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Abstract: Crops under various types of stresses, such as stress caused by heavy metals, drought and
pest/disease exhibit similar changes in physiological-biochemical parameters (e.g., leaf area index
[LAI] and chlorophyll). Thus, differentiating between heavy metal stress and nonheavy metal stress
presents a great challenge. However, different stressors in crops do cause variations in spatiotemporal
characteristics. This study aims to develop a spatiotemporal index based on LAI time series to identify
heavy metal stress under complex stressors on a regional scale. The experimental area is located
in Zhuzhou City, Hunan Province. The situ measured data and Sentinel-2A images from 2017 and
2018 were collected. First, a series of LAI in rice growth stages was simulated based on the WOrld
FOod STudies (WOFOST) model incorporated with Sentinel 2 images. Second, the local Moran’s I
and dynamic time warping (DTW) of LAI were calculated. Third, a stress index based on spatial and
temporal features (SIST) was established to assess heavy metal stress levels according to the spatial
autocorrelation and temporal dissimilarity of LAI. Results revealed the following: (1) The DTW of
LAI is a good indicator for distinguishing stress levels. Specifically, rice subjected to high stress levels
exhibits high DTW values. (2) Rice under heavy metal stress is well correlated with high-high SIST
clusters. (3) Rice plants subjected to high pollution are observed in the northwest of the study regions
and rice under low heavy metal stress is found in the south. The results suggest that SIST based on a
sensitive indicator of rice biochemical impairment can be used to accurately detect regional heavy
metal stress in rice. Combining spatial-temporal features and spectral information appears to be a
highly promising method for discriminating heavy metal stress from complex stressors.

Keywords: heavy metal stress; rice growth; dynamic time warping; Moran’s I

1. Introduction

Heavy metals, such as Cadmium (Cd), in paddy rice fields can efficiently accumulate in rice grain,
straws, and roots [1] due to their high ingestion rate [2], disturb various physiological processes [3],
and ultimately have adverse effects on human health [4]. Although field surveys can accurately
detect heavy metal concentrations in paddy fields [5], they are often time consuming and expensive
and do not facilitate mapping the extent of heavy metal contamination for lager regions. Remote
sensing techniques enable the examination of the influence of heavy metal contamination on rice at a
large scale.

Researchers have attempted to measure heavy metal stress levels by using physiological and
spectral features, because heavy metal contaminants have direct or indirect influences on physiological
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parameters such as leaf area, dry weight, photosynthetic efficiency, and transpiration rate; these
influences, in turn affect several spectral values in remote sensing images. Indices based on
hyperspectral [6] or multispectral [7] images reflecting stress levels in rice, canopy–air temperature
difference [8], crop growth models, like the WOrld FOod STudies (WOFOST) model [9], and the
components of time series decomposition [10] have been proposed to discriminate heavy metal stress
in rice on the basis of remote sensing images.

Clues to heavy metal stress in remote sensing images are usually difficult to find because the
spectral characteristics of these signals are similar to those of other types of stresses, such as pests and
disease [11,12]. Some studies solve this problem by considering temporal information on the basis of
multi-temporal images or time series decomposition at field levels [13]. Although some researchers
have used temporal information to identify heavy metal stress, few have analyzed the year-to-year
dissimilarity and spatial patterns of heavy metal stress in rice. Dynamic time warping (DTW), a time
series dissimilarity measurement that emphasizes the difference in amplitude and eliminates temporal
scaling and shifting effects, is introduced in this study to solve the problem of comparing series with
the different timings of rice phenological stages (e.g., seeding and transplanting) [14] in adjacent years
when measuring the year-to-year dissimilarity between rice leaf area index (LAI) series. Moran’s I,
a local index of spatial autocorrelation [15], is then calculated on the basis of the DTW results to find
spatial patterns in the year-to-year change of the rice LAI series.

DTW, which was first introduced in 1960s [16], is a measurement of time series dissimilarity and
can be applied to speech recognition, gesture recognition, signature matching, and music and signal
processing [17]. DTW finds the optimal warping path between two time series by minimizing the
effects of shifting and distortion in time and calculates the distance between them. DTW is used in
remote sensing to classify land cover types with temporal information [18–21].

