parameter

Numeric, nominal, binary,
date, unary, missing values

Aha
(1991)
[82]

Random Forest Trees Random forests algorithm builds a forest of random trees.
This considers a mixture of tree predictors (where each tree
depends on the independent values of a random vector sampled)
and employs similar distribution for all trees in the forest.
When various trees in the forest become huge, the generalization
error for forests converges as far as possible to a limit. The error
of the forest tree classifiers relies upon the power of the
individual trees and the correlation between the trees. In this
method, the data does not require to be re-scaled or transformed.
Primarily, Random forest tackles outliers by binning them

Numeric, nominal, binary,
date, unary, missing values

Breiman
(2001)
[83]

Bagging Meta A Bagging classifier is a meta-estimator that provides base
classifiers with each on random subsets of the original dataset.
Then it aggregates the prediction to form a final prediction.
Such a meta-estimator can be used to reduce the variance of
a black-box estimator (e.g., a decision tree) by introducing
randomization into its construction procedure

Numeric, nominal, binary,
date, unary, missing values

Breiman
(1996)
[84]

J48 Trees The J48 is a classification algorithm which generates a decision
tree which produces a pruned or unpruned C4.5 decision
tree. A number of folds decide the volume of data used for
reduced-error pruning. One-fold is utilized for pruning, and the
rest is for growing the tree

Numeric, nominal, binary,
date, unary, missing values

Quinlan
(1993)
[85]

Support-vector
machines (SVM,
Linear Kernel)

Function The SVM classifier globally substitutes all missing values.
This also transforms nominal attributes into binary values. Then,
by default, it normalizes all attributes. Hence, the coefficients
in the output are based on the normalized data, not the original
data, which is essential for interpreting the classifier. To achieve
probability estimates, use the option that provides the logistic
regression method to the outputs of the support vector machine

Numeric, nominal, binary,
unary, missing values

Platt
(1998)
[86].

Jrip Rules The JRip class implements a propositional rule learner called
Repeated Incremental Pruning to Produce Error Reduction
(RIPPER). It is established in association rules with reduced
error pruning (REP), a popular and efficient method seen in
decision tree algorithms. The algorithm operates through a few
phases: initialization, building stage, grow phase, prune phase,
optimization and selection stage

Numeric, nominal, binary,
date, unary, missing values

Cohen
(1995)
[87]

Decision Table Rules The Decision Table is a class for building and utilizing an
easy decision table in the classifier. It also is represented
as a programming language or as in decision trees as a
series of if-then-else and switch-case statements. The learning
decision tables comprises choosing the correct attributes to be
incorporated. A decision table is seen as balanced if it includes
each conceivable mixture of input variables

Numeric, nominal, binary,
date, unary, missing values

Kohavi
(1995)
[88].

Bayesian
Network
(BayesNet)

Bayes Bayes Network is a statistical model that uses a conditional
probability approach. It uses different search algorithms and
quality measures. This leads to data structures (network
structure and conditional probability distributions) and facilities
common to Bayes Network learning algorithms. Since ADTrees
are memory intensive, computer memory restrictions may arise.
Nevertheless, switching this option away makes the structure
learning algorithms moderate and run with more limited
memory

Numeric, nominal, binary,
date, unary, missing values

Friedman
et al.
(1997)
[89].

Naive Bayes Bayes Naive Bayes is based on Bayes’ Theorem. It chooses numeric
estimator precision values based on analysis of the training data.
Due to that reason, this is not an updateable classifier which
is in typical usage of initialized among zero training instances.
This uses a kernel estimator for numeric attributes than a normal
distribution

Numeric, nominal, binary,
date, unary, missing values

John and
Langley
(1995)
[90].

Logistic
Regression

Function Logistic regression uses a statistical technique for predicting
binary classes and it estimates the probability of an event
occurring. Missing values are replaced, and nominal attributes
are transformed into numeric attributes using filters

Numeric, nominal, binary,
date, unary, missing values

Cessie and
Houwelingen
[91]
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