Positive association of cardiovascular disease (CVD) with chronic exposure to drinking water arsenic (As) at concentrations below the WHO provisional guideline value: A systematic review and meta-analysis

Lingqian Xu¹, Debapriya Mondal^{2*}, and David A. Polya¹

- ¹ Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, M13 9PL, UK
- ² School of Science, Engineering & Environment, University of Salford, Salford, M5 4WT, UK
- * Correspondence: d.mondal@salford.ac.uk Phone: +44 161 295 4137

N	Study			Ν	exposure				outcome	adjustment
	(Year)	design	population	(follow-	assessme	exposure c	ategories	outcome	ascertainm	factors
<u> </u>	(Icul)			up)	nt				ent	luctors
1	Chen et al. [1] (2011)	prospe ctive study	Bangladesh, 11746 men and women in 2000	followe d up for an average of 6. 6 years	well water arsenic (As) and spot urine As	well As mean (range) 3.7 (0.1-12) 35.9 (12-62) 102.5 (62-148) 265.7 (148-864) baseline urina adjusted A creatin mean (range) 68 (6-105) 150 (106-199) 264 (199-351) 641 (351-1100)	(μg/L) median 2 34 101 237 ry creatinine s (μg/g of nine) median 69 150 262 538	deaths from cardiova scular disease	defined as deaths from disease of circulatory system (ICD-10 (internatio nal classificati on of diseases, 10th revision) codes I00-	sex and baseline age, BMI, smoking status, educational attainment, and changes in As concentration
2	Chen et al. [2] (2013)	prospe ctive study	Bangladesh, recruited 20033 residents 18- 75 years of age (original cohort) in 2000 at baseline. HEALS was expanded to include an additional 8,287 participants (expansion cohort) in 2007-2008	during 2005- 2010, 5.9 years on average since baseline and followe d with personal visits at 2-year intervals	As in drinking water and urine at baseline recruitme nt, and in follow-up urine samples collected every 2 years	well-water mean(r 2.8 (0. 30.0 (9. 95.1 (58 254.5 (14 urinary As (µg mean(r 66.1 (7 140.8 (10 249.7 (11 606.3 (32	As (μg/L) range) .1-9) .5-57) 8-144) 45-790) r/g creatinine) range) '-101) 22-187) 88-327) 28-4306)	QTc prolonga tion	QT interval was measured from the beginning of the QRS complex to the end of the T wave, and was corrected for heart rate using the Bazzet formula.	sex and age, BMI, smoking status, and educational attainment, changes in urinary As between visits.
3	Chen et al. [3] (2007)	cross- section al	10,910 particip Health Effe Longitudina Bangladesh 2000-May	pants in the cts of As l Study in (October · 2002)	time- weighted well As concentra tion (TWA) (μg/L)	range 0.1-8 8-40 40-91 91-176 176-864	mean 2.8 23.2 63.9 128.1 283.1	general hyperten sion	general hypertensi on (SBP≥140 mmHg, and/or DBP≥90 mmHg), systolic hypertensi on (SBP≥140 mmHg), diastolic hypertensi on (DBP≥90 mmHg), and high pulse pressure (SBP- DBP≥55 mmHg) Casee of	age, gender, body mass index, cigarette smoking status, education length, and daily water consumption
4	Tsinov oi et al. [4] (2018)	case– cohort study	This sub- cohort (n = 2666) was selected from the entire cohort of	The average follow- up was 6.7 years	urinary As (μg/g creatinine)	median 3.29 5.26 8.07 13.88 34.06	range 2.72-3.72 4.75-5.88 8.26-9.18 11.99-16.72 26.11-54.81	incident ischemic stroke	incident stroke were obtained every 6 months via telephone	baseline, sex, race, age×race, and stroke region, body mass index, education,

Table S1. Epidemiological studies of arsenic (As) exposure and cardiovascular disease (CVD) included in the systematic review.

