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Abstract: Background: We propose a general approach to the analysis of multivariate health outcome
data where geo-coding at different spatial scales is available. We propose multiscale joint models
which address the links between individual outcomes and also allow for correlation between areas.
The models are highly novel in that they exploit survey data to provide multiscale estimates of the
prevalences in small areas for a range of disease outcomes. Results The models incorporate both
disease specific, and common disease spatially structured components. The multiple scales envisaged
is where individual survey data is used to model regional prevalences or risks at an aggregate scale.
This approach involves the use of survey weights as predictors within our Bayesian multivariate
models. Missingness has to be addressed within these models and we use predictive inference which
exploits the correlation between diseases to provide estimates of missing prevalances. The Case
study we examine is from the National Health Survey of Chile where geocoding to Province level
is available. In that survey, diabetes, Hypertension, obesity and elevated low-density cholesterol
(LDL) are available but differential missingness requires that aggregation of estimates and also the
assumption of smoothed sampling weights at the aggregate level. Conclusions: The methodology
proposed is highly novel and flexibly handles multiple disease outcomes at individual and aggregated
levels (i.e., multiscale joint models). The missingness mechanism adopted provides realistic estimates
for inclusion in the aggregate model at Provincia level. The spatial structure of four diseases within
Provincias has marked spatial differentiation, with diabetes and hypertension strongly clustered in
central Provincias and obesity and LDL more clustered in the southern areas.

Keywords: Bayesian modeling; multivariate; multi-scale; spatial correlation; sample weights

1. Introduction

Often, health outcome data arises where measures are made on individuals who reside within
geographical regions of a country. A survey may have been carried out to obtain a ‘snapshot’ of
the health of the study region. In addition, the survey could be useful in providing insight into
prevalences of disease within aggregated regions of the study window. Recently, Vanderdijck et
al., [1] proposed an approach to the modeling of small area health survey data by utilizing the
survey weight as a predictor within a conventional generalized linear mixed model, thereby making
allowance for the survey design aspect of the study. Watjou et al. [2] extended this approach to
situations where there is non-response. Alternative approaches have been proposed whereby the
outcome itself is adjusted via sample weights [3–5]. However, assuming a conventional generalized
linear mixed model (GLMM) with an unadjusted outcome variable has a variety of advantages not
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least of which is that conventional software can be used for modeling and hence flexible extension
to models is straightforward. Multi-scale models have also been developed where models allow
borrowing of information across scales [6–9]. In the most recent examples, models at higher levels of
spatial aggregation can inherit effects from finer resolution levels, individual-level models can inherit
contextual effects from aggregate regions. In what follows, we assume individual level models for
survey participants and aggregate level models for Provincia estimation. We assume that spatial effects
can be captured using Markov Random Field (MRF) models as we have discrete spatial units [10].

The Chilean National Health Survey (CNHS) is a large population cross-sectional study
representative of the adult Chilean population, which is performed every 6 years. The main objectives
of the CNHS are to assess and monitor the prevalence of adult health problems in the general Chilean
population and to describe its variation according to sex, age, socioeconomic level, rural-urban area
and geographic region. This is to facilitate the planning and evaluation of preventive and curative
strategies. The survey provides information about a range of diseases (physical and mental health)
and risk factors. Data are collected by self-reported questionnaires, a physical examination visit
and biological samples. In the CNHS, type 2 diabetes, hypertension, obesity and high cholesterol,
amongst the major outcomes of the metabolic syndrome, are available. After 1980, with economic
development, the prevalence of obesity and other chronic diseases continued to increase in Chile.
In the period from 2003 to 2017, both type 2 diabetes and obesity prevalence showed marked increases
in the CNHS surveys.

One big challenge of the data collection of the CNHS was the particular Chilean geography with
an uneven distribution of population across the country in a central-overcrowded and in remote,
isolated and depopulated areas that were very difficult to access [11].

1.1. Objectives

Our focus is the modeling of multiple individual survey outcomes and the extension of this to a
multi-scale approach to aggregate estimation of disease prevalence or risk. By multi scale, we mean
analysis of more than one geographic resolution (scale) level. By aggregate, we mean that data are
accumulated into larger geographic regions. This multi-scale objective extends the idea of small area
estimation by jointly modeling different geo-scales at the same time adjusting for survey response
and biases.

1.2. Data Background and Availability

The aim of this study was to present a methodology that can be used in the analysis of multiple
disease outcomes and that can provide combined estimates of prevalence at various spatial scales. The
data we used are from a cross-sectional study of the 2009–2010 CNHS. The regions used in the analysis
were 52 out of 54 provinces of Chile. The population in each province varies from a few thousand to
over 4 million in the largest province Santiago. The sampling frame was constituted from the 2002
Population and Housing Census which was the most recent Census to the study period. The study
design was based on a random sample of households of complex type (stratified and multistage by
clusters) with national, regional and rural/urban representation. The target population was adults older
than or equal to 15 years. The survey had a response rate in the eligible population of 85%. Our data
consist of a total of 4780 individuals with differing patterns of missingness. The data from the survey
consist of individual clinical, demographic, and behavioral variables for survey participants. Diabetes
outcome was defined as fasting glucose ≥ 126 mg/dl or self-reported medical diagnosis (not during
pregnancy). Obesity was defined as body mass index (BMI) HTA ≥ 30 kg/m2, hypertension was defined
as systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg or self- report of arterial
hypertension (HTA) treatment. Elevated low density lipoprotein (LDL) was defined according to the
cardiovascular adult treatment panel (ATP) III Update (> 100 mg/dl (if there is already cardiovascular
disease), > 130 mg/dl (if moderate cardiovascular reactivity(CVR)) or > 160 mg/dl (if low CVR)). The
2009–010 CNHS included a total of 5293 individuals, although only 4780 participated in the two
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examinations and the laboratory test. All outcome definitions are based on the official report [12] and
data provided by the CNHS. The demographic variables included from the survey were age, gender
and their interaction. In addition, the individuals were geo-referenced to various spatial administrative
units (such as regions, provinces and communes). In the following analysis, the province level was
used throughout. The data are publicly available at http://epi.minsal.cl/bases-de-datos/.

