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Abstract: Iron is an essential micronutrient for the brain development of the fetus. Altered intestinal
microbiota might affect behavior and cognition through the so-called microbiota-gut-brain axis.
We used a Sprague-Dawley rat model of a maternal low-iron diet to explore the changes in cognition,
dorsal hippocampal brain-derived neurotrophic factor (BDNF) and related pathways, gut microbiota,
and related metabolites in adult male offspring. We established maternal iron-deficient rats by feeding
them a low-iron diet (2.9 mg/kg), while the control rats were fed a standard diet (52.3 mg/kg). We used
a Morris water maze test to assess spatial learning and long-term memory. Western blot (WB) assays
and a quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were used to detect
the BDNF concentration and related signaling pathways. We collected fecal samples for microbiota
profiling and measured the concentrations of plasma short-chain fatty acids. The adult male offspring
of maternal rats fed low-iron diets before pregnancy, during pregnancy and throughout the lactation
period had (1) spatial deficits, (2) a decreased BDNF mRNA expression and protein concentrations,
accompanied by a decreased TrkB protein abundance, (3) a decreased plasma acetate concentration,
and (4) an enrichment of the Bacteroidaceae genus Bacteroides and Lachnospiraceae genus Marvinbryantia.
Maternal iron deficiency leads to an offspring spatial deficit and is associated with alternations in
gastrointestinal microbiota and metabolites.

Keywords: spatial deficit; iron deficiency; microbiota; programming

1. Introduction

Iron deficiency has become one of the prevalent nutritional problems in the developing and
developed world [1], particularly in preschool-age children and reproductive-age women [2].
Iron concentration is the rate-limiting factor of erythropoiesis, which may be insufficient when
the serum iron level is below 50 µg/dL [3]. Furthermore, during pregnancy, the iron demand for the
expanding blood volume and growth of the fetus, placenta, and other maternal tissues were increased,
therefore raising the risk of iron deficiency anemia (IDA), especially in those lacking sufficient iron
supplementation during the middle and late trimesters of pregnancy [4].

The main manifestations of IDA are palpitations, pallor, anorexia, dyspnea, and dizziness.
Maternal iron deficiency might adversely affect maternal and fetal health and become one of the
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risk factors for offspring intrauterine growth retardation and adulthood cardiovascular disease [5].
Moreover, children with a poor iron status in the uterus have markedly worse fine motor skills and
language ability [6]. In animal studies, prenatal iron deficiency is associated with neurochemistry
alternations and a reduced hippocampal size in adulthood [7]. Furthermore, despite an early postnatal
iron supply, the hippocampal size and behavioral deficits persisted into adulthood [8].

Neurotrophic factors, or “growth factors”, are directly involved in neuronal and synaptic growth.
A small dimeric protein, called brain-derived neurotrophic factor (BDNF), which is widely expressed in
the mammalian brain, and is vital for cognitive performance, spatial learning, and memory [9], as well
as critical for neuronal synaptic plasticity, neuronal survival, and memory processing. Both human
and animal studies have shown that maternal iron deficiency affects the fetal production of BDNF
and hippocampal morphogenesis [10,11]. Moreover, in many neurological and psychiatric diseases,
such as Parkinson’s disease, Huntington’s disease, schizophrenia, Alzheimer’s disease, and depression,
the concentration of BDNF was found to be low [12,13].

Recent studies have shown that through neural, immune, and endocrine pathways, gut microbiota
might communicate with the central nervous system (CNS) and influence brain morphology,
brain function and personal behavior [14]. Infants with iron deficiencies also showed gut microbiota
dysbiosis [15]. Thus, we studied whether maternal iron deficiency affects offspring cognition and the
changes in gut microbiota and related metabolites in the offspring.

