Exploring evaluation variables for low-cost particulate matter monitors to assess occupational exposure

Sander Ruiter ^{1,*}, Eelco Kuijpers ¹, John Saunders ², John Snawder ³, Nick Warren ², Jean-Philippe Gorce ², Marcus Blom ¹, Tanja Krone ¹, Delphine Bard ², Anjoeka Pronk ¹ and Emanuele Cauda ³

- ¹ Netherlands Organization for Applied Scientific Research (TNO), 3584 CB Utrecht, The Netherlands; sander.ruiter@tno.nl
- ² Health and Safety Laboratory (HSL), SK17 9JN Harpur Hill Buxton, UK; John.Saunders@hse.gov.uk; Nick.Warren@hse.gov.uk; Jean-Philippe.Gorce@hse.gov.uk; Delphine.Bard@hse.gov.uk
- ³ Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health (NIOSH); jts5@cdc.gov; cuu5@cdc.gov
- * Correspondence: sander.ruiter@tno.nl

Received: date; Accepted: date; Published: date

Supplementary tables

Table S1. List of experiments

Mater	Exposure	Power	Short-term	Temperatur	Relative	Commonto
ial	pattern	supply	drift (h)	e (°C)	humidity (%)	Comments
ARD	stable (~333			20	50	Gravimetric
	μg/m3)			20		sampling
ARD	stable (~666			20	50	Gravimetric
	µg/m3)			20		sampling
ARD	stable (~1000			20	50	Gravimetric
	μg/m3)			20	00	sampling
ARD	stable (~2500			20	50	
	μg/m3)					
ARD	stable (~5000			20	50	
	μg/m3)					
ARD	transient	wired		20	50	
ARD	transient	battery	0	20	50	
ARD	transient		16	20	50	
ARD	transient		40	20	50	Gravimetric sampling
ARD	transient			15	50	
ARD	transient			15	25	Gravimetric
ARD	transient			15	75	sampling
ARD	transient			20	25	
ARD	transient			20	75	
ARD	transient			25	50	
ARD	transient			25	25	Gravimetric
ARD	transient			25	75	sampling
Al ₂ O ₃	stable (~666			20	50	Gravimetric
	µg/m3)			20	50	sampling
Al ₂ O ₃	stable (~1000			20	50	Gravimetric
	μg/m3)			20	50	sampling

Int. J. Environ. Res. Public Health 2019, 16, x; doi: FOR PEER REVIEW

www.mdpi.com/journal/ijerph

Al ₂ O ₃	stable (~2500			20	50	Gravimetric	
	µg/m3)			20	50	sampling	
Al ₂ O ₃	stable (~5000			20	50	Gravimetric	
	µg/m3)			20	00	sampling	
Al ₂ O ₃	transient	wired		20	50		
Al ₂ O ₃	transient	battery	0	20	50	Gravimetric sampling	
Al ₂ O ₃	transient		19	20	50		
Al ₂ O ₃	transient		41	20	50		
Al ₂ O ₃	transient			20	75		
Al ₂ O ₃	transient			15	50	Gravimetric	
Al ₂ O ₃	transient			15	75	sampling	
Al ₂ O ₃	transient			25	25		
Al ₂ O ₃	transient			25	50	Gravimetric	
Al ₂ O ₃	transient			25	75	sampling	
SiO ₂	stable (~ 2500µg/m3)			20	50	Gravimetric sampling	
SiO ₂	stable (~ 5000µg/m3)			20	50	Gravimetric sampling	
SiO ₂	transient	wired		20	50		
SiO ₂	transient	battery	0	20	50		
SiO ₂	transient		16	20	50		
SiO ₂	transient		47	20	50		
SiO ₂	transient			20	75	Gravimetric sampling	
SiO ₂	transient			15	50		
SiO ₂	transient			15	75	Gravimetric sampling	
SiO ₂	transient			25	25		
SiO ₂	transient			25	50	Gravimetric	
SiO ₂	transient			25	75	sampling	

List of experiments that were performed during the evaluation. Blank spaces represent that the variable was not of interest in that experiment. In this case, the variable was at average settings: battery powered, 20 °C and 50% RH. If one gravimetric sample was collected for multiple experiments, this is shown by a vertical line. ARD: Arizona road dust.