The basic map of Chile and its provinces was taken from http://www.rulamahue.cl/. It has to be
mentioned that the map only represents 52 provinces instead of the current 54. One reason is that
Easter Island, which is counted as one province, is not on the map and was not included in the survey.
The other missing province is Marga Marga, which was created in 2009 and became operative in 2010.
Marga Marga consists of two communes of the Valparaiso province and two communes of the Quillota
province. As the survey was carried out during the creation of the new province, it was decided to use
the map that was still valid when the survey started.

Ethics approval and consent to participate: The data used in this study are public domain as
part of CNHS and the analysis does not require ethical approval as individual cases are not labelled or
referenced. Provincial level inference is made only.

2. Methods

Denote a set of surveyed individual responses as yik, i = 1, ...., m; k = 1, . . . ., K where the i th
person has kth outcome. The vector of outcomes for each person is denoted by yi. The survey consists
of m participants and the disease outcomes are defined as yik i = 1, . . . , m; m = 4780. We assume that
this binary outcome for the k th disease is Bernoulli distributed as yik ∼ Bern(pik) and we modeled the
logit of the probability of positive outcome. The logit consists of fixed and random effects to account
for both observed confounding and unobserved outcome confounding. Hence, logit(pik) = xt

iβk + zt
iγk

will be assumed where xt
iβk is a linear predictor including observed confounders, and zt

iγk is a linear
combination of random effects. As the individuals were sampled from within a population, we must
include within our specification the sampling weight used for each person. Following the proposal
in [1,2], we add the sampling weight (swi) as a fixed effect within the linear predictor.

The random effects included within the model were chosen to represent the different forms
of unobserved effects. First, we assume an individual frailty effect could be present and add an
uncorrelated disease specific individual level random effect vik. Next, we include spatial effects to
represent the area within which the individual resides (province only). Two effects are estimated for
the province level: an uncorrelated effect vp

j(i∈ j)
, where the subscript represents the j th province within

which the i th person resides, and a spatially correlated effect up
j(i∈ j)

.
The overall model used for this analysis is a Bayesian formulation and so all parameters in

the model have prior distributions, as follows: vik ∼ N(0, τ−1
vk ); vp

j ∼ N(0, τ−1
vp∗); up

j ∼ ICAR(τ−1
up ).

The ICAR distribution is a special Markov random field prior distribution which includes spatial
correlation (see, e.g., [13]; [10], ch. 5) and essentially captures the clustering tendency of the outcome
via neighborhood adjacency. Note that this is a common assumption for the analysis of discrete small
area spatial structure, rather than geostatistical models which require distance-based correlation to be
specified [10]. The uncorrelated effects have zero mean Gaussian distribution with small precisions
which should provide non-informativeness. There are 52 provinces in Chile, so that j = 1, . . . , n where
n = 52 and Table A1 provides a basic summary of the regions.

2.1. Joint Scale Models

The overall model used for this analysis is a binary logistic model at the individual level for each
of the k outcomes. A Bayesian formulation is assumed and so all parameters in the model have prior
distributions, as follows:

http://epi.minsal.cl/bases-de-datos/
http://www.rulamahue.cl/
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vik ∼ N(0, τ−1
vk ); vp

j ∼ N(0, τ−1
vp ); up

j ∼ ICAR(τ−1
up ). The ICAR distribution is a special prior

distribution with

up
jk|u

p
l, j,k ∼ N(upδ jk, τ−1

upk
/nδ j) where upδ jk =

∑
l∈δ j

up
l, j,k /nδ j

and δ j is the neighborhood set of the j th location with nδ j the number of neighbors.
(1)

This can model spatial structure (see, e.g., Besag [13]; Lawson [10], chapter 5) and essentially
assumes that neighboring areas are positively correlated. It is assumed that each outcome has a
different variance of the spatial field and hence, the precisions have a k subscript. Note that while this
ICAR formulation is dependent on neighborhood definition, it is an adaptive prior specification as
the variance depends on the number of neighbors of any given region. This allows for edge regions
to have larger variance and smaller precision. To estimate the probability of the diseases for each
province, a binomial model on aggregated province data was used as in Aregay, Lawson, Faes, Kirby,
Carroll and Watjou [8], Aregay, Lawson, Faes and Kirby [9]. The binomial model assumed here is an
approximation and we assume that the random effect structure employed makes allowance for this
misspecification. The outcome was defined as cases of each disease per province out of the number
of individuals sampled per province. The mean sampling weight per province (swp

j ), the mean age

per province (Agep
j ), the percentage of male individuals per province (Sexp

j ) and their interaction were
defined as adjusting variables. The same uncorrelated and correlated random spatial effects from the
individual model were used in the aggregated model. This was done to use the spatial information
gained from the individual analysis for the aggregated model. Hence, for the k th outcome, with age x
sex adjustment,

yik ∼ Bern(pik) individual level (2)

logit(pik) = β0k + Agei ∗ β1k + Sexi ∗ β2k + Agei ∗ Sexi ∗ β3k + fk(swi) + vik + vp
jk + up

jk (3)

yp
jk ∼ Bin

(
pp

jk, np
j

)
province level (4)

logit
(
pp

jk

)
= α0k + Agep

j ∗ α1k + Sexp
j ∗ α+ Agep

j ∗ Sexp
j ∗ α3k + fk

(
swp

j

)
+ vp

jk + up
jk (5)

where np
j is the sample size in the jth province and Np

j is the population of the province. pp
jk is the

probability of the outcome and yp
jk =

∑
i∈ j

yik where the sum is over all the individuals within the j th

province. A crude unadjusted estimate of prevalence could be computed as yp
jk/np

j .

2.2. Missingness and Imputation

All missing data were imputed within our Bayesian models: outcomes were imputed using
predictive distribution and predictors were imputed, where appropriate, from an assumed prior
distribution. Any missing predictors were given suitable prior distributions and imputed within the
Markov Chain Monte Carlo (McMC) algorithms.