2. Materials and Methods

2.1. Animals and Ethics

A total of 12 virgin Sprague-Dawley (SD) rats (6 weeks old) were purchased from BioLASCO
Taiwan Co., Ltd. (Taipei, Taiwan). The animals were housed in the animal care facility under standard
photoperiod conditions (12 h light/dark cycle with lights on at 7 am) and were provided ad libitum
access to water and food throughout the study. The protocols described herein were conducted with
the approval of the Animal Care and Use Committee (Chang Gung Memorial Hospital, Kaohsiung,
Taiwan, No. 2018110201) and designed to minimize the suffering and numbers of animals during
the experiments.

2.2. Diet and Experimental Protocols

All purified diets were based on the AIN-93G diet (Research Diets Inc, New Brunswick, NJ, USA).
By adding ferric citrate, we obtain the following iron concentrations: 52.3 mg/kg in the control diet
(D10012G) and 2.9 mg/kg in the low-iron diet (D03072501), which was published previously [16]
(Supplementary Table S1). The other composition of purified diet was identical.

The rats were randomly assigned to the control diet or the low-iron diet. After 3–6 weeks
of respective diets, blood from the tail vein was drawn to check the iron profile and hemoglobin
concentrations. Next, the female SD rats and male rats were allowed to mate. After 24 h, they were
separated and the female rats were housed in a standard plastic cage individually.

Iron-deficient rats were then randomly divided into three groups: (1) a control diet through
pregnancy and lactation, (2) a low-iron diet during the pregnancy period but control diet during the
lactation period, and (3) a continued low-iron diet through pregnancy and lactation. Only male rats
were enrolled in this study to decrease gender interference. Therefore, we had four groups of adult
male offspring: (Figure S1).

1. Four-month-old male offspring of mothers receiving the control diet (sham control (SC group))
(n = 5).

2. Four-month-old male offspring of mothers receiving the low-iron diet but the control diet through
the pregnancy (ICC group) (n = 5).

3. Four-month-old male offspring of mothers receiving the low-iron diet during pregnancy but the
control diet during lactation (IDC group) (n = 5).
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4. Four-month-old male offspring from mothers continuously receiving the low-iron diet (IDD group)
(n = 4).

After weaning, the offspring were separated from their mothers and fed the control diet. The Morris
water maze testing was conducted when the rats reached 16 weeks of age. The offspring were sacrificed
at 17 weeks of age by Rompun + Zoletil and exsanguination.

2.3. Behavioral Evaluation

To assess spatial learning and memory, the Morris water maze test was conducted 5–7 days
before sacrifice [17]. The water maze was a circular tank 180 cm in diameter and 50 cm in height
with uniform, nonreflective interior surfaces, filled with water to a depth of 25 cm at 26 ± 1 ◦C.
A 12 cm-diameter-platform was submerged 1.5 cm below the water surface, hidden from the rats’ view.
We marked the visual clues around the room in a constant location, and we set a video camera above
the center of the pool, using a video-tracking system (Noldus, Ethovision, The Netherlands).

2.3.1. Days 1–4: Spatial Acquisition Phase

On the first day, for habituate training environment, each rat was placed in the water pool for
60 s without a platform. From days 1–4, the rats were trained for six trials each day to locate and
escape onto the platform. The starting point varied in a quasi-random order during each trial, and the
distance between the starting point and platform was constant. The rats were left on the platform
during the 30 s inter-trial interval. If a rat could not find the platform within 60 s, we would manually
place it on the platform. We recorded the latencies (times from the start to reaching the platform),
average swimming speed, and cumulative distance from the platform.

2.3.2. Day 5: Probe Trial Phase

The platform was removed on day 5, and the rats received a single 60 s probe trial from a novel
start position. To determine if the animal remembered the location of the platform, we measured the
path and time spent in the quadrant where the platform was previously located. The probe trial was
considered a measure of spatial reference memory [18].

2.4. Tissue Dissection and Collection

At 17 weeks of age, all animals were weighed, blood samples were collected by cardiocentesis,
and euthanized under Rompun + Zoletil 1:1. The dorsal hippocampus was dissected. The plasma was
collected, and the samples were stored at −80 ◦C until further analysis.

