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Abstract: Comprehensive investigation on understanding geographical inequalities of healthcare
resources and their influencing factors in China remains scarce. This study aimed to explore both
spatial and temporal heterogeneous impacts of various socioeconomic and environmental factors
on healthcare resource inequalities at a fine-scale administrative county level. We collected data
on county-level hospital beds per ten thousand people to represent healthcare resources, as well
as data on 32 candidate socioeconomic and environmental covariates in southwest China from
2002 to 2011. We innovatively employed a cutting-edge local spatiotemporal regression, namely,
a Bayesian spatiotemporally varying coefficients (STVC) model, to simultaneously detect spatial
and temporal autocorrelated nonstationarity in healthcare-covariate relationships via estimating
posterior space-coefficients (SC) within each county, as well as time-coefficients (TC) over ten years.
Our findings reported that in addition to socioeconomic factors, environmental factors also had
significant impacts on healthcare resources inequalities at both global and local space–time scales.
Globally, the personal economy was identified as the most significant explanatory factor. However,
the temporal impacts of personal economy demonstrated a gradual decline, while the impacts of
the regional economy and government investment showed a constant growth from 2002 to 2011.
Spatially, geographical clustered regions for both hospital bed distributions and various hospital
bed-covariates relationships were detected. Finally, the first spatiotemporal series of complete
county-level hospital bed inequality maps in southwest China was produced. This work is expected
to provide evidence-based implications for future policy making procedures to improve healthcare
equalities from a spatiotemporal perspective. The employed Bayesian STVC model provides frontier
insights into investigating spatiotemporal heterogeneous variables relationships embedded in broader
areas such as public health, environment, and earth sciences.

Int. J. Environ. Res. Public Health 2020, 17, 5890; doi:10.3390/ijerph17165890 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0001-8550-0941
https://orcid.org/0000-0001-9501-1535
http://dx.doi.org/10.3390/ijerph17165890
http://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/17/16/5890?type=check_update&version=2


Int. J. Environ. Res. Public Health 2020, 17, 5890 2 of 23

Keywords: Bayesian STVC model; healthcare resources; geographical inequality; hospital beds;
socioeconomic and environmental factors; spatiotemporal nonstationarity; health planning; China

1. Introduction

Rational allocation of healthcare resources has been addressed as an essential goal to be
achieved throughout healthcare system reforms in a worldwide range [1,2], for which evaluating the
inequalities of healthcare resources remains a prevalent issue, especially from the perspectives of
spatial dimension [3–5] and temporal dimension [6,7], as well as from both dimensions [8]. The number
of hospital beds has been commonly addressed as a proxy of healthcare resources [9]. In China,
the geographical inequalities of hospital bed distribution remain a noteworthy problem and are found
to be aggravated at finer-scaled geospatial levels [7]. Aware of this persistent issue, most studies on
China’s hospital bed inequalities in the literature, however, have been conducted merely at national [10]
or provincial [11,12] levels instead of at a finer-scaled county level [13]. The least equity in healthcare
resources was reported in western China [14]. According to the latest report, 823,200 hospital
beds in western China in 2009 only accounted for 26.06% of the total nationwide hospital beds,
while demonstrating a massive gap in this aspect compared with all the other regions in China
(e.g., eastern region 43.35%, central region 30.59%) [15]. Several studies conducted in southwestern
China have reported notable disparities in healthcare resources at the provincial level, with a couple
of provinces presenting inadequate resources below the nationwide average [12,13,16,17]. In spite of
these findings, no studies conducted in southwestern China have investigated the inequality in hospital
beds at a finer-scaled administrative level, namely the county level, not to mention the conduction of
such investigations from an integrated spatial-temporal perspective.

Apart from the investigation on unevenly distributed healthcare resources, the exploration of
potential factors influencing such inequality issues also cannot be ignored as a meaningful strategy for
optimizing healthcare resource allocation from a holistic perspective. Previous studies have identified
multiple socioeconomic factors affecting the distribution of hospital beds among regions [17,18].
Specifically, Qin et al. found that GDP per capita, population size, and the level of public spending all
played essential roles in accelerating the diffusion of healthcare resources in respect of hospital beds
across various regions in China [19]. On the other hand, Guo et al. found that GDP, income, education,
financial expenditure, and population size had different impacts on the concentration of hospital beds
in different regions of China [20]. While Pan et al. identified residents’ saving deposits and government
revenue as the most influential socioeconomic indicators [13], Ceccherini-Nelli et al. found another
long-term cyclical relationship between hospital beds and a list of socioeconomic factors such as real
GDP, base discount rates, and the rate of unemployment in a number of regions [21]. In an attempt
to investigate the relationship between population growth and hospital beds expansion, Yu et al.
reported that the growth rate of hospital beds presented slower in regions with rapid population
growth, while becoming faster in regions with comparatively slower population growth rates [14].
Another group of researchers also explored the spatial impacts of socioeconomic factors on hospital
beds taking a list of socioeconomic factors into consideration including the proportion of the elderly
population, proportion of the urban population, GDP per capita, and health expenditure [17]. It is
noteworthy that all these previous studies failed to conduct comprehensive investigations into hospital
beds from a socioeconomic perspective with only very limited socioeconomic factors to be taken into
consideration. In an attempt to bridge such research gaps embedded in previous literature, a complete
space–time dataset which contains various county-level socioeconomic factors in China was recently
developed and proposed by Song et al. in a newly published study which is believed to serve as
a potent tool for exploring the impacts of various socioeconomic factors on hospital beds in a much
more comprehensive manner [22].
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In addition to socioeconomic status, researchers are also aware of the critical role that environmental
condition has been playing in affecting hospital bed distributions. For instance, Song et al. conducted
a study on the spillover effect of hospital beds in China by involving two environmental factors for
investigation, namely the proportion of mountainous areas and traffic environment [8]. In another
study, Ye et al. explored the impact of highway mileage as a traffic-related factor on hospital beds
across different regions in China [17], based on which Wu et al., further identified topographic relief
to be the most influential environmental factor on hospital bed distributions in Sichuan province of
China [16], which exacerbated the long-existing imbalanced allocation of hospital beds in those regions,
as well as tended to become a limiting factor over time. Based on the previous literature, we are aware
that no comprehensive study in China that has ever investigated the spatiotemporal effects of both
socioeconomic and environmental factors on hospital bed inequalities via adopting county as the
lowest administrative level.

We are also aware of a constantly proposed assumption embedded in previous studies that the
healthcare-covariates relationship remains homogeneous over the entire study area and time frame,
which is known as stationarity in the field of statistics as a global-scaled assumption. For example, the
commonly used Gini coefficient and Theil index for measuring the uneven distribution of hospital
beds should only be regarded as a global-scaled coefficient in terms of evaluating the equality
of healthcare resource allocation [14,23–25]. Likewise, conventional regression methods are only
able to estimate the overall correlated effect of each covariate on hospital bed outcomes based on
such a global-scaled assumption [13]. It should be noted that a list of problems is likely to be
induced as the result of such a global-scaled assumption. The most important one is, in the real
world, that the heterogeneity of both spatial and temporal scales should be taken into consideration
when evaluating such healthcare-covariate relationships, especially for large-scale geospatial studies.
In the field of spatial statistics, such local-scaled spatiotemporal heterogeneous variable relationships
are called spatiotemporal nonstationarity [26,27]. Based on previous literature, the investigation
into hospital bed-covariate nonstationary relationships has only been conducted in a single spatial
dimension [11,16,17]. Therefore, a well-rounded investigation of the local-scaled spatiotemporal
heterogeneous associations among county-level hospital beds is urgently needed via the incorporation
of both socioeconomic and environmental factors within the study area of southwest China.