			REGARDS participants		Stude					and verified using medical record review.	smoking status, alcohol consumption, and physical activity, quintiles of urine cadmium and serum mercury
5	Sohel et al. [5] (2009)	perspe ctive analysi s	Matlab, Bangladesh; A total of 115,903 persons aged 15 or more years on 1 January 1991 were available for analysis.	followe d them until 31 Decemb er 2000; 9,015 deaths; 22,488 lost to follow- up -	used average househol d exposure of As from drinking water (µg/L) as a proxy for individua 1 exposure	range <10 10-49 50-149 150-299 > 300	mea n 1.4 31.0 97.0 208.6 402.5	media n 0.7 31.8 95 201 371	cardiova scular disease	Cases were defined as persons within the cohort who had died of non- accidental causes during the period.	age, sex, asset score
6	D'Ippo liti et al. [6] (2015)	perspe ctive study	165,609 residents of 17 municipaliti es	resident s on January 1st 1990 and those who were subsequ ently born or immigra ted to the municip ality up to Decemb er 31th 2010	average individua l As exposure at the first residence and time- dependen t cumulativ e As dose indicator	A range < 10 10-20 > 20	As (µg/L) mea n 6.5 13.7 34.5 CAI (µg) ≤ 204.9 04.9-804.0 > 804.0	media n 7.4 12.9 29.7	circulato ry system diseases (390– 459)	ischemic heart disease (410-414), myocardia l infarction (410), coronary atheroscler osis (414), cerebrovas cular diseases (430-438), stroke (430, 431, 434, 436), peripheral Arterial (440-448)	sex, age, calendar period, socioeconomi c level, occupation in the ceramic industry, smoking sales and radon exposure
7	Medra no et al. [7] (2010)	ecologi cal study	1721 municipaliti es located in 49 out of 52 Spanish provinces, covering 24.8 million people	NA	Tap drinking water As concentra tions at the municipal level during 1998-2002 (μg/L) were obtained from the National Informati on System of Consume Water Control.	range < 1 1-10 > 10	m (2	lean 0.7 3.9 13.3	cardiova scular mortality (CVD (ICD: 100 I99), CHD (ICD: 120 I25), and cerebrov ascular diseases (ICD: 160 I69))	Cardiovasc ular mortality was analysed for the period 1999-2003. The observed number of deaths at the municipal level was obtained from the National Institute for Statistics.	sex, age, per capita municipal income, and hospital beds per population, smoking, hypertension, high serum cholesterol, diabetes, overweight/o besity, and low physical activity, fish, wine, olive oil, bottled water, and total energy and water characteristic s at municipal level.

8	Moon et al. [8] (2013)	prospe ctive study	3575 American Indian men and women aged 45 to 74 years living in Arizona, Oklahoma, and North and South Dakota.	baseline visit between 1989 and 1991. Particip ants were invited to subsequ ent clinical visits in 1993- 1995 and 1998- 1999 and were actively followe d through 2008,357 5, 15	sum of inorganic and methylate d As species in urine at baseline (µg/g creatinine)	range (median) < 5.8 (4.2) 5.8-9.7 (7.5) 9.8-15.7 (12.4) 15.7 (21.8)	mean 4.1 7.6 12.5 26.3	cardiova scular disease (incidenc e and mortality)	identified by annual contact, by review of hospitaliza tion and death records, and during 2 clinic visits conducted between 1993 and 1995 and between 1998 and 1999	systolic blood pressure and hypertension medication use, AIC level, sex, age, education, smoking status, body mass index, cholesterol level, hypertension, diabetes, and estimated glomerular filtration rate and albuminuria
9	Islam et al. [9] (2012)	cross- section al study	rural Bangladesh, The study was conducted between January and July 2009	years	As concentra tion in drinking water (µg/L)	range 10-22 23-32 33-26 ≥ 262	2	hyperten sion prevalen ce and pulse pressure	Hypertensi on was defined as systolic blood pressure ≥ 140 mmHg (systolic hypertensi on) and diastolic blood pressure ≥ 90 mmHg (diastolic hypertensi on) and those with known hypertensi on and on antihypert ensive medication . Pulse pressure was considered to be	age, sex, education, marital status, religion, monthly income and BMI
1 0	James et al. [10] (2015)	case- cohort study	This study included 555 participants with no known coronary heart disease (CHD)	555 particip ants with 96 CHD events diagnos ed between 1984	time- weighted average inorganic As exposure (µg/L)	range me 1-20 n 20-30 25 30-45 36 45-88 50	ea medi a an 31 5.71 .1 25.3 .6 35.1 .2 50.5	identifie d CHD events	increased when the difference was ≥ 55 mmHg. A CHD event was defined [ICD-9 codes 410- 414]. Potential CHD events were	age, sex, BMI, physical activity, smoking status, alcohol consumption, serum lipid levels, and

