

International Journal of Environmental Research and Public Health

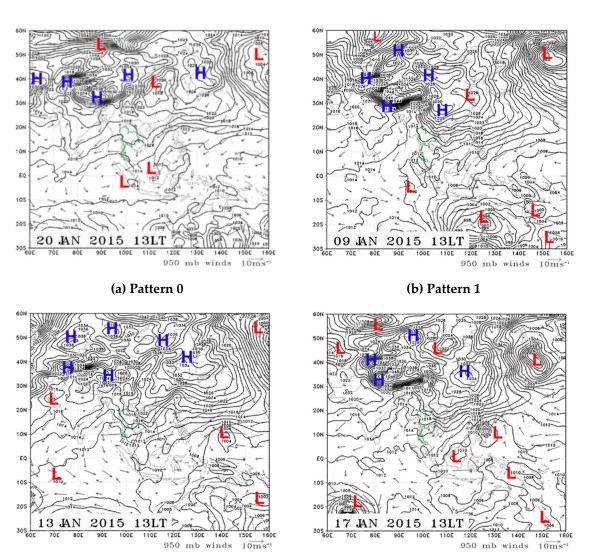


Table S1. Selected air pollution studies in Greater Bangkok.

Study	Period	Key Findings
Source apportionment by Chuersuwan et al. (2008) [1]	February 2002– January 2003	Non-season specific:
		At roadside sites, traffics and biomass burning are two main
		sources of both PM_{10} and $PM_{2.5.}$ At residential sites, same as
		the roadside sites for PM_{10} but biomass burning and as main
		sources for PM2.5.
Source apportionment by Wimolwattanapun et al. (2011) [2]	January 2003– December 2007	Non-season specific:
		Traffic emission and biomass burning are the main sources of PM _{2.5} . Dust soil and construction soil are those of coarse PM mode.
Source identification by chemical characterization of	August 2017–	
		Non-season specific: Traffic emission and biomass burning the main sources of
carbonaceous aerosols by ChooChuay et al. (2020) [3]	March 2018	PM _{2.5} .
Source apportionment by Narita et al. (2019) [4]	September 2015–March 2017	Traffic emission, biomass burning, and secondary inorganic
		aerosols are the main sources of PM _{2.5} in both dry and wet seasons.
Source identification by analysis of carbonaceous aerosols by Phairuang et al. (2019) [5]	August 2014– July 2015	Carbonaceous aerosols in ultrafine and fine particulate
		matter significantly contributed by open burning of agricultural residues within the study area and from nearby
		and remote regions, especially in the winter and the summer
		but a shift in air mass trajectories lessens the biomass
		burning contribution in the latter season.
Source identification by	2017–2019	Similar to Phairmang at al. (2010) [5] but with the notantial
analysis of carbonaceous	(not continuous,	Similar to Phairuang at al. (2019) [5] but with the potential long-range transport of smoke haze from Cambodia in the
aerosols by Dejchanchaiwong	only selected	winter.
et al. (2020) [6]	months)	
Source identification using	.	Industries, coal/fossil-fuel combustion, traffics, and sea
trace metals by	January–April 2019	spray are the main sources of dry-season PM _{2.5} . No significant contribution from biomass burning in the
Kayee et al. (2020) [7]	2019	northern region was found.
Industrial and power-plant		
emission inventory in	2004	The central and eastern regions have relatively large
Thailand by Pham et al. (2008) [8]		emissions.
PM2.5 health risk by		
Thongthammachart et al. (2020) [9]	January 2015– December 2017	Hazard quotient of PM _{2.5} becomes higher during December-February than in the other times of the year.
PM2.5 and annual mortality by	January 2012– December 2018	Using BenMap-CE, premature mortality in Bangkok is reduced by about 2.3 times if the stricter annual PM _{2.5}
		standard of the World Health Organization (WHO) are
Fold et al. (2020) [10]		applied and complied with, as opposed to the Thai annual
		standard.

Figure S1. Daily PM_{2.5} variation at the three air quality stations by year: (**a**) 2015; (**b**) 2016; (**c**) 2017. The *x*-axis labels (J, F, M, ..., N, and D) denote the months of year.