Based on fully understanding the issues as discussed above, we proposed two hypothetical theories
related to healthcare resources in the study area: (1) Apart from socioeconomic factors, the county-level
inequalities of healthcare resources were also associated with environmental factors. (2) The impacts of
explanatory variables (e.g., socioeconomic and environmental factors) on healthcare resources outcomes
were not homogeneous, but were instead heterogeneous at both space (e.g., county) and time (e.g., year)
scales. Striving to verify these two hypothetical theories, in this study, we employed a state-of-the-art
local spatiotemporal regression approach, namely, a Bayesian spatiotemporally varying coefficients
(STVC) model, to innovatively quantify and characterize the spatial and temporal heterogeneous
associations of county-level hospital beds with multiple socioeconomic and environmental covariates
across southwest China from 2002 to 2011. The STVC model is a Bayesian-based local spatiotemporal
regression proposed for space–time big data, which was aimed at simultaneous detection of spatial and
temporal autocorrelated nonstationarity in heterogeneous response-covariate variables relationships [28,29].
Both Bayesian statistics theories and hierarchical modeling frameworks are adopted in this real “full
map” modeling approach, along with a space–time independent nonstationary assumption that is
achieved by separately estimating posterior local-scale coefficients over different space areas and time
points [29].

Three objectives were included in this study. Firstly, to identify the essential covariates affecting
hospital beds considering both socioeconomic and environmental aspects on a global scale. Secondly,
to deeply explore the local-scaled spatial and temporal random effects for both hospital bed- covariates
relationships and hospital bed distribution alone. Thirdly, to innovatively develop a series of complete
and spatiotemporal maps of hospital bed inequality in southwest China at the county level.
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2. Materials and Methods

2.1. Study Area and Data

The study area of southwest China is located between 97◦21′–110◦11′ east longitude and
21◦08′–33◦41′ north latitude, which is known as one of the seven geographical divisions accredited
to China. The land area of southwest China is 2.5 million square kilometers, accounting for 24.5%
of the whole of China. The complex terrain of southwest China mainly consists of plateau and
mountainous areas. Southwest China covers five administrative regions, namely Sichuan province,
Guizhou province, Yunnan province, Tibet province, and Chongqing municipality. Figure 1 illustrates
the original geographical distribution of county-level hospital beds across southwest China in 2002.
Considering the population impact, the number of hospital beds per ten thousand people was employed
as the target variable of interest.

 

Figure 2 Figure 1. Geographical distribution of the original county-level hospital beds in the study area of
southwest China in 2002.

Correspondingly, an administrative county-level space–time dataset was innovatively developed
in the first step via the integration of a complete list of socioeconomic and environmental factors that
might potentially influence healthcare resources in southwest China over ten years. To be specific,
we collected a total number of 32 county-level variables, including 20 socioeconomic factors and
12 environmental factors, as a list of potential covariates influencing healthcare resource allocations
in southwest China, which were summarized in Table 1. Among them, the hospital beds and
socioeconomic data were retrieved from China’s first official published county-level socioeconomic
statistics dataset, which had been originally collected from the China County Statistical Yearbook,
the China Statistical Yearbook for Regional Economy, and the China City Statistical Yearbook [22].
However, as China’s county-level statistical yearbooks have been upgraded by removing a variety of
critical variables after 2003, quite a number of necessary socioeconomic variables cannot be maintained
after that time point. Meanwhile, no publicly published county-level socioeconomic dataset could be
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obtained as an alternative data resource for replacing or filling in those missing variables. Therefore,
in this study, we focused on the historical county-level areal data in southwest China spanning
a ten-year period from 2002 to 2011 in order to ensure that more representative socioeconomic factors
could be added for this long-term analysis.

Table 1. Indicator system of socioeconomic and environmental variables potentially affecting
county-level hospital bed resources in southwest China (SE1–SE20 denote socioeconomic variables,
and EX1–EX12 denote environmental variables).

Abbreviation Variables Units

SE1 Population density Person/km2

SE2 Employee population density Person/km2

SE3 Local telephone users’ density Person/km2

SE4 Local government budgetary expenditures per capita Yuan
SE5 Local general budget revenue per capita Yuan
SE6 Residents’ saving deposits per capita Yuan
SE7 Loan balance of financial institutions per capita Yuan
SE8 Above-scale total industrial density Number/km2

SE9 Above-scale total industrial output value per capita Yuan
SE10 Total investment in fixed assets per capita Yuan
SE11 Junior high school student density Person/km2

SE12 Primary school student density Person/km2

SE13 Gross domestic product (GDP) Million
SE14 First industry output per capita Yuan
SE15 Second industry output per capita Yuan
SE16 Tertiary industry output per capita Yuan
SE17 GDP per capita Yuan
SE18 Urban worker population density Person/km2

SE19 Average wage of employees in urban units Yuan
SE20 Total retail sales of consumer goods per capita Yuan

EX1 Normalized vegetation index (NDVI) /
EX2 Nighttime light index /
EX3 Precipitation 0.1 mm
EX4 Temperature 0.1 centigrade
EX5 Air pressure 1 N/m2

EX6 Wind speed m/s
EX7 Vapor pressure hPa
EX8 Sunshine hours hours
EX9 River network density km/km2

EX10 Elevation Meter
EX11 Slope ◦

EX12 Road network density km/km2

The environmental climate data were obtained from the National Meteorological Information
Center (http://data.cma.cn/) [30]. In contrast, the other types of environmental factors were extracted
from the Resource and Environmental Data Cloud Platform (http://www.resdc.cn/), which contained
multiple aspects including geography, topography, hydrology, vegetative cover, transportation,
remote sensing index, et cetera. Since the environmental variables, including climate, river density,
elevation, road network density, and slope, had no variations at the time scale, they were only added
into the spatial nonstationary analysis as part of the local-scaled modeling.

The descriptive statistics of the above experimental data, including both the response variable
and 32 potential influencing variables, are summarized in Appendix A (Table A1). Statistical results
revealed that most of the variables did not fit the normal distribution, and the dimensional differences
arising from the data unit among different variables demonstrated significant variations. Thus,
we firstly conducted a logarithmic transformation for the response variable, in other words, a prior

http://data.cma.cn/
http://www.resdc.cn/
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log-Gaussian likelihood function, to approximate a normal distribution for Bayesian hierarchical
regression modeling. Furthermore, all the covariates were standardized via the adoption of the z-score
method into dimensionless values to be fairly compared within the same framework.