Given that frequent cloud coverage in the study area contaminates pixels in satellite images,
the available remote sensing images cannot meet the demand of time series analysis. The WOFOST
crop growth model is thus used in this study to generate a dense time series because this model
can simulate annual crop growth with a 1-day interval [22], and incorporatewith remote sensing
images [23–25]. The model takes crop physiological parameters, as well as meteorological conditions,
crop species, and management factors, into consideration. The output of the WOFOST model includes
the time series of LAI and dry weights of roots, stems, leaves, and storage organs [26,27]. The time
series generated by this model more closely resembles actual rice growth than that generated by
mathematical interpolation methods.

In this work, DTW is chosen as the dissimilarity measurement between WOFOST-simulated
LAI series of rice pixels. We then analyze the local spatial autocorrelation of DTW dissimilarity with
Anselin Local Moran’s I [28], and find that rice pixels under heavy metal stress tend to be clustered.
Finally, SIST, a heavy metal stress index that considers stress levels measured by DTW, temporal
dissimilarity, and local Moran’s I of DTW is proposed to examine the severity of heavy metal stress.

2. Study Area and Data

2.1. Study Area

The study area (113°2′25′′ E, 27°25′50′′ N–113°21′56′′ E, 27°56′52′′ N) shown in Figure 1 is located
in Zhuzhou, the second largest city in Hunan province, central China. The area belongs to a humid
subtropical climate zone with an annual average temperature of 17.9 °C and precipitation of 1504 mm,
which is suitable for rice growing. Xiangjiang River, one of the largest tributaries of China’s Yangtze
River, which flows through Zhuzhou, is the major source of agriculture water. The city is a primary
grain production area in China. Zhuzhou is also an industrial city that specializes in metallurgy,
machine manufacturing, chemicals and building materials, all of which can discharge heavy metal
contaminants to the surrounding water, soil, and atmosphere. Rice can absorb heavy metals via root
uptake and atmospheric decomposition.
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Figure 1. Map of the study area (a): Raw Sentinel 2 scene on Sep 15, 2017. (b): Study area in relation to
China. (c): Study area in relation to Hunan Province, China. (d): Study area and surrounding cities.

2.2. Data Collection

2.2.1. Point Data

Meteorological data and crop growth parameters are used to localize the WOFOST models.
The growth of rice can be simulated by taking in-situ data as WOFOST inputs.

Meteorological data during the growing season (June 1 to September 30) from 2017 to 2018,
including daily maximum temperature (Tmax), daily minimum temperature (Tmin) and daily sunshine
hours, were acquired from Zhuzhou Meteorological Station and can be accessed via the National
Meteorological Information Center (http://data.cma.cn/en).

LAIs were collected between July 2017 and August 2017 using a LAI-2000 plant canopy analyzer.
LAI in each sample point was measured thrice and the mean value of the measurements was taken
as the final LAI of a sample and used to incorporate the LAI and remote sensing images. We first
modelled the relationship between measured LAIs and satellite-derived NDVIs and calculated images
of LAI according to the model. Satellite-derived LAIs were then taken as the crop growth parameter
inputs of the WOFOST model.

We used soil heavy metal concentration and factory coordinates for accuracy measurements
in this study. Soil heavy metal concentrations were collected at the field level for validation.
The concentrations of Cd in soil were determined by using inductively coupled plasma mass
spectrometry (7500a, Agilent Technologies, USA). During analysis process, the accuracy of the samples
were controlled by a program blank and soil composition analysis standard material GSS-13 (National
Standards Research Center). Each soil sample was measured for thrice, and the concentration is
presented as the mean value of these measurements.

The coordinates of factories in Zhuzhou were collected from AutoNavi, one of the largest online
map service providers in mainland China. This provider includes millions of up-to-date points of
interest data. GCJ-02, the coordinate system of AutoNavi, was transformed into WGS-84 using an

http://data.cma.cn/en
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open source Python version of eviltransform [29] to maintain the same spatial reference used by
Sentinel 2 images. These coordinates were used for validation.

2.2.2. Satellite Imagery

In this study, we used Sentinel 2 images taken during the growing season (June 1 to Sep 30) from
2017 to 2018. Compared with Landsat, Sentinel 2 has higher revisit frequency (10 days for a single
satellite and 5 days for combined constellation) and a spatial resolution of up to 10m. Sentinel 2 images
were acquired from Google Earth Engine’s Javascript API [30].