			events or	and						identified	micronutrient
			diagnosis of	1998						through	intake
			DM before							self-report	
			the baseline							and death	
			visit in							certificate	
			Alamosa							searcnes.	
			counties of							modical	
			south							records	
			central							were	
			Colorado.							reviewed	
										by a three-	
										member	
										committee	
										of medical	
										physician.	
										on was	
										defined in	
							DI			this study	
							DN	1A (µg/g		as a	
						uripary A		Cr) 66 70		systolic	
					cumulativ	species	, 6	6.70 to		blood	
			604 of		e arsenic	iAs (µg/g	1	181.85		pressure ≥	
			eligible		exposure	Cr)	>	181.85		140 mm	gender 200
		cross-	subjects		(CAE) in	< 7.31	tA	.s (μg/g		diastolic	cigarette
1	Li et al.	section	were		mg/L-	7.31 to 33.6	8	Cr)	hyperten	blood	smoking,
1	[11]	al	confirmed,	NA	year in	> 33.68	<	33.77	sion	pressure ≥	alcohol
	(2013)	study	and		the tube	MMA (µg/	g 9.	3.77 to		90 mm Hg,	consumption
			door to		uripary	< 11 28	~	250.61		or a	and BMI.
			door.		As and its	11.28 to	CA	E (mg/L-		history of	
					species	37.89		vear)		hypertensi	
					1	> 37.89		< 0.10		on under	
							0.1	0 to 0.35		regular	
							2	> 0.35		with	
										antihypert	
										ensive	
										agents.	
			A total of			wate	r As (µg/	/L)			
			298 cases			range	mea	media			
			and 275			< 10	n	n 1.01		acute	age, sex, diet,
			controls			10-39 40 and	3.02	1.91		myocardia	body mass
		hospita	enrolled in			over	20.87 78.75	10.03 58 57		l infarction	occupation:
	Wade	l based	the		toenail	nail	As (ug/g	z)	CHD	(mi),	education;
1	et al.	case	Bayingnorm	NA	and		- 11-0-0	<i>, , , , , , , , , ,</i>	incidenc	cardiomyo	smoking; and
2	(2015)	control	en (Ba Men)		drinking	*****	m 00	modia	e	pathy and	family history
	(2015)	study	region of		water As	0 11_0 28	nea	neula		chest pain	of
			Inner			0.29-1.37	0.23	0.24		suggestive	hypertension,
			Mongolia,			1.38-	0.65	0.6		of angina	diabetes or
			China from			34.21	3.25	2.17		0	heart disease
			hospital								
			nospitai.							OT	
	Maria		212							interval	
1	Mumto	cross-	313 recidents of		water As		< 21		QT	defines the	age, sex, BMI,
3	al [13]	al	the Ba Men	NA	tion	1	00-350		prolonga	period of	and age/BMI
	(2007)	studv	region		(µg/L)	4	130-690		tion	ventricular	interaction
	(-0		(1.0, -)					repolarizat	
						here-1-1	فاستعلم ا	a urate-		ion	000 000
			A total of		househol	Acconce	i urinkin atrationa	g water		facting	age, sex,
			1.160 adults		d	As conce	< 25.5	(µg/L)		levels of	smoking
			were		drinking	≥ 25	.5 to < 47	.9		each lipid	status.
4	Mende	cross-	recruited in		water As	≥ 47	.9 to < 79	.0	01.1	were	alcohol
1	z et al.	section	household	NA	tions and		≥79.0		CIVI FISK	defined as	consumption,
+	(2016)	aı studv	visits		total	total urina	ary speci	ated As	markers	plasma TG	recent
	(=010)	stady	between		urinary		(µg/L)			≥ 150	seafood
			2008 and		speciated		< 27.5	0		mg/dL, TC	intake,
			2012.		As	≥ 27	1 to < 55 8 to $< 10^{\circ}$.ð 50		≥ 200 mg/dI	weight status,
L						≥ 33.	0 10 \100			mg/uL,	elevaleu