2.5. Quantitative Reverse-Transcription Polymerase Chain Reaction (qRT-PCR) Analysis

Briefly, we used TRI reagent (Sigma, St. Louis, MO, USA) to extract RNA from the dorsal
hippocampus and removed the contaminating DNA via DNase I (Ambion, Austin, TX, USA). The RNA
(2 µg) was reverse transcribed by using SuperScript II RNase H-Reverse Transcriptase with random
primers (Invitrogen, San Diego, CA, USA). We omitted the enzyme to perform control reverse
transcriptase reactions and amplified the PCR to ensure no DNA contamination. QuantiTect SYBR
green PCR reagents (Qiagen, Valencia, CA, USA) were used to conduct a two-step qRT-PCR following
the manufacturer’s protocol on a LightCycler 480 real-time PCR system (Roche Diagnostics Ltd.,
Taipei, Taiwan). The primers for BDNF and β-actin (as reference) were designed from rat-specific
sequences. We ran all the samples in duplicate. For the relative quantification of the gene expression,
the comparative threshold cycle (CT) method was employed. To obtain the ∆CT, we subtracted
the averaged CT from the corresponding averaged β-actin value for each sample. To obtain ∆∆CT,
we subtracted the average control ∆CT value from the averaged experimental ∆CT. By calculating 2−∆∆CT

for the experimental vs. control samples, we established the fold increase (Supplementary Table S2).
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2.6. Western Blot (WB) Assay

The WB analysis was conducted as previously published [19]. We lysed total protein extracted
from the dorsal hippocampal tissue in ice-cold radioimmunoprecipitation assay buffer with a protease
inhibitor cocktail (Roche, Indianapolis, IN, USA) then centrifugation. We used a RC DC protein
assay kit (Bio-Rad, Hercules, CA, USA) to determine the protein concentrations in the supernatants.
The WB analysis was used to quantify the BDNF, TrkB, and CREB protein density. We used primary
antibodies, including BDNF (1:1000, Santa Cruz, CA, USA), TrkB (1:1000, Cell Signaling, Denver,
MA, USA), and CREB (1:100; Millipore, Billerica, MA, USA), followed by secondary antibodies.
We used enhanced chemiluminescence reagents (PerkinElmer, Waltham, MA, USA) to visualize
the protein–antisera complex. The complex was then subtracted of background and quantified
by densitometry (Quantity One Analysis software; Bio-Rad, Hercules, CA, USA) as the integrated
optical density (IOD). The IOD was normalized to Ponceau red staining as an internal control
(Supplementary Table S3).

2.7. Measurement of Plasma Acetate, Butyrate, and Propionate Concentrations

The blood samples collected via cardiocentesis were stored at –80 ◦C before examination.
The plasma acetate, propionate, and butyrate concentrations were measured by gas
chromatography–mass spectrometry (GC-MS, Agilent 7890, Agilent: Santa Clara, CA, USA).
For metabolite extraction, we transferred a 0.15 mL sample into 1.5 mL Eppendorf tubes, added 0.05 mL
50% H2SO4 and 0.2 mL 2-methylvaleric acid (25 mg/L stock in methyl tert-butyl ether) as an internal
standard, mixed by vortexing for 30 s with oscillations for 10 min, and then treated the samples with
ultrasound for 10 min (incubated in ice water). The samples were centrifuged at 10,000 rpm at 4 ◦C
for 15 min, and then kept at −20 ◦C for 30 min. Finally, the supernatant was transferred into a fresh
2 mL glass vial for GC-MS analysis, using an Agilent 7890B gas chromatograph system with an Agilent
5977B (Agilent: Santa Clara, CA, USA) mass spectrometer. A HP-FFAP capillary column was used.
We injected a 1 µL aliquot of the analyte in split mode (5:1). We used helium as the carrier gas with a
flow rate of 1 mL/min through the column; the front inlet purge flow was 3 mL/min. We maintained
the initial temperature at 80 ◦C for 1 min, then raised it 5 ◦C/min to 150 ◦C, and finally raised it at a
rate of 40 ◦C/min to reach 230 ◦C which was maintained for 12 min. The energy was –70 eV in the
electron impact mode. The injection, transfer line, quad, and ion source temperatures were 240 ◦C,
240 ◦C, 230 ◦C, and 150 ◦C, respectively. We acquired the mass spectrometry data in Scan/SIM mode
with the m/z range of 33–200 after a solvent delay of 5 min.