2.2. Covariates Screening Methods

Two well-developed and commonly adopted methods, namely the multicollinearity evaluation
and random forest [31], were employed to select the most important explanatory variables from the
32 potential socioeconomic and environmental factors and were further added into the regression
modeling. First, the variance inflation factor (VIF) was calculated as the indicator for measuring
multicollinearity, which implied the existence of a correlation between explanatory variables [32].
The empirical judgment suggests that 0 < VIF < 10 indicates that the multicollinearity is slight and
acceptable [33], 10 ≤ VIF < 100 indicates relatively strong multicollinearity, while VIF ≥ 100 indicates
severe multicollinearity [30]. In this case, a potential variable with a VIF value greater than 5, which is
a stricter standard, was firstly removed.

Following the VIF-based step, the random forest, an integrated machine learning method based
on the decision tree, was adopted in order to further screen the explanatory variables by calculating
another two indicators, which respectively represented a factor’s relative importance and contribution
to the model fitness [31]. The first screening indicator is the mean decrease impurity (MDI) that
quantifies the change of Gini impurity (information gain), which is usually used to measure the
information uncertainty or the degree of the confusion system [34]. The second screening indicator is
the mean decrease accuracy (MDA), of which the main idea is to disrupt the order of the eigenvalues of
each feature and then to measure the effect of order change on the model accuracy. For each potential
variable, higher values of both MDI and MDA indicated the increased significance of this variable
in terms of improving the overall model performances. Following the screening outcomes of VIF, a list
of socioeconomic and environmental variables with higher values of both MDI and MDA were finally
selected for the next-step regression modeling.

2.3. Local Spatiotemporal Regression

2.3.1. Bayesian STVC Model

Spatiotemporally varying coefficients (STVC) model, a Bayesian-based local spatiotemporal
regression approach, has been proposed for space–time big data with the core mission of detecting both
the spatial and temporal heterogeneous relationships between the response and different covariates
variables, via estimating posterior local-scale regression coefficients across space and over time [28,29].
Compared with the global-scale spatiotemporal regression models, the fundamental advantage of
the local-scale Bayesian STVC model is further incorporating the spatial-temporal autocorrelated
nonstationarity for the observable underlying covariates within the Bayesian hierarchical modeling
(BHM) framework, such as the socioeconomic and environmental factors concerned in this case.

Herein, the top-level of a simplified interpretation-driven type of Bayesian STVC model
for estimating the county-level hospital beds number per ten thousand people (Y) is presented
in Equation (1).

ηit = g(Yit) = β0 +
N∑

n=1

f (µn,iSEn,it)+
N∑

n=1

f (γn,tSEn,it) +
K∑

k=1

f (µk,iEXk,it) +
K∑

k=1

f (γk,tEXk,it) (1)

where ηit is the structured additive linear predictor, Yit is the observed values of the county-level
healthcare resources in space i and time t, in which I = 1, . . . , I (I = 461) represents the county-level
areal unit, and t = 1, . . . , T (T = 10) indicates the temporal points among ten years. g(·) is the likelihood
function to link Yit and ηit, which follows a log-Gaussian prior data distribution herein. SEn,it denotes
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the observed values of N socioeconomic factors in the i-th county for the t-th year, and EXk,it denotes
the observed values of K environmental factors in each county-year unit.

The posterior estimated parameters from Equation (1) include five components, among which β0 is
the global-scale intercept fixed effect, µn,i and γn,t are the local-scale spatial and temporal coefficients for
the N socioeconomic covariates, while µk,i and γk,t are the local-scale spatial and temporal coefficients
for the K environmental covariates. In particular, µn,i and µk,i are called space-coefficients (SC) that
represent the spatially heterogeneous response-covariate relationships within each area. γn,t and
γk,t are called time-coefficients (TC), representing the temporally heterogeneous response-covariate
relationships in each time point.

Function f () represents the sub-level latent Gaussian models (LGMs) to fit the spatial and temporal
nonstationary random effects for estimating the local-scale SC and TC of each covariate [35,36].

For the spatial LGM, we assume that the random effects of spatial structural variability (spatial
autocorrelation/dependence) follow an intrinsic conditional autoregressive (CAR) prior [37], which is
formulated using Equation (2).

µi|µ j,i ∼ N(
1

mi

∑
i∼ j

µi,
σ2

mi
) (2)

where i~j represents that county i and county j are adjacent to each other, mi represents the number of
counties sharing the boundary with the i-th county, and σ2 represents the variance components [38].
The CAR prior model assumes that the healthcare-covariate relationship in a county is geographically
autocorrelated with surrounding neighbor counties. In the top-level of the STVC formula in Equation (1),
the CAR prior is applied to both socioeconomic and environmental covariates, expressed as f (µk,iEXk,it)

and f (µn,iSEn,it), respectively.
For the temporal LGM, the random walk (RW) model is adopted as a prior sub-level model to fit

the temporal structural random effects through adjacent dynamic modeling [39], whose prior density
π is formulated with Equation (3).

π(γt
∣∣∣σ2
γ ) ∝ exp(−

1
2σ2
γ

T∑
t=2

(γt − γt−1)
2) (3)

The RW prior model assumes that the temporal variation of the healthcare-covariate relationship
is affected by the adjacent time points (temporal autocorrelation), of which the time trend could be
expressed as a smooth linear or nonlinear curve. Like the settings of the spatial LGM for Equation (1),
the RW model is also utilized for both socioeconomic and environmental covariates, in other words,
f (γn,tSEn,it) and f (γk,tEXk,it).

2.3.2. Models Implementation

As a comprehensive evaluation, we compared the Bayesian STVC model (model 5) with the
other four benchmark regression models (models 1–4) to verify its superiorities. To be specific,
model 1 and model 2 were global regressions that could only fit for stationary variable relationships,
between which the difference was that model 2 additionally incorporated the spatiotemporal random
effects for intercepts. In contrast, models 3 and 4 belonged to the local regression family for detecting
nonstationary response-covariate relationships. Among three local regression models, model 3 and
model 4 were two special cases of an STVC model (model 5), aiming to test the necessity of simultaneous
incorporation of both spatial and temporal random effects for the nonstationarity within covariates.

Model 1 was an ordinary multivariate regression model, formulated in Equation (4).

ηit = β0 +
N∑

n=1

βnSEn +
K∑

k=1

βkEXk (4)
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where β0 is the intercept term, βn and βk are the global-scale coefficients of the stationary
healthcare-covariate relationships for socioeconomic and environmental covariates, respectively.

Model 2 was a general spatiotemporal multivariate regression model, as presented in Equation (5).
Compared with model 1, model 2 further incorporated the spatial and temporal random effects of
intercepts, which represent the smoothed variations of the response variable itself.

ηit = β0 +
N∑

n=1

βnSEn +
K∑

k=1

βkEXk + f (ξi) + f (ψt) (5)

where ξi is the space-intercept (SI), and ψt is the time-intercept (TI). Following standard settings for
SC/TC and the mainstream spatiotemporal models, we also employ the same LGMs, namely, CAR and
RW prior sub-level models, to estimate the posterior SI and TI herein [36,39,40].