Some provinces had no sampling, in which case they must have their prevalence estimated. We
did this as follows. Assume restricted prior distributions for

np
j ∼ Pois(110)I(1,) (6)

and
pp

j ∼ Beta(1, 1) (7)

and use the predictive distribution to yield

ypm
j < −bin

(
pp

j , np
j

)
. (8)
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For missing sampling weights, the following estimation for province level sampling weights was
performed. Denote the average sampling weight for a province as

swp
j =

∑
l ∈ j

swl/np
j (9)

for provinces sampled and
swp

j = sw (10)

where sw is the global mean sampling weight (for those areas sampled). Hence,

swp
j = sw + I j

(
swp

j − sw
)

(11)

I j =

{
1, non−missing

0, missing
(12)

So that the sampling weight for the missing areas is the global average.

2.3. Joint Outcome Modelling

While a multi-scale model is assumed for a given disease outcome, we also have a range of
outcomes that are a focus of this study. Outcomes related to the metabolic syndrome were considered
important to examine. These include diabetes, obesity, hypertension and elevated LDL. For each
of these, a joint multi-scale model was assumed, but to allow linkage between the outcomes at the
individual level, a joint model approach was implemented assuming that there is a shared random
effect between the k=4 outcome variables. This means that models for each outcome on the individual
data level and aggregated data level were run during the same Markov Chain Monte Carlo iterations.
The individual data level models included a common random effect vsi for each individual.

Individual Level Models (I1)

yik ∼ Bern(pik)

logit(pik) = β0k + β1kAgei + β2kSexi + β3kAgei ∗ Sexi + β4kswi + Rki j model I1
and Rki j = vik + vsik + vp

jk + up
jk

with
vi∗, vp

j∗, vsi∗, β∗ ∼ N(0, τ−1
∗ )

up
jk ∼ ICAR(τ−1

upk
).

(13)

Note that the random effects are chosen to represent our belief that individuals vary independently
but multiple measurements on an individual will have some commonality: Hence, vik + vsi is a
composite effect. We also assume that individuals inherit a contextual effect of province and so vp

jk + up
jk

are jointly modelled with the aggregate level.
Aggregate (Provincia) Level Models (A1)
At the provincial level, we approximate the model by assuming that the sampled count is

yp
jk ∼ bin(pp

jk, np
j ) ∀k

and
logit(pp

jk) =

α0k + α1kAgep
j + α2kSexp

j + α3kAgep
j ∗ Sexp

j + fk(swp
j )

+Rp
jk model A1

where Rp
jk = vp

jk + up
jk ∀k

and fk(swp
j ) = γ.swp

j

(14)
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where there are assumed to be different confounder effects for each outcome. This binomial
approximation affects the variance of the aggregate count, but the inclusion of random effects
at this level allows for the adjustment of variance. Note that there are eight models fitted jointly with
some separate and shared random effects.

2.4. Model Fitting and Goodness of fit

Model I1 and AI were fitted jointly for all disease outcomes. Posterior sampling via McMC
was chosen as the main tool for estimation. Given that missingness occurs within the outcomes and
predictors, we assumed a Bayesian paradigm and decided to use BUGS software as it allows the
imputation of missing outcomes using data augmentation, and allows prior specification for missing
predictors. All joint models were fitted using WinBUGS14 [14]. Maps of Chile were created using the
tmap package in R [15]. Two chains were run with a thinning of 50. Samples of a size of 5000 were taken
following burn-in (Lunn, et al. [16], Lunn, et al. [17]). Convergence was visually checked by means of
Gelman–Rubin–Brooks plot (Brooks and Gelman [18]), the potential scale reduction factor R̂ (Gelman
and Rubin [19]), sample trace and density plots, sample autocorrelations and Markov Chain Monte
Carlo error (Lawson, et al. [20]). Convergence can be assumed if R̂ is close to 1. Model fit was visually
checked by means of trace plots of the deviance (Spiegelhalter, et al. [21]), mapping the correlated
heterogeneity, up, and uncorrelated heterogeneity, vp. The map of the correlated heterogeneity shows a
clustered pattern and the map of uncorrelated heterogeneity shows a random pattern, if an adequate
model fit is found.

As is common in other cross-sectional studies the missingness in this study did not display any
particular structure and was assumed to be essentially at random (MAR). This form of missingness is
handled optimally using predictive inference within the Bayesian modeling framework.

2.5. Posterior Risk Exceedance

As an additional diagnostic to help with the delineation of areas of exceptionally high risk, we
employed exceedance probability criteria (Lawson [22]). An exceedance probability can be computed
from posterior sampled output from a Bayesian model (see, e.g., Lawson and Rotejanaprasert [23]).
The exceedance probability is defined as the probability that the estimated posterior value, in this case
prevalence, for each sample, was greater than a chosen threshold.

P
(
pkj > c

)
=

1
G

G∑
g=1

I(pkj > c) (15)

I =
{

1, pkj > c
0, otherwise

(16)

where G is the total number of samples, p is the estimated probability of sample g and c is the chosen
threshold. Whenever p exceeds the threshold c, it is recorded as 1, 0 otherwise. Averaged over the
sample, this yields an estimate of the upper tail marginal probability of the parameter. This can be
used to detect unusually high values and for hot spot clustering by looking for groups of unusually
high areas in mapped output (Richardson, et al. [24]).

For diabetes, a threshold of 9.4%, for obesity of 25.1%, for hypertension of 26.9% and for elevated
LDL a threshold of 22.7% was chosen based on the estimated national prevalence in the CNHS report
(http://www.minsal.cl/estudios_encuestas_salud/). Exceedance results are reported in Tables A1–A4.

2.6. Descriptive Statistics

The mean age of the study population was 46.3 with no significant difference in age between
males (45.7) and females (46.7). More females (59.9%), than males (40.1%) participated in the study
(p-value < 0.001). Females showed a significantly higher BMI than males (28.1 vs. 27.4; p-value < 0.001).

http://www.minsal.cl/estudios_encuestas_salud/
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Women had a higher, but not significant, diabetes rate (10.7% vs. 10.4%; p-value = 0.8331), a significantly
higher obesity rate (32.9% vs. 23.4%; p-value < 0.001), a lower hypertension rate (34.3% vs. 37.2%;
p-value = 0.03895) and a lower significant elevated LDL rate (24.5% vs. 34.6%; p-value = < 0.001)
than men.