2.8. Gut Microbiota Profiling

We extracted bacterial DNA from frozen fecal samples following the
manufacturer’s instructions and then amplified it by forward primers
(5′-CGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′) and reverse
primers (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3′),
to target the V3–4 region of the 16S rRNA gene. We analyzed the next-generation sequencing data
with the Microbial Genomics Module of CLC Genomics Workbench 9.5.4 (Qiagen, Stockach, Germany).
We used the Illumina MiSeq platform (Illumina, San Diego, CA, USA) and 16S Amplicon Sequencing
(Illumina, San Diego, CA, USA) to sequence and amplify the RNA with a 600-cycle sequencing reagent.
In order to identify the microbial marker, an analysis (linear discriminant analysis (LDA)) effect size
was used. The LDA score indicates the differences in the genus–concentration abundance between the
grouping categories.

2.9. Statistical Analyses

The results of biochemical parameters, the WB and qRT-PCR, were analyzed by an independent
Student’s t test or one-way analysis of variance (ANOVA) with the least significant difference
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(LSD) post-hoc test. The average of the sum of the six trials per day of the spatial acquisition test
was analyzed by an ANOVA and repeated-measures ANOVA; the day and groupwere considered
independent variables. The taxonomic relative abundance profiles were compared using a Student’s
t-test. All analyses were performed using SPSS (version 22.0, IBM Corp, Armonk, NY, USA).
The significance was defined as p < 0.05, and values are expressed as the mean ± the standard error of
the mean for all tests.

3. Results

3.1. Maternal Body Weight and Serum Iron and Hemoglobin Concentrations

The body weight of maternal rats from 42 to 63 days old showed no significant difference between
the low-iron diet group and the control diet group (Figure 1a). The concentration of serum iron in the
mother rats was significantly lower after 14 days of consuming a low-iron diet compared to the rats in
the control diet group (Figure 1b). Moreover, the hemoglobin concentration was significantly low after
3 weeks of the low-iron diet (Figure 1c).

Figure 1. Body weights (a) and serum iron (b) and hemoglobin concentrations (c) of mother rats under
normal and low-iron diets. Serum iron and hemoglobin were decreased from 56 days old and 63 days
old separately. An independent Student’s t-test was used to assess the statistical significance of the
differences between groups (n = 6). * p < 0.05 ** p < 0.01.

3.2. Adult Male Offspring Body Weights and Serum Iron and Hemoglobin Concentrations

At 16 weeks of age, we found that the body weights of the male offspring in the IDD group were
lower than the rats in the SC group (Figure 2a). The serum iron concentration showed no significant
differences among all four groups (SC, ICC, IDC, and IDD groups), although there was a decreasing
trend from the SC group to the ICC, IDC, and IDD groups (Figure 2b). There was no marked difference
in the hemoglobin concentrations among the four groups (Figure 2c).

3.3. Morris Water Maze

Figure 3 shows the mean escape latencies (A) and the percentage of time spent in the target
quadrant (B). The swimming speed had no marked difference between the rats from each group and
showed no mobility impairment (p > 0.1). It also demonstrated an improvement in the mean escape
latencies during the 4 days of the spatial acquisition phase. However, there was a significant group
difference. Rats in the IDD group needed more time to find the submerged platform than rats in the
IDC (p < 0.05), ICC (p < 0.01), and SC (p < 0.01) groups. In the probe trial phase, there was no statistical
difference in the time spent in the target quadrant among the four experimental groups (p > 0.05).
The above findings indicated that iron deficiency caused an impairment in the acquisition phase of
spatial learning and memory, but the spatial reference memory was not affected.
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Figure 2. Body weights (a) and serum iron (b) and hemoglobin concentrations (c) of the offspring
at age 16 weeks in four groups. A one-way analysis of variance (ANOVA) with a least significant
difference correction was used to assess the statistical significance of the differences among groups,
SC: Sham control, offspring from maternal control diet; ICC: offspring from a maternal low-iron diet
but control diet during pregnancy; IDC: offspring from a maternal low-iron diet but control diet
during lactation; IDD: offspring from a maternal low-iron diet through the pregnancy and lactation.
** p < 0.05 vs. SC.