Model 3 is a temporally varying coefficients (TVC) model only concerning the temporal
nonstationary random effects for socioeconomic and environmental covariates, as formulated
in Equation (6).

ηit = β0 +
N∑

n=1

f (γn,tSEn,it) +
K∑

k=1

f (γk,tEXk,it) (6)

Model 4 is a spatially varying coefficients (SVC) model only accounting for the spatial nonstationary
random effects in covariates of socioeconomic and environmental factors, as shown in Equation (7).

ηit = β0 +
N∑

n=1

f (µn,iSEn,it)+
K∑

k=1

f (µk,iEXk,it) (7)

Model 5 is a customized Bayesian STVC model designed for this empirical case, which has been
fully introduced in Equations (1)–(3). Herein, model 5 is a simplified version of a general STVC model
by removing the global-scale stationary fixed effect of auxiliary covariates (same as in model 1), as well
as the spatiotemporal random effects of intercepts (same as in model 2). These interpretation-driven
STVC settings make sense particularly for exploring the response-covariate relations along with explicit
spatial patterns and temporal trends, aiming at explaining the mechanism behind the research object,
as it removes the potential interactive influences of local intercepts [29].

2.3.3. Bayesian Inference and Model Evaluation

In this work, we developed five regression models above under the flexible BHM framework using
R software, and the integrated nested Laplace approximation (INLA) [41] computational approach was
employed as the Bayesian inference method to estimate the posterior parameters due to its relatively
short computation time with accurate estimation [42]. In terms of a BHM-based STVC model, there were
three levels, with each level containing several further sub-levels. For the first data distribution level,
we utilized the log-Gaussian likelihood function. For the second space–time process level, we combined
the sub-level LGM models, including CAR and RW, to consider the spatial and temporal random
effects in particular for those vital explanatory covariates with nonstationary assumption [28]. For the
third parameter level, we specified the non-informative priors for the parameters and their variance
components, so that the observed space–time data could have the most significant impact on the
posterior distributions [43,44].

We further evaluated the performances of each Bayesian-based regression model in four
aspects, namely model fitness, complexity, predictive capacity, and explained variation [39,45].
First, the deviation information criterion (DIC) [46] and the Watanabe–Akaike information criterion
(WAIC) are two widely used indices that describe Bayesian model fitness. Two indices of model fitness
are the smaller, the better. Second, the model complexity is quantified by two indices of effective
parameters (PDIC and PWAIC) that can be obtained with both DIC and WAIC methods synchronously.
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Two indices of model complexity are the smaller, the better. Third, the model predictive power is
quantified by a logarithmic score (LS) that is retrieved from the conditional predictive ordinates
under a leave-one-out cross-validation. LS is also considered as the smaller, the better [47]. Lastly,
the coefficient of determination (R2) is commonly used in regression models for evaluating the explained
variation or variance, which is defined as the degree to which predicted and actual values are consistent.
A higher value of R2 indicates a greater variation that the model can explain [22].

3. Results

3.1. Covariates Selection

Considering the multicollinearity issue and the relative importance of each potential variable,
ten factors were selected as the key explanatory variables for modeling out of 32 potential socioeconomic
and environmental variables, which was conducted based on two progressive screening steps.

To be more specific, in the first step, the VIF values of the two types of factors were calculated
respectively and summarized in Appendix A (Table A2). We removed variables with higher
multicollinearity by setting five as the VIF screening threshold value. Generally, different factors
representing the socioeconomic level possess multicollinearity, and one convenient way to deal with this
issue is to choose the ones that are the most representative (with the smallest VIF) instead of selecting
all the factors. This method can also be applied to the selection of environmental variables. By setting
VIF < 5 as the screening benchmark, we retained six factors for the socioeconomic aspect, namely, SE6,
SE10, SE17, SE18, SE19, and SE20. Similarly, seven factors were retained for the environmental aspect,
namely, EX1, EX2, EX3, EX6, EX9, EX11, and EX12.

In the second step, based on the remaining factors from the first step, we further evaluated the
relative importance (contribution) of each factor using MDI and MDA indicators that were obtained
from the random forest method, as illustrated in Figure 2. We chose those factors with higher
contributions, by retaining the first half percent (seven) factors for both evaluation indicators MDA
and MDI, among which some factors were ranked as the top seven most indicative factors in terms of
two aspects. After this screening step, a total of ten explanatory variables including five socioeconomic
factors (i.e., SE6, SE10, SE17, SE18, and SE20) and five environmental factors (i.e., EX2, EX6, EX9, EX11,
and EX12) were selected as the core covariates (renamed as X1–X10 in Table 3) and added into the
next-step serial regression modeling.

 

 

 

 

 

Figure 3 

Figure 2. Variables’ relative importance evaluated by random forest-based indicators: (a) mean decrease
impurity (MDI) and (b) mean decrease accuracy (MDA).
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3.2. Model Evaluation and Comparison

Table 2 summarizes the performances of the five comparative Bayesian regression models based
on comprehensive consideration of six selection criteria statistics. Model 5 (STVC) was proven to
be the optimal Bayesian-based model with the smallest values of DIC, WAIC, and LS. The indicator
R2 further revealed that model 5 also had the highest model-explained variation (92%), which met
an essential decision requirement for the following influencing factors analysis. Moreover, model 5
surpassed both model 3 (TVC) and model 4 (SVC), thus indicating the necessity of incorporating both
the spatial and temporal random effects in fitting the nonstationary variables relationships. However,
following PDIC and PWAIC, we noticed that model 5 had a drawback with a much higher complexity
than the mainstream benchmark models 1 and 2. For instance, the complexity (PDIC) of model 5 was
about 96 times higher than that of an ordinary multivariate regression (model 1), and even 2.5 times
higher than that of a general spatiotemporal multivariate regression (model 2).

Table 2. Evaluations for the five alternative regressions considering model fitness, complexity, predictive
power, and explained variation.

Index DIC WAIC PDIC PWAIC LS R2

Model 1 6028.53 6119.66 12.16 84.16 0.68 0.75
Model 2 1928.71 1998.96 475.17 486.15 0.20 0.89
Model 3 7917.86 7934.69 44.59 56.22 0.88 0.51
Model 4 2036.76 2010.19 1144.72 931.87 0.22 0.86
Model 5 1778.38 1749.55 1165.08 944.15 0.19 0.92

Models 1–5: Bayesian-based regression models of ordinary multivariate, spatiotemporal multivariate, TVC,
SVC, and STVC; DIC: deviance information criterion; WAIC: Watanabe–Akaike information criterion;
PDIC: effective number of parameters from DIC; PWAIC: effective number of parameters from WAIC; LS: logarithmic
score; R2: coefficient of determination.