Table 1 gives some information concerning which region each province belongs to, square km,
Inhabitants per square km, gross domestic product (GDP) per capita and the number of sampled
individuals per province. Tables A1–A3 show estimates of posterior probabilities, their standard
deviations (SD), median, 2.5% and 97.5% percentiles of the 95% credible interval, and the probability
of exceeding the chosen threshold for each province and each outcome. In Figures 1–4, posterior
estimates of a range of quantities for the fitted spatial models for diabetes, hypertension, obesity and
elevated LDL are found.
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Table 1. Characteristics of provinces and regions in Chile (a Data obtained from Clark-Núñez X.
Compendio estadístico. Instituto Nacional de Estadísticas Chile, 2017).

Regions Area (km2) a Inhabitants/km2 a GDP/Capita USD a Provinces (Number) Sampled

North
Arica y

Parinacota 16,873 14.6 9848 Parinacota (1) 0

Arica (2) 311
Tarapacá 42,226 8.4 27,604 Iquique (3) 289

Tamarugal (4) 24
Antofagasta 126,049 5.1 63,402 Tocopilla (5) 34

El Loa (6) 88
Antofagasta (7) 183

Atacama 75,176 4.3 27,882 Chañaral (8) 0
Copiapó (9) 226
Huasco (10) 81

Coquimbo 40,580 19.6 14,800 Elqui (11) 185
Limarí (12) 72
Choapa (13) 49

Center
Valparaíso 16,396 113.4 17,009 San Antonio (14) 34

Petorca (15) 17
Valparaíso (16) 187

Quillota (17) 48
Los Andes (18) 25

San Felipe de Aconcagua (19) 34
Metropolitana 15,403 485.8 24,224 Chacabuco (20) 13

Santiago (21) 728
Melipilla (22) 26
Talagante (23) 18

Maipo (24) 49
Cordillera (25) 77

O’Higgins 16,387 57 17,985 Cardenal Caro (26) 0
Cachapoal (27) 211
Colchagua (28) 102

Maule 30,296 34.9 10,620 Cauquenes (29) 19
Curicó (30) 85
Linares (31) 108

Talca (32) 139
Biobío 37,069 57.8 12,582 Arauco (33) 51

Concepción (34) 134
Ñuble (35) 57
Biobío (36) 49

South
Araucanía 31,842 31.5 8,376 Malleco (37) 67

Cautín (38) 261
Los Ríos 18,430 22.3 11,711 Ranco (39) 71

Valdivia (40) 228
Los Lagos 48,584 17.6 13,335 Chiloé (41) 74

Llanquihue (42) 151
Palena (43) 0
Osorno (44) 92

Far South
Aysén 108,494 1 19,851 Coyhaique (45) 185

General Carrera (46) 98
Aysén (47) 0

Capitan Prat (48) 0
Magallanes 1,382,291 0.1 18,447 Antártica Chilena (49) 0

Última Esperanza (50) 56
Magallanes (51) 243

Tierra del Fuego (52) 14

3. Results of the Joint Modeling

For Diabetes (Table A1), Cauquenes (29) had the highest posterior probability of diabetes, with
16.27%. Provinces with a 95% or higher probability of exceeding the threshold of 9.4% of diabetes
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were Limari (12), San Felipe de Aconcagua (19), Melipilla (22), Colchagua (28), Cauquenes (29), Curicó
(30), Concepción (34) and Cautín (38). Those diabetes hotspots are all located in the central part of
Chile. Table A2 provides the results for the analysis of obesity. The highest posterior probability of
obesity was estimated in Antártica Chilena (49) with 40.60%, but it did not appear to be significantly
higher than the chosen threshold of 25.1% and the estimate actually mainly depends on spatial prior
distributions as no samples were taken in Antártica Chilena (49) itself. The highest posterior probability
was for Magallanes (51) with 38.52%. Obesity hotspots are mostly found in the central to southern
part of Chile. In Table A2, posterior probabilities of hypertension per province are listed. The highest
probability of hypertension was found in Cauquenes (29) with 57.14%. Hypertension hotspots are
mostly found in the central to southern part of Chile. Table A4 demonstrates that the highest probability
of elevated LDL level was estimated in Ultima Esperanza (50) with 41.79%, though estimation relies
on assumed prior distributions as no samples were observed in this province itself. The highest
exceedance probability was for Copiaco (9), 37.15%, Cautin (38) 40.06%, and Chiloe (41) 40.28% which
all have a 100% exceedance of the national rate.

Overall, it would appear that diabetes and hypertension display a similar distribution in that there
are concentrations of both in central metropolitan areas and also in Southern Chile. Obesity, on the
other hand, is less marked in central area but shows elevation on the south also. Cholesterol (elevated
LDL) demonstrates a similar pattern to obesity in terms of the north–south gradient, but displays less
prevalence in central areas and is overall less clustered.

In the joint analyses reported here, it is clear that diabetes and hypertension display a similar
spatial distribution of risk in that central and southern areas are the most affected and exceedance
probabilities > 0.95 are commonly found. In contrast, elevated LDL and obesity are more marked
in the southern parts of the country and show fewer examples of exceedance than for diabetes or
hypertension. This suggests a more uniform pattern of risk for elevated LDL over the country than for
the other outcomes.

Figures 1–4 display the multi-scale model heterogeneity effects for each outcome.
It is notable that for all the outcomes the uncorrelated effects are relatively random, whereas the

correlated effects display distinct clustering. For diabetes, the clustering is marked in the northern
regions, whereas the clustering is marked in the south for obesity. Hypertension displays a clustering
in the central regions whereas elevated LDL shows clustering in the most southerly areas of the
Magallanes region, with lower central area effects.