						> 1	05.0		and IDI >	waist
						21	5.0		130 mg/dI	circumferenc
									Easting	o and main
									HDL < 40	water source
									m_{d}/dL in	water source
									mon and c	
									50 mg/dI	
									in women	
									in women	
									docignated	
									as low	
									Umortonci	
									op was	
									dofined by	
									evetolic	
									blood	
									pressure	
									(SBP) > 140	
									(001) × 140	
									diastolic	
									blood	
									pressure	
									(DBP) > 90	
									mmHg.or	
									self-	
									reported	
									use of anti-	
									hypertensi	
									ve	
									medication	
									Indications	
									of carotid	
			163 patients						atheroscler	
			with carotid		As				osis were	,
			atherosclero		concentra				evaluated	age and
			sis and 163		tion in	As concentr	ation in well		mainly	gender,
			controls		well	Wa	ter		based on 2	addition of
	TA 7		were		water	S ⊃ ⊃ 50.01	100 00	risk of	indices: the	current
1	ol [15]	case-	studied	NIA	(µg/L)	50.01-	0.01	carotid	maximal	smoking,
5	(2006)	otudu	from the	INA	and	2 IC	0.01	atheroscl	ECCA	abalastaral
	(2000)	study	Lanyang		cumulativ		70	erosis	intimal–	huportoncion
			Basin of Ilan		e As	≤ I 1 71 /	20.43		medial	and plasma
			County in		exposure	1.71-4	20 45		thickness	homogystoino
			north-		(µg/L-	2 9	.21		(IMT) and	lovol
			eastern		year)				the	level
			Taiwan						presence of	
									ECCA	
									plaque.	
1						lifetime c	umulative			
						exposure ([ug/L]-years)		Those self-	
1						< 2	188		reporting	
1						2188	-7025		either a	
						>7	025		physician	
1			northern		cumulativ	peak exposur	e prior to 1971		diagnosis	
1		popula	Chile;		e As	(με	5/L)		of	
		tion	hypertensio		exposure;	<	6U 8E0		hypertensi	
1	Hall et	based	n cases		peak	60-	809 200	prevalen	on or use	
	al. [16]	cancer	(n=612), and	NA	exposure;	> {		ce of	of an anti-	age, BMI, sex,
6	(2017)	case-	hypertensio		highest 5-	nignest 5-year	average prior	nyperten	hypertensi	and smoking
1		control	n-free		year	to 1971	(µg/L) 60	sion	ve	
		study	controls		average	<	550		medication	
1			(n=654)		exposure	60-	509		were	
1			-		-):£atim - 1 '	boot 5 mars		classified	
						iiretime hig	nest 5-year		as	
						average	e (µg/L)		hypertensi	
						40	623		on cases.	
						-00	523			
		cross-	Bangladesh.		time		As		Hypertensi	
1		section	A total of		weighted	time	concentratio	cases of	on was	age, sex, and
7	Kahma	al	1595 adults	NA	average	weighted	n-year, mg-	hyperten	defined as	BMI
	n et al.	study	(903 men		As; As	average As	y/L 0	sion	a systolic	