Figure 3. Morris water maze test. Latencies of escape to the platform (A) and time in the target
quadrant (B). A two-way analysis of variance (ANOVA) with repeated measures (days) was used to
assess the statistical significance of differences among the four experimental groups, * p < 0.05 vs. SC;
** p < 0.01 vs. SC; # p < 0.05 vs. ICC; ## p < 0.01 vs. ICC; @ p < 0.05 vs. IDC. Across 4 days of training,
all mean escape latencies in each group decreased over the spatial acquisition phase. The ANOVA
results show a significant reduction in the escape latency with training. The IDD group need more time
finding the submerged platform than the other three groups. A probe trial administered on training
day 5 showed no significant differences.

3.4. WB and qRT-PCR

We next examined whether an iron deficiency altered the mRNA and protein concentrations of the
BDNF signaling pathway within the dorsal hippocampus. The BDNF mRNA concentration was lower
in the IDD group than in the SC group (p < 0.05) (Figure 4A). Moreover, BDNF protein abundance was
significantly lower in the IDD group than the other three groups (p < 0.01) (Figure 4B). The full-length
form of TrkB was lower in the IDD group than the SC and ICC groups (p < 0.05) (Figure 4C). There was
no marked difference in CREB protein abundance among the four groups (Figure 4D). Our results imply
that maternal iron deficiency may program adult male offspring, reducing the dorsal hippocampal
BDNF concentration and altering the TrkB cascade, which is required for spatial learning and memory.
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Figure 4. Brain-derived neurotrophic factor (BDNF) and related proteins in the dorsal hippocampus.
Dorsal hippocampal BDNF mRNA expression (A), BDNF protein (B), TrkB protein (C) and CREB
protein (D) in the four groups. BDNF mRNA, BDNF proteins, and TrkB proteins were all significantly
lower in the IDD group. A one-way analysis of variance (ANOVA) with a least significant difference
post-hoc test was used to assess the statistical significance of the differences among groups, * p < 0.05
vs. SC; ** p < 0.01 vs. SC; # p < 0.05 vs. ICC; ## p < 0.01 vs. ICC; @ p < 0.05 vs. IDC.

3.5. Short-Chain Fatty Acids (SCFAs)

Volatile fatty acids, also known as SCFAs, have been linked to the relationship among diet,
gut microbiota, and host energy metabolism. In this study, the concentrations of acetate were marked
lower in the IDD group than the other three groups. There was no significant difference in the
concentrations of propionate and butyrate among the four groups (Figure 5).

Figure 5. Plasma short-chain fatty acid concentrations. Acetate (a), propionate (b),
and butyrate (c) concentration. A one-way analysis of variance (ANOVA) with a least significant
difference post-hoc test was used to assess the statistical significance of the differences among groups,
* p < 0.05 vs. SC; @@ p < 0.01 vs. IDC.

3.6. Gut Microbiota

16S rRNA sequencing was used to evaluate the richness, composition, and diversity of the
gut microbiota. The four most abundant taxa were Ruminococcaceae, Lachnospiraceae, Muribaculaceae,
and Bacteroidaceae. There was a greater enrichment of Bacteroidaceae in the IDD and IDC groups than
in the SC and ICC groups (Figure 6A). A principal component analysis for beta diversity showed a
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clear segregation of all four groups (IDD, IDC, ICC, and SC) (Figure 6B). We found three differentially
abundant taxonomic classes in the IDD group using an LDA effect size calculation with an LDA score
higher than 4.0. The results showed that the Bacteroidaceae genus Bacteroides and Lachnospiraceae genus
Marvinbryantia were significantly increased in rats in the IDD group compared to rats in the other
groups (Figure 6C).