To generate a LAI time series with increased accuracy, we filtered all Sentinel 2 scenes with
a cloud coverage less than 10% in the study area and removed clouds with the cloud mask band.
The acquisition dates of Sentinel 2 images and dates of WOFOST simulated LAIs are illustrated in
Figure 2. Then, we calculated NDVIs from the cloud-free image collection and transformed the values
into LAI.

Figure 2. Acquisition dates of satellite images and dates of leaf area index (LAI) images simulated with
the WOrld FOod STudies (WOFOST) model.

3. Methods

Previous studies have shown that heavy metals are stable across space and time [31], whereas
other stresses, such as pests and diseases, show more variability. Therefore, discriminating heavy metal
stresses from other stresses using proper spatial temporal dissimilarity measurements is possible.

Unfortunately, because of frequent cloud coverage in the study area, the temporal resolution of
remote sensing images could not meet the demands of dissimilarity measurements. Thus, we used an
improved WOFOST model with a stress factor to simulate the growth of rice. The overall workflow is
shown in Figure 3.

Figure 3. Methods to discriminate heavy metal stress in rice from multiple types of stress
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3.1. Mapping Rice Fields

We choose random forest as the classifier to extract rice fields in Zhuzhou. A cloud-free Sentinel
2 image from September 15, 2017 was selected to map rice fields in this study. Samples were chosen
on the basis of field surveys and Google Satellite imagery. A total of 85,474 pixels were selected and
divided into training (80%) and testing (20%) datasets. The random forest algorithm is implemented
in dzetsaka plugin by Mathieu Fauvel and Nicolas Karasiak in QGIS software for remote sensing
classification [32].

Rice objects smaller than four pixels under 4-connectivity were removed and filled with the class
values of the surrounding pixels after classification to assess the spatial patterns of heavy metal stress
accurately.

3.2. Simulation of Rice LAI Dynamics

3.2.1. Incorporation of Sentinel 2 Images

We selected LAI as the rice physiological parameter to assess heavy metal stress levels because
leaves and other aboveground organs are prone to heavy metal stress [23]. A stress factor f was
introduced into the WOFOST model to simulate rice LAI series dynamically under different conditions.
This factor f was determined by Particle Swarm Optimization (PSO), which finds the optimal solution
iteratively by minimizing the cost function (C) and stops when the maximum iteration or cost threshold
is reached [33]. C measures the difference between the satellite-derived and simulated LAI series and
is defined by Equation (1)

C =

√√√√ 1
N

N

∑
i=1

(LAIm,i − LAIs,i)2 (1)

LAIm = 0.361× exp (3.69×NDVIm), (2)

where LAIm,i is the ith measurement of the LAI and derived from satellite NDVIs using the formula
previously modeled in Equation (2) [34] by using field data, LAIs,i is the ith WOFOST simulation of
LAI, and N is the number of measurements.

3.2.2. WOFOST Model

WOFOST is a physical model that dynamically simulates the daily growth of crops under different
stress levels in a year.

In this study, daily sunshine hours were transformed into solar radiation power prior to the
integration of the meteorological data into the WOFOST model. The relevant formulas are listed in
Equations (3)–(8).

Dr = 1 + 0.033× cos(0.0172×DOY) (3)

δ = 0.4209× sin(0.0172×DOY− 1.39) (4)

ωs = arccos(− tan ϕ · tan δ) (5)

Ra = 37.6× Dr(ωs · sin ϕ sin δ + cos ϕ cos δ sin ωs) (6)

N =
24
π

ωs (7)

Rs = (as + bs
n
N
) · Ra, (8)

where DOY is the number of days since Jan 1 of a year, Dr is the distance between the sun and Earth,
δ is the declination of the Sun when Sentinel 2 images were captured, and ϕ is the latitude of the rice
pixel (in decimal degrees). ωs is the solar hour angle when Sentinel 2 satellite passes the study area, Ra

is the irradiation at the top of the aeropause, N is the number of daily potential sunshine hours, n is
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the actual number of sunshine hours. as and bs are empirical constants for temperate climate zones
and take the values as = 0.18 and bs = 0.55, Rs is the solar radiation energy.