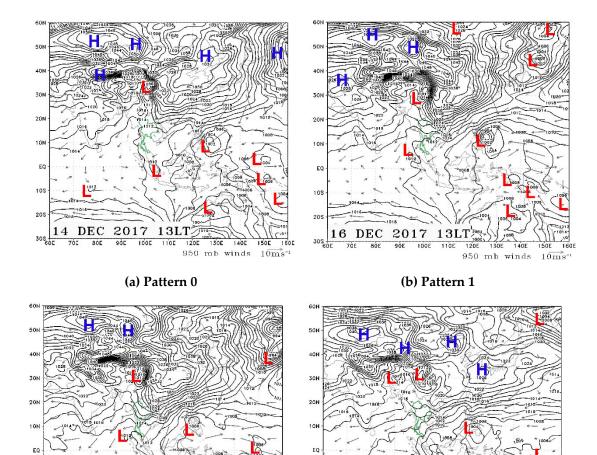
(c) Pattern 2

(d) Pattern 3

950 mb winds

 $10ms^{-1}$

Figure S2. Example surface charts in EP1 corresponding to the four synoptic patterns classified: (a) Pattern 0; (**b**) Pattern 1; (**c**) Pattern 2; (**d**) Pattern 3.


10S 20S

305 4 60E

70E 80E 90E 100E 110E

17 DEC 2017 13LT

(c) Pattern 2

Figure S3. Example surface charts in EP2 corresponding to the four synoptic patterns classified: (**a**) Pattern 0; (**b**) Pattern 1; (**c**) Pattern 2; (**d**) Pattern 3.

10ms-1

120E 130E 140E 950 mb winds 105

205

305 L

22 DEC

80E 90E 100E 110E 120E 130E 140

2017 13LT

(d) Pattern 3

950 mb winds

10ms

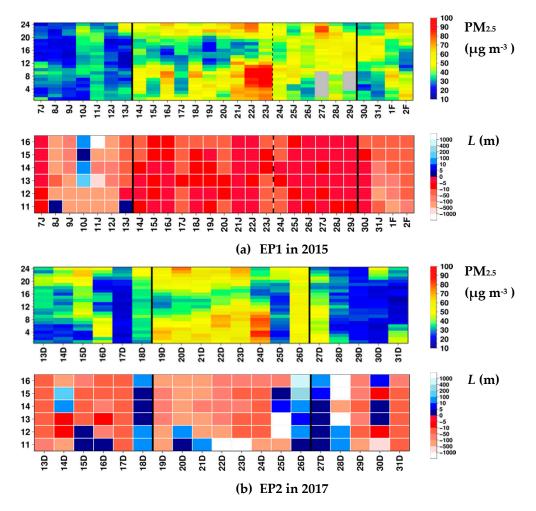
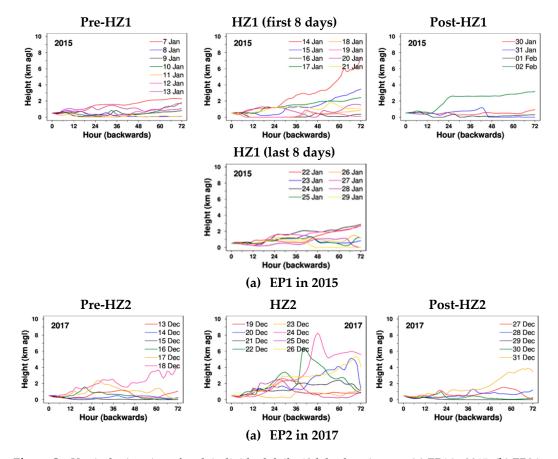



Figure S4. Diurnal variation of PM_{2.5} and Obukhov length (*L*) during: (a) EP1 in 2015; (b) EP2 in 2017.

Figure S5. Vertical migration of each individual daily 48-h back-trajectory: (**a**) EP1 in 2015; (**b**) EP2 in 2017.