In spite of the high complexity embedded in the STVC model, the necessity of increasing
such complexity should be highlighted as indispensable mainly due to reasons as below. First,
the STVC model surpassed all the other four regressions concerning model fitness, predictive power,
and explained variation. Among them, model 2 is a popular spatiotemporal regression model
that typically demonstrates higher prediction accuracy. The increase in prediction accuracy of
model 2 is attributed to the core incorporation of the spatiotemporal random effects for intercepts.
However, such spatiotemporal intercepts lack the capacity for interpretation, that is, it is impossible to
explain how different observable explanatory factors affect the target variable of interest at the local
space–time scale exactly. In contrast, it should be noted that only the STVC model had the capacity for
synchronously detecting the spatial and temporal heterogeneous relationships between variables for
further interpretation and inference. What is worth mentioning is the customized model 5 for this
case still achieved the best model performance, even without taking into account the spatiotemporal
random effects of intercepts. Hence, we chose the real interpretive Bayesian STVC model, with the
best model performance, as the final regression for conducting further analysis of spatiotemporal
influencing factors as well as the estimation of spatiotemporal inequality maps of healthcare resources.

3.3. Covariates’ Global Scale Impacts on Healthcare Resources

Table 3 summarizes the posterior parameters of the selected socioeconomic and environmental
covariates (X1–X10), including the global-scale coefficient representing the stationary variable
relationship, standard deviation (SD), as well as credible intervals (CIs), which were estimated
by an ordinary multivariate regression model (model 1). As all the models adopted followed
a log-Gaussian prior data distribution, and all the covariates were standardized, the model-estimated
coefficients were not under the normal distribution scale or with the original unit. Thus, a reasonable
explanation for these coefficients was that they represented the relative contribution (impacts) of
covariates on the healthcare resources outcomes.



Int. J. Environ. Res. Public Health 2020, 17, 5890 11 of 23

The overall coefficients of ten covariates were greater than zero, indicating that both socioeconomic
and environmental factors were positively contributing to the development of hospital beds at a global
scale in southwest China. For the five socioeconomic covariates, X1 and X5 reflected the personal
economic condition based on an individual or family, X2 and X3 represented the regional economic
condition based on the government and macro-control, and X4 represented the population condition.
The other five environmental covariates covered two aspects. X6, based on nightlight satellite remote
sensing data, indicated the county-specific urbanization level. Climate (X7), transportation (X8 and
X10), and topography (X9) reflected a general geographical situation. Particularly, the residents’ saving
deposits per capita (X1) was the most significant socioeconomic factor with a much higher positive
contribution among the ten covariates, followed by environmental factors X6, X7, and X9.

Table 3. Global-scale regression statistics of socioeconomic and environmental covariates affecting
healthcare resources of hospital beds over southwest China.

Covariate Name Coefficient SD 2.5% CI 97.5% CI

X1 Residents’ saving deposits per capita 0.2159 0.0115 0.1932 0.2385
X2 Total investment in fixed assets per capita 0.0387 0.0088 0.0213 0.056
X3 GDP per capita 0.0499 0.0081 0.0338 0.0659
X4 Urban worker population density 0.0187 0.0099 −0.0009 0.0382
X5 Total retail sales of consumer goods per capita 0.0179 0.0113 −0.0043 0.0401
X6 Nighttime light index 0.0686 0.0132 0.0425 0.0946
X7 Wind speed 0.0778 0.0074 0.0632 0.0923
X8 River network density 0.0337 0.0088 0.0163 0.0509
X9 Slope 0.0954 0.0082 0.0793 0.1115

X10 Road network density 0.0235 0.0084 0.0069 0.0401

As indicated by CIs, most of the covariates demonstrated lower uncertainties and acceptable
statistical significance, except for covariates X4 and X5, of which the posterior probability
density functions had a zero value between the lower and upper CIs. However, these stationary
assumption-based global-scaled results might not be suitable for a finer-scaled space–time dataset.
As shown in Table 2, model 1 could only explain 75% variation of the response variable (R2 = 0.75),
while model 5 could explain a much higher variation of 92% (R2 = 0.92) via the adoption of the same
ten covariates under a spatiotemporal nonstationary assumption. Based on all these considerations,
we finally added all the ten covariates into the other types of modeling (models 2–5), which were also
proven to possess higher contributions as indicated by the random forest method.

3.4. Covariates’ Temporal Heterogeneous Impacts on Healthcare Resources

In Figure 3, we presented a TI plot (a) and six TC plots (b) to represent the crude temporal trend
of hospital beds and the temporal heterogeneous hospital bed-covariates relationships, which were
estimated by model 2 and model 5, respectively. From Figure 3a, we found that the hospital bed level
over the entire southwest China showed an increasing trend year by year, with little change for the
first five years, but a noticeable upward trend for the last five years. The TI plot indicated that the
healthcare resources of hospital beds in southwest China have dramatically developed since 2006.

Furthermore, from Figure 3b, we found that the temporal hospital bed-covariates relationships
were not consistent, but with diverse nonlinear variations over 2002–2011. Unlike the global-scale
coefficients listed in Table 3, the TC plots estimated by a Bayesian STVC model were able to visualize
local-scale nonstationary regression relationships over periods. Generally, we discovered that the
impacts of personal economy, which was reflected by the residents’ saving deposits (X1) and the
total retail sales of consumer goods per capita (X5), were diminished from 2002 to 2011. In contrast,
the impacts of the government-led regional economy, which was depicted by the total investment
in fixed assets (X2) and the GDP per capita (X3), became more energetic during the corresponding
period, while all the other covariates showed downward trends. Furthermore, we noticed that after
2011, X2, X3, and X4 showed a relatively clear upward trend, suggesting that the key to further
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promoting the overall hospital bed-levels in southwest China might be focused on these socioeconomic
conditions. These findings also indicated that the dominant factors affecting hospital beds of southwest
China had changed during the studied decade.

 

 

 

 

 

 

Figure 4 

Figure 3. (a) Time-intercepts (TI) plot on behalf of the crude temporal variation of hospital beds
in southwest China during 2002–2011, and (b) time-coefficients (TC) plots representing the temporal
heterogeneous hospital bed-covariates relationships: X1, residents’ saving deposits per capita; X2,
total investment in fixed assets per capita; X3, GDP per capita; X4, urban worker population density;
X5, total retail sales of consumer goods per capita; and X6, nighttime light index.

3.5. Covariates’ Spatial Heterogeneous Impacts on Healthcare Resources

Spatially, we firstly retrieved the SI map and its clustered hot spot map with model 2, to detect the
in situ autocorrelated geographical distribution of the county-level hospital bed-levels across southwest
China, as presented in Figure 4a,b respectively. Then we produced the SC maps and their clustered
hot spot maps, as presented in Figure 5a,b to further explore the spatially heterogeneous impacts of
different socioeconomic and environmental covariates on hospital bed outcomes at the county level
by using model 5. It should be noted that the “Not Significant” regions in the hotspot maps below,
including Figures 4b and 5b, did not indicate the absence of impacts. However, the impacts within
these regions were not statistically significant enough to form an agglomeration.

Moreover, in Figure 5, we detected significant spatial clusters in all hospital bed-covariates
relationships for both socioeconomic and environmental factors, suggesting the necessity of
incorporating the spatial autocorrelation to fit nonstationarity within an STVC modeling. In practice,
regarding an influencing covariate of interest, we could visually distinguish which local-scale areas
were sensitive to this covariate for improving healthcare resources, as well as which areas were not,
by directly applying the target SC map of that covariate. Furthermore, within each county area,
we could give a specific county-level policy proposal about the relative impacts of the ten different
socioeconomic and environmental covariates on the local-scaled hospital beds outcome, by vertically
integrating the local-scale county-level information via all the SC maps together [29].
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 Figure 4. (a) Space-intercepts (SI) map representing the crude geographical distribution of the
county-level hospital beds across southwest China, and (b) SI’s clustered hot spot map.