Figure 6. Gut microbiota of the offspring at 16 weeks of age in four groups. Relative abundances of the gut
microbiota at the family concentration (A), principal component analysis (B), cladogram generated from
the linear discriminant analysis (LDA) and LDA effect size to identify the enriched bacterial species (C).

4. Discussion

In this study, we showed that maternal iron deficiency may program and alter adult male offspring
development with regard to spatial learning and memory, dorsal hippocampus BDNF expression,
gut microbiota, and SCFA concentrations. Our results showed that the adult male offspring of rats that
were fed a low-iron diet before pregnancy and throughout the lactation period had (1) spatial deficits
via a Morris water maze evaluation; (2) decreased dorsal hippocampal BDNF mRNA and protein
concentrations accompanied by a low TrkB abundance; (3) a decreased plasma acetate concentration
without changes in butyrate and propionate concentrations; (4) enrichment of the Bacteroidaceae genus
Bacteroides and Lachnospiraceae genus Marvinbryantia.

It has long been known that iron is essential in the regulation of neuronal metabolism,
especially during rapid neurologic development [20,21]. In both animal and human studies,
perinatal iron deficiency has been shown to have detrimental programming effects and might cause
long-lasting abnormalities in the learning and memory behavior of offspring [22,23], and these effects
persisted even when the iron deficiency was corrected [24]. Our results revealed that the offspring of
rats that underwent iron restriction before conception and throughout gestation and lactation displayed
the poorest performances in the Morris water maze, with a corresponding decrease in the dorsal
hippocampus BDNF concentration even after the iron and hemoglobin concentrations were restored.
There were no significant differences in performance in the water maze test, or the BDNF and acetate
concentrations when comparing the IDC, ICC and SC groups. Whether the iron correction during
lactation had benefits in terms of preventing spatial memory impairments needs further investigation.
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Mihaila et al. stated there was no neural impairment if the maternal iron deficiency was initiated
from the third trimester of pregnancy [25]. Additionally, Ranade et al. reported that, in the pups of
rats that had insufficient iron throughout pregnancy, lactation suffered from the complete spectrum
of defects compared to those from rats that had insufficient iron only during the pregnancy [26],
indicating that the cognitive effects was correlated with the severity and duration of iron restriction.
Moreover, iron deficiency without anemia also had a neurological effect suggesting that iron statuses
should be checked early instead of only after the hemoglobin concentration changed.

4.1. BDNF Pathway

BDNF is an essential growth factor for the regulation of neuronal differentiation and synaptic
plasticity that also plays a role in pre- and postnatal brain development [27,28]. The highest BDNF
concentrations in the CNS were found in the hippocampus, frontal cortex, and amygdala [29].
Both serum BDNF concentrations and hippocampal volumes of human neonates born to iron-deficient
mothers are significantly low, and the magnitude of reduction is proportional to the severity and
duration of the maternal iron deficiency [11]. TrkB is a downstream signaling cascade that results in
neuronal survival, differentiation, and synaptic plasticity. Phosphorylated TrkB activated by BDNF
follows the general scheme for tyrosine kinases receptor and initiates signaling casacades. TrkB then
enters into the nucleus and activates CREB to regulate gene expression for the differentiation and
survival of neurons [30,31]. In this study, BDNF and TrkB were significantly low in the IDD group,
although the decrease in CREB abundance was not significant. Our findings suggest that fetal and
perinatal iron homeostasis is important for the expression of BDNF in brain development, and provides
a molecular basis for the spatial learning deficits related to maternal iron deficiency.

4.2. Neuronal and Metabolic Pathways between the Brain and Intestine

Although the mechanistic pathway is not yet clear, the intestine and brain communicate
by neuronal, immune and metabolic pathways [32]. In the neuronal pathway, the hippocampal
BDNF concentration is decreased by antibiotic-induced gut dysbiosis, which could cause cognitive
impairment [33]. SCFAs, including acetate, butyrate, and propionate, are metabolic substances
produced by the gut microbiome. These substances also have anti-inflammatory functions that reduce
cytokine concentrations, thus, increasing BDNF concentrations [34]. Decreased concentrations of
SCFAs are associated with the alteration of microorganisms and a reduced secretion of BDNF [35].
Kobayashi et al. reported that the administration of acetate could improve memory function and
behavior impairment [36]. Our studies showed that the acetate concentration decreased in the
IDD group compared to that of the other three groups, which was consistent with the findings of
Kobayashi et al.