The f determined by PSO is then integrated into the WOFOST model because heavy metals in
soil and water may influence photosynthesis in rice. The daily total gross assimilation under stress
level (CVF f ) can be defined as follows:

CVF f = f ×CVF, (9)

where CVF is the daily total gross assimilation under the potential growth level and f is the stress
factor, which ranges from 0 (stressed) to 1 (healthy).

To reduce the redundancy of time series and accelerate calculation, we simulated the LAI series
at 5-day intervals from DOYs 160 to 255 in 2017 and 2018. This period represents the major growth
season of rice in Zhuzhou area.

3.3. Distinguishing Heavy Metal Stress in Rice

3.3.1. Conceptual Model to Distinguish Heavy Metal Stress

The temporal features of rice LAI series under heavy metal stress are different from other stressors.
Figure 4 shows the conceptual series under four major types of stress in our study area, namely pest,
disease, nutrition and heavy metal stress. Temporal characteristics can be classified into two categories.

Heavy metal stress
Low values in the whole season.Inyear

Interannual Stable.

D
iff

erence

No stress
Heavy
metal

Time

LA
I

No stress
No significant low value.Inyear

Interannual Stable.

No stress

Time

LA
I

Pest / disease stress
Low values at a single peroid.Inyear

Interannual Unstable.

D
iff

erence

No stress
Pest or
disease

Time

LA
I

Nutrition stress
Low values in the whole season.Inyear

Interannual Unstable.

D
iff

erence

No stress
Nutrition

Time

LA
I

Figure 4. Conceptual rice series under different stress types.

1. In-year characteristics: The duration of in-year signals vary when rice pixels are under different
stress types. Signals of pest or disease only exist at a single period of a growing season, while
signals of nutrition stress and heavy metal stress last longer and exist in the whole growing
season.

2. Inter-annual characteristics: The variability of inter-annual signals also vary if rice pixels are
under these stressors. Although nutrition stress and heavy metal stress show similar signals
in a grwoing season, the variability of heavy metal stress signals are more stable than those of
nutrition stress.
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According to these differences in temporal characteristics, heavy metal stress can be discriminated
using inter-annual stability measurements. A rice pixel is likely under heavy metal stress if its stress
signals are stable in adjacent years.

3.3.2. DTW

DTW is a alignment-based measurement of similarity between two time series; its goal is
to find the optimal alignment between series with a minimum cost [35]. Let Reference Series
(A{a1, a2, a3, · · · , am} ) and Query Series (B{b1, b2, b3, · · · , bn} ) be two time series of lengths m and n,
respectively.

Here we define Di,j as the DTW distance between A(1 : i) and B(1 : j) and the corresponding
warping path (pi, qj), illustrated in Figure 5a, is from (1, 1) to (i, j). The matching nodes is illustrated
in Figure 5b. Then, the DTW distance can be calculated by using Equation (10)

Di,j = δ(ai, bj) + min


D(i− 1, j)
D(i− 1, j− 1)
D(i, j− 1)

, (10)

where δ(ai, bj) is the distance measurement between node ai and bj, Di,j is the summed distance from
(1, 1) to (i, j). When i = m and j = n, recursion stops and D(m, n) is the final DTW distance between
series A and B.

Some constraints to the calculation of DTW distance [36] were implemented to keep the warping
path continuous and accelerate calculations given that the time complexity of classic DTW is O(MN).
Let node (i, j) denote points on the warping path. The constraints of the DTW algorithm can be written
as follows:

• Boundary limits: The warping path should start from (1, 1) and end in (m, n).

(p1, q1) = (1, 1), (pk, qk) = (m, n). (11)

• Global constraint: The “Sakoe Chiba Band”, illustrated in Figure 5c, was used as the global
constraint to limit the warping scope to r samples around the main diagonal y = n

m x [37].
Each point (pi, qj) of the warping path (p, q) should meet the following constraint:∣∣∣qj −

n
m

pi

∣∣∣ ≤ r. (12)

• Local constraints: Local constraints are illustrated in Figure 5d. Given a node (pi, qj) from the
warping path, the subsequent node should be chosen from (i + 1, j), (i + 1, j + 1) or (i, j + 1) such
that the warping path is continuous and monotonically nondecreasing [38,39].