Figure 5 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. (a) Space-coefficient (SC) maps for detecting the spatially heterogeneous hospital
bed-covariates relationships of both socioeconomic and environmental factors at the county level
across southwest China, and (b) SC’s clustered hot spot maps: X1 residents’ saving deposits per capita;
X2, total investment in fixed assets per capita; X3, GDP per capita; X4, urban worker population density;
X5, total retail sales of consumer goods per capita; X6, nighttime light index; X7, wind speed; X8, river
network density; X9, slope; X10, road network density.
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Apart from the spatially county-level hospital bed-covariates relationships detected from Figure 5a,
we further summarized the province-level clustering results from SC’s hot spot maps in Figure 5b.
For example, in Sichuan province, the regional economy (X3), employment level (X4), and urbanization
level (X6) jointly had spatially positive clustered impacts on hospital beds outcomes, especially in the
central region of Sichuan. In contrast, in Chongqing municipality, personal economy (X1) and economic
investment (X2) played significant positive roles in improving hospital beds over the entire study
area. Such spatially positive clustered influences of different factors were characterized by strong
geospatial heterogeneity in Guizhou province, where the employment level (X4) and river network
density (X8) were found to be the main positive determinants in the central region. At the same time,
the residents’ consumption-ability (X5) remained a critical problem in western counties. In Yunnan
province, the economic investment (X2), topography (X9), and road network density (X10) were
general positive contributors to hospital bed outcomes at a regionally clustered scale. In Tibet,
the largest region in southwest China, hospital beds were positively affected by multiple primary
socioeconomic conditions, including the regional economy (X3), employment level (X4), and residents’
consumption-ability (X5). Moreover, the unique natural environment in Tibet might have potentially
contributed to the phenomenon where a list of environmental factors such as urbanization level (X6),
topography (X9), and road network density (X10) had exceptionally positive impacts on hospital bed
distributions in certain regions.

3.6. Estimated Spatiotemporal Maps of Healthcare Resources Equalities

Finally, we produced the first series of complete county-level healthcare resources equalities
maps (Figure 6) using the hospital bed number per ten thousand people as the proxy indicator over
southwest China during 2002–2011 based on the adoption of the optimal Bayesian STVC model
(model 5). The newly model-estimated hospital bed equality maps could offer people with both
higher (e.g., in situ counties with missing values) and more intuitive (e.g., smooth the county-level
extreme outliers) information for accurate optimization of healthcare resources at the local scale.
In general, we found an overall enhancement in terms of the situation of hospital beds in southwest
China over the studied time period. Especially after 2005, the hospital bed resource of southwest
China was significantly improved both regionally and locally, of which the visualization discovery
was consistent with the findings from the TI map in Figure 3a. In addition, we found that different
regions demonstrated diverse improvement intensity. For instance, most of the blue-colored counties
in Yunnan province in 2002 were shifting to yellow/red color over the illustrated ten years, suggesting
that the hospital bed improvement of Yunnan province was the most significant, compared with all the
other provinces. Moreover, we noticed that despite the county-level hospital bed levels demonstrated
overall enhancement by changing from blue color to yellow/red color at the local scale from 2002 to
2011; several low-healthcare-level counties still remained in blue color in the latest year, which were
mainly distributed in Guizhou, Tibet, and Yunnan provinces.
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Figure 6. Estimated spatiotemporal equalities maps of the county-level healthcare resources of hospital
beds across southwest China from 2002 to 2011.
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4. Discussion

The socioeconomic status, involving the personal economy, government-led regional economy,
and population, was verified as a critical aspect affecting hospital bed outcomes, which was found to
be consistent with previous studies. For instance, Qin et al. proved that the regional economy and
population had an essential impact on the convergence pattern and the convergence speed in the
geographic distribution of healthcare resources in China [19]. Furthermore, Pan et al. reported a strong
positive correlation between the economy and hospital bed concentration at county levels, including
both the personal economy and the regional economy [13]. Unemployment rate [21], healthcare
expenditure [8,17], and population size [14] were also validated by previous studies as essential
socioeconomic factors.

In addition to socioeconomic status, the environmental condition was also identified as an equally
influential contributor to hospital bed development, which represented the urbanization progress
and a general geographical condition. Among five environmental factors analyzed, slope [8,16] and
road network density [8,17] were proven as influencing factors on the geographical distribution of
hospital beds. However, river network density, wind speed, and nighttime light index were firstly
found to have substantial driving effects on hospital bed differentiation in this case. To the best of our
knowledge, this is also the first study in southwest China that evaluated hospital beds inequalities via
incorporating both socioeconomic and environmental aspects [13,23].

Beyond identifying critical influencing factors based on the incorporation of both socioeconomic
and environmental aspects, a more impressive contribution of this work is that we comprehensively
investigated both the global and local spatiotemporal relationships between the county-level disparity
distribution of hospital beds as well as a diverse range of influencing factors in southwest China.
An innovative aspect inherent in this study was that compared with previous stationary-based
studies which were only limited to the investigation on global-scaled socioeconomic factors [48–50],
we had incorporated both socioeconomic and environmental factors during the statistical analysis
procedure based on the adoption of an innovatively developed Bayesian-based local spatiotemporal
regression STVC model [28], which served as a potent tool for facilitating the detection of local-scaled
spatiotemporal heterogeneous hospital bed-covariates relationships. In the area of public health,
this innovative methodology has made our study the first research ever conducted in China to examine
the local-scaled spatiotemporal heterogeneous impacts of both socioeconomic and environmental
covariates on the healthcare resource equalities in the aspect of hospital bed allocations [11,16,17].

With regards to hospital bed-covariates relationships in a global range, personal economic status
was identified as an essential aspect, which was likely induced by the structural characteristics of
China’s public–private hybrid financing arrangements [13]. As traditional medical insurance plans
were only able to compensate for expensive medical costs partially, a large percentage of total medical
expenditures were still covered by out-of-pocket payments. It is not difficult to imagine that the
continuous growth of our personal economy will be very likely to improve residents’ ability to afford
advanced medical services. Thus, such increased market demand has become a stimulant for the
expansion of regional healthcare resources. In addition to personal economic status, the socioeconomic
impacts of both government-led regional economy [8,19] and urban worker population [14,21] were
also detected, suggesting that the driving force of government inputs and population demands should
also not be ignored [14,19]. Furthermore, in terms of the environmental conditions, we discovered
that urbanization and the general geographical situation also had positive influences on hospital
bed distribution in southwest China. The urbanization indicator of the nighttime light index can
be regarded as an environment-based socioeconomic indicator representing the level of the regional
economy and population density [51]. Geographical indicators such as road and river network density
reflected the degree of traffic development, which could affect the spatial accessibility to healthcare
resources [52–54]. Unfortunately, such global-scaled findings might not be applicable for studies
involving large study areas or long-term analysis, especially via the adoption of a finer-scaled space
resolution as we employed in this study [55].