Linear Model Parameter Estimates

Table 2 displays the posterior mean estimates for the predictors included in each of the individual
and aggregate models for the four outcomes. Some general features of the analysis should be
highlighted. First, in the aggregate models, only the intercept and spatial random effects were well
estimated. The aggregate survey weights were not well estimated for any outcome, and neither were
the age and gender predictors. For the individual level outcomes, different effects emerged. In all the
outcomes, the sampling weight was not found to be well estimated. The intercept was well estimated,
as was age for all outcomes. Age was found to be positively related to diabetes, obesity, cholesterol
and hypertension. Differences arise in the effect of gender and the age x gender interaction. While
gender and the age x gender interaction were not well estimated for diabetes, there is a well estimated
negative effect of gender (male) on obesity, and a positive effect for cholesterol and hypertension.
In addition, while most age x gender interactions were not well estimated, it was found well estimated
for hypertension.
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Table 2. Posterior mean estimates for regression parameters in the joint model for diabetes, obesity,
cholesterol (elevated LDL), and hypertension for both individual and aggregate level models.

Disease
Outcome Model Parameters Mean SD 2.50% 97.50%

Diabetes

Individual
level model

Intercept −4.088 0.508 −5.242 −3.222
Survey weight 0.000 0.000 0.000 0.000

Age 0.081 0.011 0.063 0.105
Sex male −0.027 0.149 −0.348 0.266

Age * Sex male 0.006 0.009 −0.010 0.023

Aggregated
model (per
province)

Intercept −2.365 0.336 −3.063 −1.722
Mean Survey weight 0.000 0.000 0.000 0.000

Mean Age 0.097 0.098 −0.077 0.303
Proportion Male 0.375 0.791 −1.161 2.051

Mean age * proportion male −0.112 0.231 −0.599 0.304

Obesity

Individual
level model

Intercept −1.182 0.174 −1.557 −0.894
Survey weight 0.000 0.000 0.000 0.000

Age 0.029 0.005 0.020 0.041
Sex male −0.793 0.148 −1.111 −0.536

Age * Sex male −0.005 0.006 −0.018 0.006

Aggregated
model (per
province)

Intercept −0.826 0.281 −1.364 −0.224
Mean Survey weight 0.000 0.000 0.000 0.000

Mean Age −0.008 0.068 −0.148 0.129
Proportion Male −0.142 0.665 −1.567 1.142

Mean age * proportion male 0.011 0.159 -0.310 0.345

Cholesterol

Individual
level model

Intercept −2.410 0.330 −3.145 −1.839
Survey weight 0.000 0.000 0.000 0.000

Age 0.102 0.014 0.078 0.134
Sex male 1.118 0.227 0.709 1.608

Age * Sex male −0.005 0.010 −0.025 0.013

Aggregated
model (per
province)

Intercept −0.895 0.340 −1.586 −0.204
Mean Survey weight 0.000 0.000 0.000 0.000

Mean Age 0.063 0.090 −0.109 0.261
Proportion Male 0.144 0.812 −1.517 1.813

Mean age * proportion male −0.043 0.213 −0.511 0.363

Hypertension

Individual
level model

Intercept −1.542 0.137 −1.848 −1.313
Survey weight 0.000 0.000 0.000 0.000

Age 0.142 0.010 0.127 0.168
Sex male 0.501 0.118 0.274 0.734

Age * Sex male −0.022 0.007 −0.037 −0.008

Aggregated
model (per
province)

Intercept −0.890 0.253 −1.396 −0.424
Mean Survey weight 0.000 0.000 0.000 0.000

Mean Age 0.052 0.063 −0.071 0.183
Proportion Male 0.742 0.612 −0.345 1.982

Mean age * proportion male 0.044 0.149 −0.268 0.339

* Interaction.

Although hypertension tends to display similar spatial patterning to diabetes, there are marked
differences in the individual predictors associated with each outcome. Hypertension has a gender and
age x gender association that is not seen in diabetes.

4. Discussion

There are some notable correlations and disparities between the distributions of diabetes,
hypertension, obesity and elevated LDL. Both diabetes and hypertension have marked prevalences
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in the central provinces, including the metropolitan areas around Santiago. Note that while marked
differences arise between outcomes, at the individual level, we have included a person-specific and
outcome-specific individual effect. This leaves some allowance for correlation between outcomes in
the individual. At the province level, we did not include shared province effects, but individuals had
multi-scale sharing of province effects. The regression parameter posterior estimates demonstrate
that while similar spatial patterning can arise, there are also differences at the individual level that
can be marked. The central regions elevation of diabetes and hypertension could be explained by
the urbanicity of the areas around Santiago and the associated lifestyle trends. The concentration of
obesity and elevated LDL in the southern regions may reflect differentials with northern comparison
regions and in particular dietary practices.

In this example, the sampling weight appears to have little impact on any outcome whether at
individual or aggregate level. That said, it is important to include the sampling weight as it represents
factors affecting the inclusion of participants in the survey.

5. Conclusions

The joint analysis of these four metabolic outcomes demonstrates the benefit of considering the
correlation between outcomes at the individual level. It also demonstrates the benefit of a multi-scale
analysis in that individual outcomes can be modelled contextually within provinces and they can
inherit the grouping effect of the province. In addition, the inclusion of survey weights at different
levels is an important feature that allows the analysis to proceed, taking into consideration sampling
effects. The joint analysis allowed the estimation of prevalences at the aggregate level while also
providing contextual effects for the individuals. We did not assume here that the province level
outcomes should share effects but in future work, we could explore sharing further especially for
diabetes and hypertension (e.g., shared spatial effects), which appear to have similar patterning.
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Appendix A

Table A1. Diabetes.