In this study, DTW was chosen for temporal dissimilarity and rice stress measurements. Temporal
dissimilarity was measured for each LAI series of the same pixel between adjacent years, while stress
level was derived from the DTW distance between the current and sample LAI series.
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Figure 5. Dynamic time warping (DTW) algorithm and its constraints. (a) Density map of DTW
warping costs. Warping costs increase from green to yellow. The blue line illustrates the warping path
with the minimum cost. (b) DTW matches. The plot illustrates how points are related between the
query series and reference series. (c) Global warping constraints. The search scope of the warping path
is limited to a fixed distance from the main diagonal. (d) Local warping constraints and costs. The plot
illustrates all possible choices of a warping step and the corresponding costs.

3.3.3. Determination of Stress Levels in Rice

Stress levels were measured by using DTW distances from sample pixel series. To accurately
detect rice stress levels, we simulated a sample series under no stress with the WOFOST model for
each year. Here, the DTW distance between the LAI series of the rice pixel series (LAIi) and the sample
pixel series (LAIsample) in the same year was defined as the stress level of the pixel (Si) for every rice
pixel (i) of a raster series. Stress levels were calculated using Equation (13) and then normalized using
Equation (14)

Si = dtw(LAIsample, LAIi) (13)

Si,norm =
Si − Smin

Smax − smin
, (14)

where Si,norm is the normalized stress level of pixel i, Si is the original stress level in Equation (13),
and Smin and Smax are the maximum and minimum stress levels, respectively. The DTW distance is
positively related to the stress level, that is, a greater DTW distance from the sample series indicates
that the pixel is weaker in health, and that the rice pixel is under higher stress. In this work, we applied
the mean value of stress levels in 2017 and 2018 as the final stress level.

3.3.4. Measurement of Temporal Dissimilarity between Rice LAI Series

In this study, temporal dissimilarity was regarded as the interannual DTW distance between the
two time series of the same pixel in adjacent years (years 2017 and 2018 in this case). The temporal
dissimilarity for pixel i was calculated by using Equation (15)

TDi = dtw(LAIi,2017, LAIi,2018), (15)

where TDi is the temporal dissimilarity of pixel i and LAIi,2017 and LAIi,2018 are the LAI series of pixel
i in 2017 and 2018, respectively. A small DTW distance of the same pixel indicates similar rice growth
status in adjacent years.
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Temporal stability, defined as the normalized negative temporal dissimilarity, was transformed
from temporal dissimilarity given that temporal dissimilarity is negatively correlated with temporal
stability. A high temporal dissimilarity measured by DTW distance indicates low temporal stability.
It is calculated using Equation (16)

TSi = 1− TDi − TDmin

TDmax − TDmin
, (16)

where TSi is the normalized temporal stability of pixel i, TDi is the original temporal dissimilarity in
Equation (15), and TDmin and TDmax are minimum and maximum temporal dissimilarity, respectively.
TS ranges from 0 to 1, and a high TS value indicates the rice pixel is stable and a low TS value indicates
the rice pixel is unstable. As shown in Figure 6, the LAI series of rice pixels under heavy metal stress
have stable and low values between 2017 and 2018 and have lower TD value (and higher TS value)
than those observed in other conditions. By comparison, the LAI series under other types of stress are
unstable, with a low value in 2017 and a high value in 2018, and have considerably greater TD value
(and lower TS value) between adjacent years. Even though LAI series of other stress increase from
year 2017 to 2018, the rice pixel is still under other stress because the stress signal lasts only for a single
growing season in 2017. Heavy metal stress signals should be consistent in adjacent years. The LAI
series of healthy rice pixels are stable and have high LAI values in 2017 and 2018.

TS values are expected to filter out pest, disease and nutrition stress. A high value indicates that
the pixel is stable in years 2017 and 2018. But TS values alone is not sufficient because it cannot tell the
difference between healthy series or heavy metal stressed series. A rice pixel is under heavy metal
stress only when high TS values and low LAI values are detected. Therefore, heavy metal stress levels
can only be detected with the combination of stress levels and temporal stability.
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I
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Legend  

Healthy 2.13
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TD TS
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Figure 6. Temporal profiles of LAI series under healthy conditions, heavy metal stress and other
stress conditions.