Int. J. Environ. Res. Public Health 2020, 17, 5890 17 of 23

In terms of the temporal development of hospital beds in southwest China, a stable development
pace at low development levels was found from 2002 to 2005. However, such development pace started
to accelerate continuously from 2006, which was consistent with previous findings [56]. Moreover,
regarding temporal hospital bed-covariates heterogeneous relationships, the consideration of the
temporal nonstationarity has enabled us to further identify a gradual switch from the personal
economy to the government-led regional economy, which served as the time-scale leading factor for
affecting the development of healthcare resources, instead of generally addressing personal economy
as an essential factor from a global-scaled perspective. The growing impacts of the government
in healthcare resources was presumably induced as the result of the first phase (2009–2011) of China’s
healthcare reform, during which the expansion of social health insurance coverage was emphasized
for benefiting residents nationwide as well as for strengthening nationwide healthcare infrastructure
constructions. In sharp contrast with the past two decades during which personal economic status had
served as the determinant for both healthcare quality and accessibility, since the initiation of the first
phase of China’s healthcare reform, the governmental impact has become an overwhelming factor
among healthcare settings, especially in the aspect of providing financial support for improving basic
healthcare quality [57].

Spatially, we detected significant geographical clustered regions for both hospital beds and
hospital bed-covariates relationships in the form of maps. However, it should be noted that the spatial
nonstationarity embedded among variable relationships was further characterized by strong geospatial
differentiation for all socioeconomic and environmental covariates at both county and provincial
levels [11–13]. Practically, within each administrative county area, an area-specific policy can be
proposed based on the analysis of the individual impacts of each socioeconomic and environmental
covariate on hospital bed outcomes [29]. However, such county-level implications would be too limited
to be adopted in a more extensive administrative range. Thus, hot spot maps were further retrieved
for discovering regionally clustered hospital bed-covariates relationships in order to further assist
in policy-making procedures on a coarser scale, for example, provincial-level. We discovered that the
provincial-level hospital bed-covariates relationships among different provinces had strong spatial
stratified heterogeneity [58], where a single or multiple socioeconomic or environmental factors played
predominant roles in affecting healthcare resource allocations in the aspect of hospital bed distributions.
In China, healthcare resources largely depend on local economic development, especially on the
financial capacity of local governments. The spatially strong aggregation of healthcare resources
also reflected the differences and aggregation of socioeconomic development among administrative
regions to some extent. Lessons learned from regional cases could be further optimized and adapted
in a nationwide range for policy-making purposes [57]. It should be highlighted that the allocation of
healthcare resources should be conducted at central governmental levels from a holistic perspective
instead of at lower administrative levels as a strategy for minimizing geo-clustered inequalities induced
by region-specific financial resources, as well as for ultimately achieving healthcare resource allocation
equalities among different regions [59].

Another contribution of this study was the innovative production of a new series of maps depicting
healthcare resource equalities over southwest China at an administrative county level, from 2002 to
2011. The adoption of the local-scaled spatial and temporal heterogeneous hospital bed-covariates
relationships detected before has facilitated our estimation of the maps with higher accuracy. Based on
the most up-to-date inequality map, a list of counties with the most inadequate hospital bed allocations
were mainly identified in Guizhou, Tibet, and Yunnan, which indicated that resource reallocation
should be emphasized as the priority in such underdeveloped areas via the implementation of relevant
policies and strategies at governmental levels. Our estimation of a series of spatiotemporal healthcare
equality maps is expected to assist policymakers in the analysis and implementation procedures
of relevant policies from a more direct-viewing perspective, which would further contribute to the
optimization of healthcare resource allocations in a more rational manner.
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Practically, based on the previous discussions, improving residents’ living standards should be
addressed as the key strategy regardless of disparities embedded in different geographical regions or
different time slots. Furthermore, our findings are expected to provide evidence-based implications for
future government-led policy-making procedures. First, the influence of geographical environment
should be emphasized as an indispensable aspect at governmental levels in terms of propelling
the development of healthcare resources. In addition, fortifying governmental investment, along
with encouraging macroeconomy development, should be emphasized as the essential strategies
in the future in order to achieve promoted healthcare resource allocations in the study area of
southwest China. In terms of geo-clustered inequalities of healthcare resources, a higher level of
integrated health planning might be proposed as a solution for mitigating such a problem to some extent.
Financial support needed for facilitating such integrated health planning might be obtained from special
funding programs designed for optimizing healthcare resources as part of the central or provincial
financing budgets [59]. Last but not least, in the process of large-scale geospatial healthcare assessment,
well-rounded consideration incorporating various region-specific factors should be addressed at both
spatial and temporal scales in order to achieve the optimization of healthcare resource allocation
via the formulation of region-specific policies and strategies, which would serve as indispensable
complements to the general policy as well as being further adopted in the other comparative countries
or regions.

Lastly, we would like to talk about the applied cutting-edge Bayesian STVC model, in terms
of its value in solving a list of complex problems in this empirical study [29]. The STVC model
was the first Bayesian-based spatiotemporal local regression approach developed for space–time
big data, with a core mission to simultaneously explore the autocorrelated spatial and temporal
nonstationarity inherent in variables relationships, by taking advantages of both Bayesian statistics [60]
and hierarchical modeling [28]. Such spatiotemporal heterogeneous variables relationships cannot be
detected via the adoption of conventional global-scaled regressions [44], local-scaled spatial or temporal
regressions [61,62], or the mainstream spatiotemporal regressions [39]. The local-scaled outputs from
an interpretation-driven STVC model included three main components, namely, the space-coefficients
(SC) maps, the time-coefficients (TC) plots for nonstationary covariates, and the estimated complete
spatiotemporal maps for the target variable of interest. All these deliverables were expected to assist
the governmental formulation of multi-leveled policies and strategies in both spatial and temporal
dimensions, which should be highlighted as innovative progress compared with previous studies
in this area [13,14,16]. Specifically, the separate provision of SC maps and TC plots for each covariate
as the direct outputs of the Bayesian STVC model has great potential in facilitating stakeholders to
immediately figure out the spatial and temporal autocorrelated regularities embedded in variable
relationships, thus exempting the necessity of further processing the newly estimated space–time
coefficients [26,27]. In addition, regardless of the missing values inherent in the original response
variable of interest, the Bayesian STVC model can still provide an estimation for a complete series of SC
maps and TC plots in order to demonstrate constantly changing relationships among different variables.
Such convenient estimation had been achieved with the help of the prior spatial/temporal latent
Gaussian models within the BHM framework [29]. Furthermore, the simplified interpretation-driven
type of Bayesian STVC modeling for this case still outperformed the mainstream regression models,
significantly enhancing the model applicability and expandability for the prediction purpose.