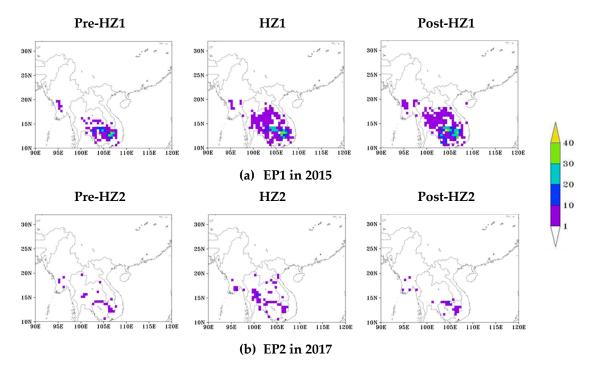


Figure S6. Average daily active fire hotspots per pixel (0.5° by 0.5°): (a) EP1 in 2015; (b). EP2 in 2017.

References

- 1. Chuersuwan, N.; Nimrat, S.; Lekphet, S.; Kerdkumrai, T. Levels and major sources of PM_{2.5} and PM₁₀ in Bangkok Metropolitan Region. *Environ. Int.* **2008**, *34*, 671–677.
- 2. Wimolwattanapun, W.; Hopke, P.K.; Pongkiatkul, P. Source apportionment and potential source locations of PM_{2.5} and PM_{2.5-10} at residential sites in metropolitan Bangkok. *Atmos. Pollut. Res.* **2011**, *2*, 172–181.
- ChooChuay, C.; Pongpiachan, S.; Tipmanee, D.; Suttinun, O.; Deelaman, W.; Wang, Q.; Xing, Li.; Li, G.; Han, Y.; Palakun, J.; Cao, J. Impacts of PM₂₅ sources on variations in particulate chemical compounds in ambient air of Bangkok, Thailand. *Atmos. Pollut. Res.* 2020, *11*, 1657–1667.
- 4. Narita, D.; Oanh, N.T.K.; Sato, K.; Huo, M.; Permadi, D.A.; Chi, N.N.H.; Ratanajaratroj, T.; Pawarmart, I. Pollution characteristics and policy actions on fine particulate matter in a growing Asian economy: The case of Bangkok Metropolitan Region. *Atmosphere* **2019**, *10*, 227.
- 5. Phairuang, W.; Suwattiga, P.; Chetiyanukornkul, T.; Hongtieab, S.; Limpaseni, W.; Ikemori, F.; Hata, M.; Furuuchi, M. The influence of the open burning of agricultural biomass and forest fires in Thailand on the carbonaceous components in size-fractionated particles. *Environ. Pollut.* **2019**, *247*, 238–247.
- Dejchanchaiwong, R.; Tekasakul, P.; Tekasakul, S.; Phairuang, W.; Nim, N.; Sresawasd, C.; Thongboon, K.; Thongyen, T.; Suwattiga, P. Impact of transport of fine and ultrafine particles from open biomass burning on air quality during 2019 Bangkok haze episode. *J. Environ. Sci. (China)* 2020, 97, 238–247.
- Kayee, J.; Sompongchaiyakul, P.; Sanwlani, N.; Bureekul, S.; Wang, X.; Das, R. Metal concentrations and source apportionment of PM_{2.5} in Chiang Rai and Bangkok, Thailand during a biomass burning season. ACS Earth Space Chem. 2020, 4, 1213–1226.
- Pham, T.B.T.; Manomaiphiboon, K.; Vongmahadlek, C. Development of an inventory and temporal allocation profiles of emissions from power plants and industrial facilities in Thailand. *Sci. Total Environ.* 2008, 397, 103–118.
- 9. Thongthammachart, T.; Jinsart, W. Estimating PM_{2.5} concentrations with statistical distribution techniques for health risk assessment in Bangkok. *Hum. Ecol. Risk Assess.* **2020**, *26*, 1848–1863.
- Fold, N.R.; Allison, M.R.; Wood, B.C.; Pham T. B. T.; Bonnet, S.; Garivait, S.; Kamens, R.; Pengjan, S. An assessment of annual mortality attributable to ambient PM_{2.5} in Bangkok, Thailand. *Int. J. Environ. Res. Public Health* 2020, *17*, 7298.