	[17]		and 578		concentra	exposure	e	< 1.0		blood	
	(1999)		women) had		tion-year	(mg/L)	1	1.0-5.0		pressure >	
			a history of			0	5	.0-10.0		140 mm	
			As			< 0.5	:	> 10.0		Hg	
			exposure,			0.5 to 1.0)			combined	
			whereas 114			> 1.0				with a	
			(50 men and							diastolic	
			64 women)							blood	
			were							pressure >	
			unexposed.	Culture						90 mm Hg.	
				Subjects							
				invited						Hypertensi	
				for						on (systolic	
				health						BP >	
			3 villages —	check-						140mmHg,	
			Homei,	ups in						diastolic	
			Fuhsin, and	1993,		cumulati	ve As leve	el (mg/L		BP > 90, or	
			Hsinming in	1996,			year)			on anti-	
			Township	and	As level		< 0.0 5.6 15.6			nypertensi	
			located on	2002/03.	and its		> 15.6			therapy)	
	Wang		the south	By	species of	As con	c in well	water	incidenc	was used	age, gender,
1	et al.	perspe	western	2002/03,	drinking		(µg/L)		e of	to define	BMI, and
8	[18]	ctive	coast of	382	water and		< 538		hyperten	cases,	glucose (≥
	(2011)	study	Taiwan. The	(78%) of	urine as		538-700		sion	utilizing	6.11 mmol/l)
			original	these	well as		>700			hypertensi	adjusted
			cohort	woro	o As lovol	As(V) (µg/g creat	tinine)		on and	
			consisted of	successf	e As level		< 1.17			related	
			490 non-	ully			1.17-2.67			data	
			hypertensiv	followe			> 2.67			collected at	
			e residents	d and						(hasolino)	
			111 1993.	138 had						and 2002-	
				been						03 (follow-	
				lost to						up).	
				follow-						-r).	
			F 1 (1)	up							
			Each family								
			provided							A team of	
			names and							medical	
			demographi							experts	
			c							evaluated	
			characteristi			range	mea	media	heart	the	222 2 21
	Wade	retrosp	cs of all		water As	0-5	16	1	disease	available	age, sex
1	et al.	ective	family	NA	level	5.1-20	11.0	11	mortality	and coded	smoking
9	[19]	study	members	1411	(ug/L)	20.1-100	38.8	26	and	each	alcohol use.
	(2009)		residing in		(1-8, -)	100.1-300	168.2	156	stroke	underlying	farm work
			the			Over 300	421.1	387	mortality	cause of	
			household							death	
			January 1							according	
			1997 and							to the ICD-	
			December 1.							10 system.	
			2004.								
										Deaths	
										from	
										ischemic	
			This study							heart	
			enrolled							disease	
			10,133 and							and stroke	
	Man	a follor	16,718			range	mean	media		were	
2	ot al	10110W-	residents		motor A a	<10	5	n 5	CVD	ascertaine	
	et al.	up	agea 40 ana	NA	(ug/L)	10-49	29.5	5 29 5	CVD mortality	u up to December	age, gender
0	[∠0] (2005)	in	arsenic-		(µg/L)	50-499	274.5	29.3 274 5	mortanty	31 2004	
	(=000)	Taiwan	exposed and			≥500	724.5	724.5		through	
			unexposed					. = 1.0		linkage	
			areas							with	
			respectively.							national	
										death	
										certificatio	
										n	

										profiles.	
2 1	Rahma n et al. [21] (2014)	prospe ctive study	Matlab, Bangladesh; recruited 61,074 adults	Particip ants were followe d from January 01, 2003 until Decemb er 31, 2010 (~ 7 years).	TWA individua l drinking water (μg/L)	range < 10 10-49 >50		median 1.7 21.1 101.2	mortality risks of stroke	Stroke deaths: Verbal autopsy (ICD-10: I61–69)	age, sex, education attainment and SES
2 2	Chen et al. [22] (2013)	case– cohort study	369 incident fatal and nonfatal cases of CVD, including 211 cases of heart disease and 148 cases of stroke, and a sub-cohort of 1,109 subjects randomly selected from the original cohort study	The cohort continue s to be actively followe d every 2 years.	baseline well- water As (μg/L)	range 0.1-25 25.1- 107 108- 864	mean 7.2 59.9 222.8	media n 5.1 57 198.5	CVD, heart disease and stroke cases risk (incidenc e)	incident fatal and nonfatal cases of CVD (ICD- 10 codes 100-I99), including fatal and nonfatal stroke (codes I60- I69) and fatal and nonfatal cases of heart disease, which occurred after baseline and before 18 March 2009	sex, baseline age, BMI, smoking status, educational attainment, hypertension, diabetes status, and change in urinary As between visit
23	Hsieh et al. [23] (2008)	case- control study	A random sample of 479 subjects inclusive of 235 cases and 244 controls were selected.	NA	As concentra tion in well water and cumulativ e As exposure	As conc w cumula (r	entration ater (µg/ ≤ 10 10.1-50.0 ≥ 50.1 tive As e ng/L-yea ≤ 0.2 0.3-1 ≥ 1.1	n in well L)) xposure 1r)	carotid atheroscl erosis	Indications of carotid atheroscler osis were evaluated mainly based on three indices: the intima media thickness (IMT), the plaque score and the maximal level of stenosis of	age, gender, cigarette smoking, diabetes mellitus, cholesterol and triglyceride
2 4	Hsieh et al. [24] (2011)	commu nity- based case- control study	A random sample of 863 subjects who had been genotyped for PNP, As3MT, GSTO1, and GSTO2 were selected with 384 subjects being defined as	NA	As concentra tion in well water of the househol d (µg/L)		< 10 10.1-50.0 > 50.0)	carotid atheroscl erosis	ECCA. Three indices including intima media thickness (IMT), the plaque score, and the maximal level of stenosis of the ECCA were	age, gender, cigarette smoking, alcohol consumption, hypertension, cholesterol, fasting glucose, and body-mass index

