Supplementary Materials

Table S1. Operating conditions for the iCAP $^{\text{TM}}$ Q ICP-MS instrument.

Plasma gas flow rate	14 L/min		
Auxiliary gas flow rate	0.85 L/min		
Nebulizer gas flow rate	1.02 L/min		
RF power	1550 W		
Nebulizer	$MicroMist^{TM}$		
Spray chamber	Baffled quartz cyclonic		
Spray chamber temperature	2.7 °C		
Dwell time	20 ms*		
Replicates	3		
Sample uptake time	1 min		
Washout time	2 min		

^{*} A dwell time of 50 ms was used for Hg.

Table S2. Limits of detection (LOD) for the analyzed trace elements.

Element	LOD (μg/g)		
Al	0.047		
As	0.032		
Ва	0.002		
Cd	0.001		
Co	0.001		
Cr	0.005		
Cu	0.006		
Fe	0.544		
Hg	0.022		
Li	0.001		
Mn	0.006		
Ni	0.004		
Pb	0.001		
Sb	0.002		
Se	0.139		
Sr	0.004		
Ti	Ti 0.010		
V	0.004		
Zn	0.013		

Element	Certified value ± uncertainty (µg/g)	Determined value ± standard deviation (μg/g)*	Recovery (%)
As	0.044 ± 0.006	0.053 ± 0.006	121.0 ± 14.3
Cd	0.125 ± 0.007	0.114 ± 0.003	91.0 ± 2.2
Cu	33.000 ± 4.000	31.400 ± 0.600	95.1 ± 1.8
Hg	0.365 ± 0.028	0.329 ± 0.020	90.2 ± 5.5
Pb	2.140 ± 0.200	2.260 ± 0.080	105.8 ± 3.9
Se	3.240 ± 0.240	3.210 ± 0.520	99.2 ± 8.9
Zn	209.000 ± 12.000	198.000 ± 2.400	94.6 ± 1.1

^{*} Data from two independent digestions of the certified reference material with triplicate analysis of the sample solutions (at the beginning, middle, and end of the analytical run).