Region Nr Province Mean Sd 2.50% 97.50% >= 9.4%

Arica y
Parinacota

1 Parinacota 13.12% 6.36% 4.67% 29.04% 74.09%
2 Arica 10.91% 1.33% 8.42% 13.65% 87.87%

Tarapaca 3 Iquique 11.23% 1.37% 8.78% 14.14% 91.99%
4 Tamarugal 12.17% 2.53% 8.24% 18.18% 90.05%

Antofagasta
5 Tocopilla 10.36% 1.95% 7.04% 14.92% 67.75%
6 El Loa 9.03% 1.77% 5.98% 12.97% 38.03%
7 Antofagasta 10.56% 1.48% 7.98% 13.82% 77.99%

Atacama
8 Chanaral 12.72% 6.13% 4.39% 28.23% 72.01%
9 Copiapo 10.33% 1.42% 7.61% 13.22% 74.90%
10 Huasco 11.90% 1.96% 8.20% 16.08% 90.33%

Coquimbo
11 Elqui 10.51% 1.49% 8.00% 13.87% 76.80%
12 Limari 12.81% 2.14% 9.26% 17.70% 97.02%
13 Choapa 9.70% 1.78% 6.11% 13.20% 57.78%

Valparaiso

14 San Antonio 9.37% 2.09% 5.59% 13.89% 47.25%
15 Petorca 13.02% 3.01% 8.29% 20.00% 92.05%
16 Valparaiso 11.53% 1.51% 8.64% 14.54% 92.25%
17 Quillota 12.39% 1.99% 8.74% 16.75% 94.13%
18 Los Andes 10.97% 2.13% 7.42% 15.88% 78.08%
19 San Felipe de Aconcagua 15.45% 3.35% 10.61% 23.80% 99.63%

Metropolitana

20 Chacabuco 6.23% 1.94% 3.02% 10.53% 6.24%
21 Santiago 9.87% 0.96% 8.08% 11.79% 68.00%
22 Melipilla 14.23% 3.19% 9.28% 21.94% 97.19%
23 Talagante 11.19% 5.14% 3.85% 23.94% 57.26%
24 Maipo 10.19% 1.83% 6.79% 14.12% 66.56%
25 Cordillera 8.73% 1.61% 5.81% 12.23% 31.43%

O’Higgins
26 Cardenal Caro 11.54% 5.79% 4.14% 25.96% 62.77%
27 Cachapoal 10.64% 1.34% 8.05% 13.28% 81.97%
28 Colchagua 12.96% 2.15% 9.01% 17.50% 95.99%

Maule

29 Cauquenes 16.27% 3.73% 9.83% 24.52% 98.30%
30 Curico 13.72% 2.27% 10.18% 18.95% 99.31%
31 Linares 9.80% 1.53% 7.10% 13.16% 58.38%
32 Talca 7.79% 1.35% 5.16% 10.51% 11.15%

Biobio

33 Arauco 11.94% 2.07% 8.55% 16.68% 92.13%
34 Concepcion 13.03% 2.19% 9.56% 18.02% 98.15%
35 Nuble 8.67% 1.93% 5.04% 12.58% 34.00%
36 Biobio 10.97% 2.01% 6.94% 14.96% 78.73%

Araucania
37 Malleco 12.32% 2.70% 7.52% 18.01% 86.75%
38 Cautin 12.10% 1.46% 9.61% 15.30% 98.49%

Rios
39 Ranco 11.17% 1.78% 7.93% 15.09% 85.17%
40 Valdivia 10.78% 1.41% 8.19% 13.83% 83.66%

Lagos

41 Chiloe 9.87% 1.64% 6.50% 13.04% 63.11%
42 Llanquihue 10.84% 1.66% 7.77% 14.39% 81.12%
43 Palena 10.32% 5.19% 3.60% 22.95% 50.33%
44 Osorno 10.30% 1.67% 7.16% 13.85% 70.61%

Aysen

45 Coyhaique 7.89% 1.40% 5.30% 10.79% 13.88%
46 General Carrera 5.84% 1.70% 3.02% 9.65% 3.24%
47 Aisen 10.20% 5.04% 3.50% 22.88% 49.23%
48 Capitan Prat 10.24% 5.30% 3.49% 23.05% 48.79%

Magallanes

49 Antartica Chilena 11.53% 10.18% 0.79% 38.62% 46.47%
50 Ultima Esperanza 10.37% 2.18% 6.46% 14.92% 66.17%
51 Magallanes 10.14% 1.45% 7.49% 13.20% 68.81%
52 Tierra del Fuego 10.02% 7.59% 0.93% 30.10% 43.23%
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Table A2. Obesity.

Region Nr Province Mean Sd 2.50% 97.5% >= 25.1%

Arica y
Parinacota

1 Parinacota 26.78% 8.04% 12.72% 44.93% 55.31%
2 Arica 27.56% 2.21% 23.31% 32.03% 86.87%

Tarapaca 3 Iquique 20.13% 2.10% 16.15% 24.31% 1.10%
4 Tamarugal 25.16% 4.51% 17.05% 34.94% 48.28%

Antofagasta
5 Tocopilla 29.75% 4.57% 21.69% 39.63% 85.25%
6 El Loa 26.58% 3.60% 19.96% 33.88% 64.71%
7 Antofagasta 29.27% 2.67% 24.19% 34.61% 94.48%

Atacama
8 Chanaral 28.05% 8.11% 13.66% 45.79% 62.97%
9 Copiapo 31.07% 2.59% 26.04% 36.32% 99.06%
10 Huasco 25.55% 3.48% 19.02% 32.66% 53.45%

Coquimbo
11 Elqui 31.02% 2.83% 25.63% 36.85% 98.51%
12 Limari 19.42% 3.29% 13.28% 26.08% 4.38%
13 Choapa 21.32% 3.72% 14.27% 28.89% 15.34%

Valparaiso

14 San Antonio 25.54% 4.50% 17.32% 35.01% 51.71%
15 Petorca 25.98% 5.24% 16.52% 36.87% 54.40%
16 Valparaiso 24.07% 2.47% 19.36% 29.06% 32.85%
17 Quillota 28.66% 4.16% 21.21% 37.69% 80.42%
18 Los Andes 25.62% 4.40% 17.56% 35.02% 52.64%
19 San Felipe de Aconcagua 31.03% 5.26% 21.90% 42.40% 87.65%