			cases and the remaining 479 subjects categorized as reference group.							determine d as indications of carotid atheroscler osis.	
25	Jones et al. [25] (2011)	cohort study	4167 participants for this study.	A total of 15,955 adults 20 years of age or older particip ated in NHAN ES between 2003 and 2008, leaving 4167 particip ants for this study.	Total urinary As (μg/L) and its species (μg/L)	to 4.2 > 8.3 > total <i>A</i> arsen 3.1 > 5.8 > dimeth c 2.0 > 3.1	tal As < 4.2 to 8.3 to 17.1 17.1 As minus obetaine < 3.1 to 5.8 to 10.8 10.8 yylarsinal < 2.0 to 3.6 6 to 6.0	te	hyperten sion and blood pressure	Hypertensi on was defined as a mean systolic blood pressure ≥ 140 mMHg, a mean diastolic blood pressure ≥ 90 mMHg, a self- reported physician diagnosis, or use of antihypert ensive medication	sex, age, race and ethnicity, and urine creatinine level, education, body mass index, serum cotinine level, and antihypertens ive medication use and arsenobetaine
2 6	Chen et al. [26] (1996)	prospe ctive	SW Taiwan 40-70 y 52% men	2556 (~5 y)	average concentra tion of As in drinking water (µg/L)	range < 10 10-500 ≥ 510	mea n 5 255 755	medi an 5 255 755	developi ng lethal ISHD	national death registry (ICD-9: 410-414)	age, sex, blackfoot disease, status, cigarette smoking, body mass index, serum levels of cholesterol and triglycerides, and disease status for hypertension
27	Farzan et al. [27] (2015)	prospe ctive analysi s of popula tion- based non- melano ma skin cancer case- control study	New Hampshire, USA Median 61 y 56% men	3939 (14 y)	toenail (µg/g)	range 0.01-0.07 0.07-0.11 0.11-3.26	mea n 0.05 0.09 0.23	medi an 0.05 0.09 0.23	CVD, CHD and stroke mortality	national death index (ICD-10: I00-99, I20- 25, I60-69)	and diabetes age, sex, education, smoking, cancer status
28	Ersboll et al. [28] (2018)	prospe ctive study	Copenhagen and Aarhus , a study population of 53,941 individuals	53,941 (12.8 yea rs)	20-year time weighted average (TWA) As concentra tion in drinking water (μg/L)	range 0.049-0.573 0.573-0.760 0.760-1.933 1.933-25.34	me 0. 0. 1. 2.	dian 435 584 174 109	incidence rate of all strokes	Stroke was defined based on Internatio nal Classifica tion of Disease (ICD) ICD-8 codes:	age, sex, body mass index, waist circumference, smoking status, smoking duration, smoking intensity, alcohol status, intake of

430, 431,	alcohol,
433, 434,	physical
436.01, or	activity, fruit
436.90	intake,
until 1994	vegetable
and ICD-	intake, length
10 codes:	of school
I60, I61,	attendance,
I63 or I64	and calendar
from	year
1994.	

		Mortality risk				Combined fatal	and non-fatal risk		CVD markers		
	CHD	CVD	Stroke	CHD	CVD	Stroke	Carotid atherosclerosis disease	Hypertension	Pulse blood pressure	QT prolongation	
z	5.088	2.161	1.569	1.589	NA	1.030	1.551	0.722	NA	NA	
p-value	< 0.001	0.030	0.117	0.112	NA	0.303	0.121	0.470	NA	NA	

 Table S2. Egger's regression test of funnel plot asymmetry.

CVD: cardiovascular disease; CHD: coronary heart disease.

Notes: Calculated using the 'metafor' package in R.

NA: Egger's test only conducted for models with at least three studies.