3.3.5. Measurement of the Spatial Variation of Temporal Dissimilarity

Local Moran’s I, a commonly used local indicator of spatial autocorrelation, can find spatial
patterns such as high-high clusters. By comparing central pixel i and the statistics of its neighbors j, the
value of the central pixel can be determined to be lower or higher than that of a random distribution in
space. A positive value indicates a spatial cluster and a low value indicates a spatial dispersion. In this
case, a spatial dispersion indicates that the value is unstable across space, and the rice in that pixel
would probably be affected by abrupt stress.
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In this study, we measured the spatial patterns of DTW distances in the previous step by using
local Moran’s I. The Moran’s I at pixel i can be calculated using Equations (17) and (18)

I =
n
S0

∑n
i=1 ∑n

j=1 wij(xi − x̄(xj − x̄))

∑n
i=1(xi − x̄)2 (17)

S0 =
n

∑
i=1

n

∑
j=1

wij, (18)

where xi and xj are temporal dissimilarities of central pixel i and neighbor j, respectively, and wij is the
spatial weight between i and j. x̄ is the mean value of all rice pixels. S0 is the sum of all spatial weights
between central pixel i and its neighbors j. In this work, we used a 3× 3 matrix as the neighborhood
of the central pixel, and only rice pixels in the neighborhood were used for calculation.

An I that is significantly greater than 0, indicates the presence of a spatial cluster around pixel i
because it is positively correlated with its neighbors. If I is significantly less than 0, the central pixel i is
negatively correlated with its surrounding values. This negative correlation indicates that the central
pixel may as well be in an unstable state in space. Therefore, the local Moran’s I of a rice pixel would
be high if it is affected by heavy metal stress.

The local Moran’s I of pixel i was then normalized by using equation:

Ii,norm =
Ii − Imin

Imax − Imin
, (19)

where Ii,norm is the normalized local Moran’s I, Ii is the original Moran’s I of pixel i and Imin and Imax

are the minimum and maximum local Moran’s I, respectively.

3.4. Construction of SIST for Assessing Heavy Metal Stress Levels

To distinguish heavy metal stress from other stresses, we considered stress levels, the temporal
dissimilarity measured by DTW and local Moran’s I and developed a stress index based on spatial and
temporal characteristics (SIST). SIST was calculated by using normalized stress levels (Snorm), temporal
stability (TSnorm) and local Moran’s I (Inorm):

SIST = 3
√

Snorm × TSnorm × Inorm. (20)

Given that SIST takes normalized factors into consideration, it should range from 0 to 1. A high
SIST indicates that rice in a specific pixel is highly likely under strong heavy metal stress; a low value
means the pixel is likely under weak heavy metal stress.

4. Results

4.1. Spatial Distribution of Rice Fields

The overall accuracy of the random forest classifier is 96.99%, and the Cohen’s kappa coefficient
is 0.9586. The producer’s and user’s accuracy of rice are higher than 94%. The confusion matrix of the
classification is shown in Table 1.

Table 1. Confusion matrix of land-use types using random forest.

Rice Forest Urban Water User’s Accuracy

Rice 4089 136 73 13 95.85%
Forest 72 3008 31 3 96.60%
Urban 79 65 6272 26 97.36%
Water 6 2 8 3213 99.50%

Producer’s accuracy 96.30% 93.68% 98.25% 98.71% 96.99%
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After classification, rice objects less than 4 pixels under 4-connectivity were removed from the
rice classification results and filled with the class value of the nearest neighbors. The final classification
result is shown in Figure 7.

Figure 7. Spatial distribution of rice fields.

4.2. Spatial Distribution of Temporal Variability and Stress Measurements

Figure 8 shows the spatial distribution of stress levels and temporal stability measured by using
DTW. For temporal stability, a high DTW distance indicates that rice in a specific pixel is unstable.
For stress levels, a pixel with a high DTW distance could be regarded as a high stress level, which means
the rice is under stress.

Figure 8. Spatial distribution of normalized stress levels and temporal stability measured by DTW.
(Left): Normalized stress levels in 2018, ranging from 0 to 1. A high value indicates the pixel is under
high stress level. (Right): Normalized temporal stability from 2017 to 2018 ranging from 0 to 1. A high
value indicates that the pixel is stable, whereas a low value indicates that the rice pixel is unstable.
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Stress levels, shown in Figure 8 (Left), decreases as the distance from cities increases. In the
north, rice fields tend to be under high stress levels, whereas, in the south, rice is healthy. However,
temporal stability from 2017 to 2018, shown in Figure 8 (Right), shows that rice fields close to the
Changsha-Zhuzhou-Xiangtan city clusters in northern areas tend to be more stable than those in the
south, which is distant from industrial parks and cities.