Metropolitana

20 Chacabuco 31.00% 6.38% 19.88% 44.79% 82.27%
21 Santiago 23.76% 1.50% 20.91% 26.74% 18.82%
22 Melipilla 25.59% 4.65% 17.09% 35.46% 52.14%
23 Talagante 28.56% 7.58% 15.11% 44.83% 65.43%
24 Maipo 31.41% 4.72% 23.19% 41.38% 92.34%
25 Cordillera 25.57% 3.46% 19.09% 32.72% 54.29%

O’Higgins
26 Cardenal Caro 26.95% 7.71% 12.97% 44.19% 57.30%
27 Cachapoal 25.51% 2.34% 21.08% 30.35% 55.86%
28 Colchagua 20.36% 3.04% 14.65% 26.59% 6.44%

Maule

29 Cauquenes 27.40% 5.54% 17.43% 38.99% 64.62%
30 Curico 28.48% 3.60% 21.76% 35.87% 82.54%
31 Linares 35.18% 3.67% 28.25% 42.72% 99.86%
32 Talca 29.70% 3.14% 23.79% 36.13% 93.31%

Biobio

33 Arauco 36.04% 4.40% 27.91% 45.27% 99.70%
34 Concepcion 28.41% 3.18% 22.42% 34.85% 85.14%
35 Nuble 27.06% 4.38% 18.77% 35.99% 66.45%
36 Biobio 38.28% 4.88% 29.40% 48.44% 99.83%

Araucania
37 Malleco 32.71% 4.50% 24.41% 41.91% 96.12%
38 Cautin 36.05% 2.52% 31.22% 40.95% 100.0%

Rios
39 Ranco 33.18% 3.94% 25.66% 41.02% 98.29%
40 Valdivia 36.70% 2.77% 31.39% 42.25% 100.0%

Lagos

41 Chiloe 31.38% 3.60% 24.77% 38.92% 96.85%
42 Llanquihue 29.43% 3.10% 23.42% 35.65% 92.21%
43 Palena 34.23% 8.99% 17.55% 53.47% 86.27%
44 Osorno 37.03% 3.82% 29.84% 44.70% 99.96%

Aysen

45 Coyhaique 32.59% 2.98% 26.81% 38.54% 99.61%
46 General Carrera 37.74% 4.47% 29.34% 46.83% 99.87%
47 Aisen 35.06% 9.11% 17.98% 54.83% 88.13%
48 Capitan Prat 35.46% 9.02% 18.53% 54.36% 88.76%

Magallanes

49 Antartica Chilena 40.60% 16.12% 12.75% 74.23% 81.67%
50 Ultima Esperanza 36.02% 4.80% 26.72% 45.82% 99.06%
51 Magallanes 38.52% 2.66% 33.37% 43.79% 100.0%
52 Tierra del Fuego 39.59% 12.42% 17.18% 64.96% 87.56%
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Table A3. Hypertension.

Region Nr Province Mean Sd 2.50% 97.5% >= 6.9%

Arica y
Parinacota

1 Parinacota 30.98% 10.7% 14.0% 56.98% 60.55%
2 Arica 26.29% 2.07% 22.2% 30.28% 37.92%

Tarapaca 3 Iquique 28.26% 2.07% 24.3% 32.43% 74.40%
4 Tamarugal 28.99% 3.56% 22.7% 36.87% 71.65%

Antofagasta
5 Tocopilla 27.65% 3.22% 22.1% 34.94% 55.83%
6 El Loa 21.82% 2.70% 16.8% 27.56% 4.16%
7 Antofagasta 27.59% 2.30% 23.3% 32.35% 60.34%

Atacama
8 Chanaral 33.29% 10.6% 16.1% 57.77% 71.07%
9 Copiapo 31.35% 2.40% 26.7% 36.16% 96.99%
10 Huasco 37.98% 3.34% 31.4% 44.58% 99.99%

Coquimbo
11 Elqui 32.75% 2.57% 27.9% 38.02% 99.27%
12 Limari 39.20% 3.38% 32.6% 45.94% 100.0%
13 Choapa 34.48% 3.50% 27.3% 41.25% 98.05%

Valparaiso

14 San Antonio 32.69% 3.89% 25.1% 40.47% 93.46%
15 Petorca 43.10% 4.78% 34.1% 53.06% 99.99%
16 Valparaiso 43.42% 2.59% 38.4% 48.70% 100.0%
17 Quillota 44.17% 3.43% 37.2% 50.79% 100.0%
18 Los Andes 34.27% 3.60% 26.8% 41.02% 97.45%
19 San Felipe de Aconcagua 49.71% 4.01% 42.3% 58.24% 100.0%

Metropolitana

20 Chacabuco 19.94% 3.75% 13.4% 28.16% 4.25%
21 Santiago 32.11% 1.63% 28.9% 35.36% 99.96%
22 Melipilla 44.93% 4.53% 36.6% 54.68% 100.0%
23 Talagante 24.46% 6.65% 13.2% 39.20% 32.86%
24 Maipo 35.08% 3.28% 29.0% 42.06% 99.65%
25 Cordillera 28.95% 2.90% 23.4% 34.86% 76.37%

O’Higgins
26 Cardenal Caro 40.45% 11.4% 21.1% 66.95% 90.67%
27 Cachapoal 42.41% 2.37% 37.9% 47.25% 100.0%
28 Colchagua 54.27% 3.40% 47.6% 60.89% 100.0%

Maule

29 Cauquenes 57.14% 5.03% 46.6% 66.67% 100.0%
30 Curico 43.80% 3.21% 37.2% 49.89% 100.0%
31 Linares 35.05% 2.95% 29.1% 40.84% 99.65%
32 Talca 33.00% 2.79% 27.7% 38.66% 98.82%

Biobio

33 Arauco 42.95% 3.49% 36.3% 49.99% 100.0%
34 Concepcion 39.90% 2.91% 34.3% 45.73% 100.0%
35 Nuble 31.93% 3.45% 25.4% 38.97% 93.32%
36 Biobio 45.97% 3.84% 39.1% 54.16% 100.0%