		Mortality risk			Combined fatal and non-fa	tal risk
Drinking water arsenic concentration	CHD (5(18)) ^a	CVD (7(24)) ^a	Stroke (5(18)) ^a	CHD (3(10)) ^a	Stroke (3(12)) ^a	Hypertension (7(26)) ^a
		Log-linear dose-re	esponse association model			
1 μg/L ^ь	1.000	1.000	1.000	1.000	1.000	1.000
2	1.175	1.060	1.016	1.209	1.042	1.103
5 μg/L	(1.026, 1.345)	(1.015, 1.107)	(0.860, 1.199)	(1.060, 1.378)	(0.982, 1.105)	(1.009, 1.207)
5~/I	1.267	1.090	1.023	1.321	1.062	1.155
5 µg/L	(1.039, 1.544)	(1.023, 1.161)	(0.801, 1.305)	(1.090, 1.600)	(0.973, 1.158)	(1.013, 1.317)
10	1.403	1.131	1.033	1.489	1.090	1.229
10 µg/L	(1.056, 1.863)	(1.033, 1.239)	(0.729, 1.464)	(1.131, 1.960)	(0.962, 1.234)	(1.019, 1.483)
20	1.553	1.174	1.044	1.679	1.118	1.308
20 µg/L	(1.074, 2.247)	(1.043, 1.321)	(0.663, 1.643)	(1.175, 2.400)	(0.951, 1.315)	(1.025, 1.669)
50 <i>I</i>	1.777	1.233	1.058	1.968	1.157	1.420
50 µg/L	(1.097, 2.878)	(1.057, 1.439)	(0.584, 1.912)	(1.234, 3.138)	(0.937, 1.429)	(1.033, 1.952)
p-value for trend ^c	0.019	0.008	0.850	0.004	0.180	0.031
I ^{2 d}	79.8%	78.0%	91.9%	35.2%	0.0%	66.4%
Cochran's Q-statistic	19.83	22.74	49.51	3.08	0.969	17.84
P-heterogeneity ^e	< 0.001	< 0.001	< 0.001	0.213	0.615	0.007
AIC	1.61	-7.91	3.02	2.40	-1.84	-1.94
		Non-linear dose-response asso	ciation model (restricted cubic	c splines)		
1 μg/L ^b	1.000	1.000	1.000	1.000	1.000	1.000
	1.152	0.999	1.032	1.041	0.982	1.004
3 μg/L	(1.033, 1.285)	(0.983, 1.014)	(0.826, 1.291)	(0.820, 1.322)	(0.770, 1.254)	(0.946, 1.066)
Б (Т	1.231	1.002	1.047	1.061	0.984	1.006
5 μg/L	(1.049, 1.446)	(0.980, 1.023)	(0.758, 1.446)	(0.747, 1.505)	(0.714, 1.357)	(0.922, 1.098)
10 /	1.349	1.015	1.066	1.112	1.002	1.008
10 µg/L	(1.071, 1.699)	(0.987, 1.044)	(0.682, 1.664)	(0.687, 1.800)	(0.688, 1.458)	(0.890, 1.142)
20//	1.481	1.044	1.081	1.297	1.032	1.011
20 µg/L	(1.089, 2.012)	(1.011, 1.079)	(0.624, 1.872)	(0.753, 2.233)	(0.697, 1.529)	(0.860, 1.189)
50 <i>I</i>	1.680	1.118	1.095	2.147	1.087	1.027
50 µg/L	(1.090, 2.587)	(1.070, 1.168)	(0.569, 2.106)	(1.009, 4.565)	(0.725, 1.630)	(0.839, 1.257)
p-value for trend ^c	0.039	< 0.001	0.960	0.120	0.650	0.240
I ^{2 d}	71.6%	24.8%	85.3%	46.6%	0.0%	42.6%
Cochran's Q-statistic	28.19	13.30	54.4	7.49	3.60	20.91
P-heterogeneity ^e	< 0.001	0.207	< 0.001	0.112	0.461	0.052
AIC	18.49	-5.24	8.52	12.57	15.16	17.24

 Table S3. Pooled relative risks (95% confidence intervals) for different CVD types and clinical markers in relation to drinking water arsenic concentrations with the exclusion of studies which do not provide drinking water As concentrations directly.

In this meta-analysis, toenail As concentration in Farzan et al. [27] and urine As concentration in Moon et al. [8] have been transferred to drinking water As concentration using formulae mentioned in the main test.