4.3. Spatial Distribution of Heavy Metal Stress Levels in Rice

Figure 9 shows high heavy metal stress levels in the industrial areas and lower levels in rural
areas. This trend is similar to the trend of general stress levels. High-high clusters are defined as places
where local Moran’s I is greater than 0 and have high TS values, low-low clusters are defined as places
where local Moran’s I is greater than 0 and have low TS values.

Figure 9. Spatial distribution of Moran’s I of temporal stability and stress index based on spatial and
temporal characteristics (SIST). (Left): Normalized Moran’s I of temporal stability, ranging from 0 to 1.
Values close to 1 indicate that the pixel tends to be clustered, 0.5 indicates perfect randomness, and 0
indicates complete dispersion. (Right): Spatial distribution of normalized SIST ranging from 0 to 1. A
lower value of SIST (greener) indicates the rice pixel is less likely to be under heavy metal stress

Heavy metal-stressed rice pixels and healthy pixels have high Moran’s I value, indicating that
under nonstress or heavy metal stress, rice growth shows a spatial pattern of clustering. The only
difference between the two spatial patterns is that healthy rice pixels are in low-low TS clusters,
whereas heavy metal stressed ones are in high-high TS clusters. In the center of the study area near
Zhuzhou County, where heavy metal stress is at a moderate level, Moran’s I is close to 0, which implies
the presence of other types of abrupt stressors, such as pests and diseases in that area.

4.4. Spatial Patterns of Rice under Different Stress Types

As illustrated in Figure 9, the spatial distribution of SIST, temporal stability, and stress levels
shows similar trends with a high degree of heavy metal stress in the northern areas and a low degree
in the south. The Moran’s I of temporal stability is close to 0 in the central region, where heavy metal
stress is at a moderate level, and shows no significant spatial clustering patterns. Heavy metal-stressed
areas and healthy fields show a high Moran’s I, indicating that, under both conditions, temporal
stability shows a spatial pattern of clustering.
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5. Discussion

5.1. How DTW Works in Temporal Dissimilarity Measurement

In this article, we choose DTW over Euclidian distance as the measurement of temporal
dissimilarity. The reason is that DTW can eliminate the unwanted distance caused by different
timings of rice phenology stages. Take the two series in Figure 10 for example. The two series are
LAI series from the same pixel, and the major difference between them is the timing, not amplitude.
Timings of rice phenology stages vary from year to year, so this different timing can result in unwanted
increase in distance measurement. The distance between the two series is 7.8 if we use Euclidian
distance, but for DTW distance, the distance is 2.3, which is much smaller.

160 180 200 220 240
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4

5 2017
2018

160 180 200 220 240
DOY

0

1

2

3

4

5

LA
I

2017
2018

DOY

Euclidian Distance: 7.8 DTW Distance: 2.3

difference difference

Figure 10. Two healthy and stable LAI series which may be considered to be under stress if we use
Euclidian distance. X axis denotes day of year in 2017 and 2018, y axis denotes the LAI value of the
pixel. (Left): Original series and difference measured by Euclidian distance. (Right): Warped series
using DTW and difference measured by DTW.

5.2. Correlation between SIST and Heavy Metal Concentration

Soil Cd concentrations (mg/kg) in Section 2.2.1 is used as reference data to assess the accuracy
of SIST in detecting heavy metal stress levels. Pearson correlation coefficient (r) [40] is chosen as the
accuracy measurement. Given two variables x and y, r is calculated using the following formula:

r = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2
, (21)

where n is sample size, xi and yi are SIST values and Cd concentrations (mg/kg), respectively. x̄ and ȳ
are mean values of SIST and Cd concentrations, respectively.

As is shown in Figure 11, SIST is positively correlated with Cd concrations, with a r of 0.8236.
This high correlation between SIST and Cd concentrations demonstrates that SIST is correlated with
heavy metal stress levels in rice.
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Figure 11. Correlation between SIST and Cd concentrations.