Monitors	No transform	log 10 (<i>x</i>)	Box Cox	Yeo- Johnson	arcsinh(x)	\sqrt{x}
Awair_omni	37.9	3.5	3.2	9.4	9.1	16.2
Airveda	14.8	2.0	1.9	4.2	4.0	6.3
AirBeam2	314.2	19.1	21.7	65.0	67.4	104.3
OPC-R1	214.0	9.7	8.7	67.3	91.7	95.5
black	52.0	7.0	7.6	15.5	15.9	32.8
white	16.5	3.4	2.7	5.8	5.5	7.9

 Table S2. Linearization of the evaluation dataset.

Values in the table represent results from the bestNormalize function, given as Pearson P statistics divided by its degrees of freedom. Smaller values indicate more normal distributions.

Supplementary figures

Figure S1. Experimental setup. Outside air is taken and filtered to remove all PM and dehumidified to removes water from the air. Next, the air is heated/cooled to the set temperature and humidified to the set relative humidity. Aerosols are added in-stream by an RBG-1000 aerosol generator and dispersed in a broad mixing inlet. Mixing plates near the chamber in- and outlet ensure a homogeneous concentration in the exposure chamber (approximately 120x80x80 cm). Particle concentration measurements are made using an APS placed directly under the chamber, as well as two gravimetric samplers. Air that is passed through the exposure chamber is filtered and released to the outside environment.

Figure S2. Between-device variation analysis. All experiments were carried out using all three materials, with transient exposure patterns, on battery power at 20°C and 50% relative humidity. Variable was analyzed as a random effect using linear mixed-effects models and compared to a baseline model containing only monitor and reference variables.

Figure S3. Within-device variation (drift) analysis. All experiments were carried out using all three materials, for all three devices, with transient exposure patterns, on battery power at 20°C and 50% relative humidity. Drift was analyzed as an additional fixed effect using simple linear regression and compared to a baseline model containing only monitor and reference variables.

Figure S4. Material variable analysis. All experiments were carried out for two devices (three in case of OPC-R1), with transient exposure patterns, on battery power at 20°C and 50% relative humidity. Variable was analyzed as a random effect using linear mixed-effects models and compared to a baseline model containing only monitor and reference variables.

Figure S5. Pattern variable analysis. All experiments were carried out for three materials, two devices (three in case of OPC-R1), on battery power at 20°C and 50% relative humidity. Variable was analyzed as a random effect using linear mixed-effects models (also containing material as a random variable) and compared to a baseline model containing only monitor, reference and material variables.

Figure S6. Power variable analysis. All experiments were carried out for three materials, two devices (three in case of OPC-R1), with transient exposure patterns, at 20°C and 50% relative humidity. Variable was analyzed as a fixed effect using linear mixed-effects models (also containing material as a random variable) and compared to a baseline model containing only monitor, reference and material variables. The OPC-R1 and iSensit 'white' did not contain batteries so the variable could not be tested.

Figure S7. Temperature variable analysis. All experiments were carried out for three materials, two devices (three in case of OPC-R1), with transient exposure patterns, on battery power at 50% relative humidity. Variable was analyzed as a fixed effect using linear mixed-effects models (also containing material as a random variable) and compared to a baseline model containing only monitor, reference and material variables.

Figure S8. Humidity variable analysis. All experiments were carried out for three materials, two devices (three in case of OPC-R1), with transient exposure patterns, on battery power at 20°C. Variable was analyzed as a fixed effect using linear mixed-effects models (also containing material as a random variable) and compared to a baseline model containing only monitor, reference and material variables.