Araucania
37 Malleco 55.48% 4.28% 46.9% 63.95% 100.0%
38 Cautin 41.86% 2.30% 37.4% 46.44% 100.0%

Rios
39 Ranco 43.22% 3.35% 36.9% 50.03% 100.0%
40 Valdivia 36.74% 2.57% 31.7% 41.80% 99.99%

Lagos

41 Chiloe 37.79% 3.07% 32.5% 44.80% 100.0%
42 Llanquihue 40.20% 2.95% 34.4% 46.03% 100.0%
43 Palena 37.63% 10.9% 18.8% 62.70% 85.39%
44 Osorno 41.31% 3.20% 34.9% 47.55% 100.0%

Aysen

45 Coyhaique 35.13% 2.75% 29.9% 40.73% 99.94%
46 General Carrera 25.98% 3.66% 19.2% 33.50% 38.48%
47 Aisen 37.11% 11.0% 18.6% 62.63% 83.58%
48 Capitan Prat 36.50% 11.0% 17.9% 61.74% 81.35%

Magallanes

49 Antartica Chilena 21.46% 13.1% 3.92% 53.47% 28.10%
50 Ultima Esperanza 44.71% 4.14% 36.7% 53.02% 100.0%
51 Magallanes 34.74% 2.53% 29.8% 39.73% 99.94%
52 Tierra del Fuego 17.54% 9.04% 4.24% 39.02% 15.05%
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Table A4. Elevated LDL.

Region Nr Province Mean Sd 2.50% 97.50% >= 22.7%

Arica y
Parinacota

1 Parinacota 31.28% 11.00% 13.0% 57.03% 79.12%
2 Arica 26.55% 2.95% 20.9% 32.58% 90.67%

Tarapaca 3 Iquique 32.05% 3.08% 26.1% 38.25% 99.94%
4 Tamarugal 32.24% 6.37% 20.6% 45.62% 94.34%

Antofagasta
5 Tocopilla 35.08% 6.60% 23.9% 50.18% 98.60%
6 El Loa 28.04% 5.06% 18.9% 38.90% 85.45%
7 Antofagasta 25.39% 3.32% 19.0% 31.97% 78.74%

Atacama
8 Chanaral 31.46% 10.89% 13.1% 56.28% 79.48%
9 Copiapo 37.15% 3.73% 30.1% 44.60% 100.00%
10 Huasco 32.22% 4.73% 23.2% 41.95% 98.29%

Coquimbo
11 Elqui 23.41% 3.46% 16.9% 30.50% 57.46%
12 Limari 31.65% 5.11% 22.1% 42.35% 96.66%
13 Choapa 24.43% 4.70% 15.7% 33.96% 63.39%

Valparaiso

14 San Antonio 27.66% 6.25% 17.0% 41.47% 78.12%
15 Petorca 29.60% 6.42% 18.4% 43.65% 86.55%
16 Valparaiso 32.69% 4.26% 24.8% 41.49% 99.49%
17 Quillota 27.66% 5.62% 17.1% 39.04% 81.23%
18 Los Andes 24.60% 5.60% 14.4% 36.82% 61.88%
19 San Felipe de Aconcagua 28.63% 5.91% 17.4% 40.53% 84.15%

Metropolitana

20 Chacabuco 18.36% 6.19% 8.67% 32.94% 21.41%
21 Santiago 21.62% 1.92% 18.0% 25.52% 28.35%
22 Melipilla 22.94% 5.86% 12.1% 35.33% 49.74%
23 Talagante 17.94% 7.82% 6.16% 36.79% 23.61%
24 Maipo 21.72% 4.56% 13.5% 31.52% 38.96%
25 Cordillera 17.19% 3.93% 10.1% 25.48% 8.82%

O’Higgins
26 Cardenal Caro 27.64% 10.16% 11.1% 51.62% 67.34%
27 Cachapoal 27.54% 3.51% 20.9% 34.74% 91.92%
28 Colchagua 28.15% 4.70% 19.2% 37.80% 87.74%

Maule

29 Cauquenes 38.11% 7.30% 24.3% 53.16% 98.61%
30 Curico 28.09% 4.27% 20.0% 36.80% 90.05%
31 Linares 23.97% 3.90% 16.6% 31.96% 62.41%
32 Talca 23.57% 3.28% 17.5% 30.35% 59.41%

Biobio

33 Arauco 29.18% 4.61% 20.5% 38.68% 92.55%
34 Concepcion 28.95% 4.01% 21.5% 37.29% 94.71%
35 Nuble 18.49% 4.61% 10.2% 28.28% 17.57%
36 Biobio 33.47% 5.73% 23.3% 45.66% 98.26%

Araucania
37 Malleco 37.51% 5.83% 26.5% 49.18% 99.74%
38 Cautin 40.06% 3.78% 32.8% 47.69% 100.00%

Rios
39 Ranco 32.08% 4.64% 23.3% 41.45% 98.33%
40 Valdivia 26.19% 3.29% 20.0% 32.74% 85.61%

Lagos

41 Chiloe 40.28% 5.84% 29.8% 52.48% 100.00%
42 Llanquihue 32.40% 3.76% 25.3% 39.86% 99.63%
43 Palena 31.80% 10.87% 13.3% 56.29% 80.81%
44 Osorno 30.01% 4.40% 21.6% 39.08% 95.58%

Aysen

45 Coyhaique 32.14% 4.34% 24.0% 41.11% 98.94%
46 General Carrera 27.71% 4.70% 19.1% 37.26% 85.61%
47 Aisen 32.16% 11.16% 13.3% 58.58% 81.17%
48 Capitan Prat 32.20% 11.28% 13.3% 58.78% 81.19%

Magallanes

49 Antartica Chilena 37.17% 18.31% 7.79% 76.28% 75.29%
50 Ultima Esperanza 41.79% 6.27% 30.2% 54.65% 99.96%
51 Magallanes 31.45% 3.41% 24.9% 38.19% 99.74%
52 Tierra del Fuego 34.33% 13.49% 11.5% 62.79% 78.95%
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