4.3. IDA and Microbiota

Increasing evidence has revealed the importance of the gut–brain axis and has suggested
that intestinal microbiota dysbiosis might lead to the dysregulation of the CNS and cause CNS
impairment [37,38]. The diversity and composition of microbiota are controlled by host genes and
environmental factors, such us diet, medication, and stress [39]. Additionally, changes in iron
availability to the gut microbiota might alter the composition of siderophilic organisms, such as
Escherichia coli and Salmonella, resulting in associated diseases [40]. In this study, a clear segregation
of bacterial beta diversity was observed. Although there was no anemia during the examination,
the gut microbiota diversity and composition were still different, illustrating that early iron restriction
may have a long-lasting effect on gut microbiota. Our results are consistent with those of studies
in which the iron-restricted group had a high composition of Bacteroidaceae and Lachnospiraceae [41].
Saji et al. reported that the fecal micriobiome, such us Bacteroides, was found to have a higher prevalence
in cognitive impairment patients [42]. Arciniegas et al. stated that traumatic brain injury induced
congitive deficits, and Treangen et al. found more abundant Lachnospiraceae in microbiota after a
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traumatic brain injury [43,44]. However, we could not completely explain how the change in gut
microbiota affects the plasma acetate concentration, indicating that some uncovered mechanism must
be involved. The association between the microbiota and SCFA alteration in rats with IDA requires
further investigation.

There were several limitations to our study. We only studied male offspring to reduce the gender
difference, and there were only four rats in the IDD group. Therefore, we believe that future studies
must include experiments with more number of rats and female offspring.

5. Conclusions

It has been suggested that maternal iron deficiency is associated with offspring cognition
impairment, decreased BDNF concentrations, low plasma acetate concentrations, and an altered
microbiota. Therefore, improving the nutritional status of pregnant women could have a positive effect
on the future brain development of their offspring. Further studies are required to verify whether
treatment with probiotic, nonviable components of a bacterium, or its metabolite could alter the
microbiota and ameliorate cognitive dysfunction.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/17/6070/s1,
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Magnes, C.; Fröhlich, E.; et al. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut
microbiota-brain communication. Brain Behav. Immun. 2016, 56, 140–155. [CrossRef]

34. Macfarlane, G.T.; Macfarlane, S. Fermentation in the human large intestine. J. Clin. Gastroenterol.
2011, 45, S120–S127. [CrossRef] [PubMed]

35. Ibarra, A.; Heyck, M. Microbiota and memory: A symbiotic therapy to counter cognitive decline? Brain Circ.
2019, 5, 124–129. [CrossRef] [PubMed]

36. Kobayashi, Y.; Sugahara, H.; Shimada, K.; Mitsuyama, E.; Kuhara, T.; Yasuoka, A.; Kondo, T.; Abe, K.;
Xiao, J.-Z. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in
Alzheimer’s disease. Sci. Rep. 2017, 7, 13510. [CrossRef] [PubMed]

37. Hsiao, E.Y.; McBride, S.W.; Hsien, S.; Sharon, G.; Hyde, E.R.; McCue, T.; Codelli, J.A.; Chow, J.; Reisman, S.E.;
Petrosino, J.F.; et al. Microbiota modulate behavioral and physiological abnormalities associated with
neurodevelopmental disorders. Cell 2013, 155, 1451–1463. [CrossRef] [PubMed]

38. Dinan, T.G.; Cryan, J.F. Gut instincts: Microbiota as a key regulator of brain development, ageing and
neurodegeneration. J. Physiol. 2016, 595, 489–503. [CrossRef] [PubMed]