5.3. Relationship between Heavy Metal Stress Levels and Industrial Activities

To identify the relationship between heavy metal stress in rice and industrial activities,
we searched for factories that may cause heavy metal contamination by using AutoNavi, one of
the largest online map services in China. Among various types of factories, those associated with
metallurgy and machine manufacturing contribute greatly to heavy metal pollution, pose threats to
the surrounding soil, and negatively affect rice growth. The spatial distribution of these factories are
shown in Figure 12.

Heat	map

	

	

Map	of	Major	Factories	in	Zhuzhou
			

sparseBasemap	©	OpenStreetMap	(openstreetmap.org)	contributors	
POI	©	2019	AutoNavi	(ditu.amap.org)	-	GS(2018)1709

N

dense

Figure 12. Spatial distribution and heat map of major factories in Zhuzhou.

From the spatial distribution of factories in Zhuzhou, we can find that most factories are located
north of Zhuzhou City, where SIST values are high. SIST values near Zhuzhou County in the center
of the study area, where factories are scarce, are much lower than those in northern areas but still
noticeably higher than those in southern rural areas. The spatial distribution of high-pollution factories
is mostly consistent with that of SIST.
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5.4. Advantages and Disadvantages of SIST

SIST can distinguish long-term stable stress signals such as heavy metals in rice, from multiple
types of stress. Given that the impact of heavy metal stress on rice is stable across space and time and
exhibits similar stress signals between adjacent years and in surrounding fields, SIST can be used to
distinguish heavy metal stress levels by taking stress levels, temporal variation, and spatial patterns
of a rice pixel into consideration. In this way, the signals of abrupt stress (pest and diseases), which
may be unstable in one or more life cycles, are eliminated and only long-term stress signals retained.
DTW is used in temporal dissimilarity measurement to eliminate the temporal scaling and shifting
effects of different rice phenology stages, thereby increasing the accuracy of temporal dissimilarity.

However, SIST shows several limitations in the measurement of heavy metal stress levels. First,
SIST is based on the assumption that a pixel should not be under a composite of heavy metal stress
and other stresses at the same time. It cannot distinguish heavy metal stress if the rice pixel is under
abrupt stress (pest and disease) as well. Second, the calculation of SIST requires a dense and long
time series. This requirement necessitates the use of at least a 2-year-long time series with a suitable
temporal interval in a growing season.

5.5. Limitations of This Study

There are some limitations of this study although heavy metal stress signals are captured by SIST
effectively. First, we assumed that the relationship between LAI and NDVI remain unchanged in 2017
and 2018, which might introduce some uncertainty to heavy metal stress detection. Second, temporal
stability was measured based on two-year-long time series. Although pest, disease and nutrition stress
vary from year to year, two years’ observations may be insufficient to distinguish heavy metal stress in
rice, which might also introduce some errors to temporal stability measurements. We will take longer
time series for analysis in our future research. Finally, Cd concentration in soil is an indirect reflection
of heavy metal stress levels in rice. The relationship between Cd concentrations and heavy metal stress
levels is not modeled here, which might bring some uncertainties to the study as well.

6. Conclusions

In this study, we used DTW to measure stress levels, temporal stability, and its spatial patterns of
rice LAI series. By comparing series of the same pixel in adjacent years, the temporal dissimilarity can
be measured, and temporal stability can then be calculated. Heavy metal stress can be distinguished
from other types of stress using these spatio-temporal characteristics of rice LAI series. We also
introduced a stress index based on these features (SIST) to assess heavy metal stress levels in rice.
The results demonstrate that

1. Heavy metal stress can be discriminated by extracting temporal characteristics of rice LAI series
because unlike signals of other types of stress, heavy metal stress signals are stable during the
whole growing season, and show similar temporal profiles in different years.

2. Spatial patterns of rice temporal features, measured by local Moran’s I, can help to discriminate
heavy metal stress because heavy metal stress tend to be clustered while abrupt stress tend to be
random in space.

3. SIST, a spatio-temporal index based on time series of leaf area index, can detect heavy metal stress
by taking both temporal and spatial features into consideration. The high correlation between
SIST and heavy metal concentrations demonstrates that SIST is capable of this task.

4. The difference between temporal profiles of rice LAI series under heavy metal stress and other
stress types could be accurately discriminated using DTW because it can eliminate the influence
of the different timings of phenological stages on rice growth, which is quite common for crops
in different years or locations. DTW might be suitable for other time series based applications
like forest disturbance detection.
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