Apart from all these achievements aforementioned, some aspects should be addressed as the
limitations of this work. As a couple of environmental factors lacked variations at the temporal scale,
the applied methods were only able to detect the spatial nonstationarity impacts of these factors.
The most up-to-date satellite remote sensing technology could be applied as a potential solution
for tackling such data deficiencies. Another limitation inherent in this study was that the dataset
we adopted for analysis failed to provide the most up-to-date information, due to the later revision
of China’s county-level statistical yearbooks during which multiple vital variables were removed,
and several new variables were added [22]. Failing to find a solution to this problem, in this study,
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we had to sacrifice the timeliness of our research in order to keep the space scale to the minimum
county level, as well as to ensure the comprehensiveness of socioeconomic factors. Despite such flaws
embedded in our data, the productive results from Bayesian STVC modeling provided us with the first
historical retrospective experience for further policy formulation and practical research as an inspiring
outcome. Future studies might remain focused on finding solutions for persistent issues related to
healthcare resources in China over extended periods, which could be facilitated via the incorporation
of increased explanatory variables available [59], as well as the development of more sophisticated
Bayesian STVC-based statistical models for producing more sound outputs [29].

5. Conclusions

In this study, we validated the hypothetical theories previously proposed that both environmental
and socioeconomic aspects had pivotal roles in affecting the small-area healthcare resource inequalities,
and such covariate impacts varied locally (heterogeneity) along both space and time scales, which had
been supported by an advanced Bayesian STVC modeling of the county-level hospital beds data in
southwest China. Practically, within the study area, both temporal nonlinear and spatial clustered
healthcare-covariates relationships were found to be significant, and the first series of complete
spatiotemporal maps on hospital bed equalities in southwest China spanning ten years was innovatively
produced. These empirical findings were consistent with our hypothetical theories, which are all
expected to further support the spatiotemporal attribution of healthcare resource inequalities over the
entire mainland China in the future lines of research.

Promoting geographical equalities embedded in healthcare resources serves as an essential target
to be achieved as part of China’s ongoing healthcare reform, for which spatiotemporal perspective
should be constantly emphasized at governmental levels throughout policy-making procedures in order
to identify healthcare priorities from a geospatial perspective via addressing varied impacts of both
socioeconomic and environmental factors. As a one-size-fits-all policy rarely serves as an effective
strategy to be adopted in large countries like China [57], it is highly recommended that geospatial
heterogeneity be considered throughout policy-making procedures at regional levels in order to
facilitate the formulation and implementation of region-specific strategies for optimization purposes.
In order to achieve such region-specific optimization, it is highly recommended that experts from
interdisciplinary backgrounds are extensively engaged in policy-making procedures for various
healthcare settings as part of the healthcare reform, including public health professionals, health and
medical geographers, geographic information science (GIS) practitioners, environmentalists, and spatial
statisticians [63,64]. More importantly, the adoption of an innovatively developed Bayesian-based local
spatiotemporal regression STVC model in our study demonstrated great value in the spatiotemporal
analysis of various influencing factors in the field of public health, which could be further extended for
adoption in broader areas such as environment and earth sciences.
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Appendix A

Table A1. Descriptive statistics of the modeling data.

Variables Minimum Maximum Mean Std. Deviation Skewness Kurtosis

Y 1.20 135.60 22.87 15.09 2.08 6.00
SE1 0.00001 0.2513 0.0228 0.0267 2.33 9.33
SE2 0.0002 684.30 14.69 36.40 7.85 90.56
SE3 0.0001 1527.90 33.40 82.65 9.88 141.10
SE4 4.99 6,329,247 32,533 194,713 19.74 486.90
SE5 5.67 10,310,602 89,787 302,255 18.75 464.19
SE6 0.75 201,423 5514 8153 8.35 131.73
SE7 4.00 122,519,466 502,703 4,014,174.76 20.24 501.36
SE8 0.51 4558 42 166 16.96 363.20
SE9 1.57 101,037,587 506,231 2,773,609 21.03 585.25
SE10 0.77 256,720 5208 8618.07 8.33 172.10
SE11 0.0002 140.52 12.77 15.47 2.36 9.04
SE12 0.0002 179.10 19.27 20.76 2.24 9.23
SE13 5.26 77,489,300 521,682 2,315,996 19.46 480.79
SE14 4.53 442,463,903 362,658 7,002,860 55.50 3454.81
SE15 3.13 4,366,522,055 2,906,142 74,407,402 49.34 2715.86
SE16 2.75 2,940,718,935 3,408,027 60,985,621 41.88 1872.98
SE17 4.72 617,811 9492 12,017 29.03 1426.97
SE18 0.0001 653.65 15.64 34.12 7.95 98.80
SE19 0.31 32,916 1027 1472 5.18 61.29
SE20 122 728,600 4328 14,171 31.57 1502.91
EX1 0.0844 0.87 0.68 0.16 −1.93 2.85
EX2 0.0001 38.03 1.67 3.11 4.72 31.53
EX3 2093 21,169 10,234 2904 0.05 0.25
EX4 −46.83 224.05 130.81 61.98 −1.11 −0.10
EX5 572.19 977.84 840.22 108.95 −0.83 −0.40
EX6 0.76 2.72 1.53 0.31 0.86 1.03
EX7 2.45 20.40 12.45 4.20 −0.86 −0.54
EX8 71.77 296.55 147.03 51.68 0.57 −0.64
EX9 0.000006 0.000283 0.000068 0.000022 3.51 28.03

EX10 294.57 5154.40 1997.05 1476.69 0.87 −0.57
EX11 0.22 16.51 6.07 3.44 0.51 −0.26
EX12 0.0000 0.000388 0.000064 0.000031 2.84 24.56

Notes: Y: the number of hospital beds per ten thousand people; SE1–SE20: socioeconomic variables; EX1–EX12:
environmental variables; Std. Deviation: standard deviation; Skewness: a measure of the direction and degree of
skew in the distribution of statistical data. A normal distribution has a skewness value of zero; Kurtosis: a statistic
that describes the steepness of the data distribution pattern. A normal distribution has a kurtosis value of zero.

Table A2. Multicollinearity evaluation for the socioeconomic (SE1–SE20) and environmental
(EX1–EX12) variables.

Socioeconomic VIF Selection Environment VIF Selection

SE1 6.67 N EX1 1.68 Y
SE2 6.19 N EX2 1.30 Y
SE3 7.68 N EX3 3.00 Y
SE4 39.34 N EX4 39.06 N
SE5 24.53 N EX5 56.51 N
SE6 2.50 Y EX6 2.95 Y
SE7 8.97 N EX7 47.18 N
SE8 20.72 N EX8 7.69 N
SE9 39.99 N EX9 1.24 Y

SE10 1.55 Y EX10 78.75 N
SE11 17.04 N EX11 2.50 Y
SE12 11.16 N EX12 1.20 Y
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Table A2. Cont.

Socioeconomic VIF Selection Environment VIF Selection

SE13 50.85 N
SE14 18.11 N
SE15 61.97 N
SE16 25.15 N
SE17 1.37 Y
SE18 4.63 Y
SE19 1.36 Y
SE20 1.17 Y

Notes: VIF: variance inflation factor; variables screening threshold: VIF < 5; Y denotes yes, and N denotes no.
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