39. Kim, S.; Covington, A.; Pamer, E.G. The intestinal microbiota: Antibiotics, colonization resistance, and enteric
pathogens. Immunol. Rev. 2017, 279, 90–105. [CrossRef]

40. Sjödin, K.S.; Domellöf, M.; Lagerqvist, C.; Hernell, O.; Lönnerdal, B.; Szymlek-Gay, E.A.; Sjödin, A.; E West, C.;
Lind, T. Administration of ferrous sulfate drops has significant effects on the gut microbiota of iron-sufficient
infants: A randomised controlled study. Gut 2018, 68, 2095.1–2097. [CrossRef]

41. Muleviciene, A.; D’Amico, F.; Turroni, S.; Candela, M.; Jankauskiene, A. Iron deficiency anemia-related gut
microbiota dysbiosis in infants and young children: A pilot study. Acta Microbiol. Et Immunol. Hung. 2018,
65, 551–564. [CrossRef]

42. Saji, N.; Murotani, K.; Hisada, T.; Tsuduki, T.; Sugimoto, T.; Kimura, A.; Niida, S.; Toba, K.; Sakurai, T.
The relationship between the gut microbiome and mild cognitive impairment in patients without dementia:
A cross-sectional study conducted in Japan. Sci. Rep. 2019, 9, 1–10. [CrossRef]

43. Treangen, T.J.; Wagner, J.; Burns, M.P.; Villapol, S. Traumatic brain injury in mice induces acute bacterial
dysbiosis within the fecal microbiome. Front. Immunol. 2018, 9. [CrossRef]

44. Arciniegas, D.B.; Held, K.; Wagner, P. Cognitive impairment following traumatic brain injury. Curr. Treat.
Options Neurol. 2002, 4, 43–57. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1179/1476830513Y.0000000084
http://dx.doi.org/10.3389/fnagi.2019.00170
http://dx.doi.org/10.1016/j.bbi.2016.02.020
http://dx.doi.org/10.1097/MCG.0b013e31822fecfe
http://www.ncbi.nlm.nih.gov/pubmed/21992950
http://dx.doi.org/10.4103/bc.bc_34_19
http://www.ncbi.nlm.nih.gov/pubmed/31620659
http://dx.doi.org/10.1038/s41598-017-13368-2
http://www.ncbi.nlm.nih.gov/pubmed/29044140
http://dx.doi.org/10.1016/j.cell.2013.11.024
http://www.ncbi.nlm.nih.gov/pubmed/24315484
http://dx.doi.org/10.1113/JP273106
http://www.ncbi.nlm.nih.gov/pubmed/27641441
http://dx.doi.org/10.1111/imr.12563
http://dx.doi.org/10.1136/gutjnl-2018-316988
http://dx.doi.org/10.1556/030.65.2018.045
http://dx.doi.org/10.1038/s41598-019-55851-y
http://dx.doi.org/10.3389/fimmu.2018.02757
http://dx.doi.org/10.1007/s11940-002-0004-6
http://www.ncbi.nlm.nih.gov/pubmed/11734103
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Animals and Ethics 
	Diet and Experimental Protocols 
	Behavioral Evaluation 
	Days 1–4: Spatial Acquisition Phase 
	Day 5: Probe Trial Phase 

	Tissue Dissection and Collection 
	Quantitative Reverse-Transcription Polymerase Chain Reaction (qRT-PCR) Analysis 
	Western Blot (WB) Assay 
	Measurement of Plasma Acetate, Butyrate, and Propionate Concentrations 
	Gut Microbiota Profiling 
	Statistical Analyses 

	Results 
	Maternal Body Weight and Serum Iron and Hemoglobin Concentrations 
	Adult Male Offspring Body Weights and Serum Iron and Hemoglobin Concentrations 
	Morris Water Maze 
	WB and qRT-PCR 
	Short-Chain Fatty Acids (SCFAs) 
	Gut Microbiota 

	Discussion 
	BDNF Pathway 
	Neuronal and Metabolic Pathways between the Brain and Intestine 
	IDA and Microbiota 

	Conclusions 
	References