CVD: cardiovascular disease; CHD: coronary heart disease.

a: Sum of studies included; the total number of relative risks in each model.

b: treat 1 µg/L water arsenic concentration as the referent.

c: P-value for linear trend from a Wald test of the coefficient for water arsenic concentrations.

d: Proportion of total variance due to between-study heterogeneity.

e: P-value for heterogeneity is chi-square p-value of the Q-statistic.

f: Non-linear trend p-value for the non-linear spline coefficient in a model with water arsenic concentrations entered as a restricted cubic spline with knots at 10th, 50th and 90th percentiles.

Drinking water Mortality risk Combined fatal and non-fatal risk						ombined fatal and non-fatal risk	
arsenic concentration	CHD (4(13)) ^a	CVD (4(13)) ^a	Stroke (4(13)) ^a	CHD (3(11)) ^a	Stroke (3(13)) ^a	Carotid atherosclerosis disease (2(6)) ^a	Hypertension (2(8)) ^a
			Log-linear dos	se-response association	model		
1 μg/L ^b	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2 4	1.248	1.151	1.224	1.214	1.044	1.313	1.153
3 µg/L	(1.010, 1.544)	(0.971, 1.366)	(0.933, 1.605)	(1.078, 1.367)	(0.981, 1.112)	(1.115, 1.546)	(1.001, 1.327)
	1.384	1.230	1.345	1.329	1.066	1.490	1.232
5 µg/L	(1.014, 1.889)	(0.958, 1.579)	(0.904, 2.000)	(1.117, 1.582)	(0.972, 1.169)	(1.174, 1.892)	(1.002, 1.514)
10~/	1.593	1.345	1.528	1.502	1.095	1.770	1.347
10 µg/L	(1.021, 2.485)	(0.940, 1.922)	(0.866, 2.696)	(1.171, 1.927)	(0.960, 1.250)	(1.257, 2.491)	(1.003, 1.810)
2 0 //	1.832	1.470	1.736	1.699	1.126	2.101	1.474
20 µg/L	(1.027, 3.269)	(0.923, 2.341)	(0.829, 3.634)	(1.228, 2.348)	(0.948, 1.336)	(1.347, 3.278)	(1.004, 2.164)
50	2.206	1.654	2.055	1.997	1.167	2.637	1.659
50 µg/L	(1.036, 4.697)	(0.901, 3.036)	(0.783, 5.394)	(1.308, 3.0496)	(0.933, 1.460)	(1.475, 4.713)	(1.005, 2.740)
p-value for trend ^c	0.040	0.100	0.140	0.001	0.180	0.001	0.048
I ^{2 d}	89.3%	80.2%	79.6%	25.1%	23.2%	0.0%	0.0%
Cochran's Q- statistic	18.69	15.11	14.74	2.67	2.60	0.07	0.14
P-heterogeneity ^e	< 0.001	0.001	0.002	0.263	0.272	0.791	0.709
AIC	3.69	2.81	6.54	2.19	0.84	2.16	1.95
		Ν	on-linear dose-response	association model (rest	ricted cubic splines)		
1 μg/L ^ь	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2 4	1.343	1.029	1.880	0.958	1.041	1.464	1.137
3 µg/L	(1.029, 1.751)	(0.996, 1.064)	(0.805, 4.389)	(0.762, 1.204)	(0.897, 1.208)	(0.903, 2.376)	(0.930, 1.390)
	1.528	1.055	2.433	0.939	1.071	1.749	1.207
5 µg/L	(1.039, 2.247)	(0.996, 1.118)	(0.738, 8.011)	(0.672, 1.313)	(0.875, 1.312)	(0.861, 3.552)	(0.899, 1.620)
10 Л	1.774	1.130	3.063	0.937	1.131	2.214	1.311
10 µg/L	(1.037, 3.034)	(0.989, 1.290)	(0.688, 13.624)	(0.588, 1.493)	(0.852, 1.500)	(0.819, 5.987)	(0.870, 1.974)
2 0 //	1.999	1.260	3.363	1.133	1.207	2.723	1.434
20 µg/L	(1.016, 3.932)	(0.966, 1.643)	(0.677, 16.699)	(0.682, 1.884)	(0.809, 1.801)	(0.846, 8.757)	(0.891, 2.309)
5 0 7	2.310	1.483	3.575	2.109	1.322	3.277	1.638
50 µg/L	(0.978, 5.454)	(0.928, 2.368)	(0.677, 18.860)	(1.176, 3.780)	(0.729, 2.397)	(1.117, 9.620)	(0.975, 2.752)
p-value for trend ^f	0.047	0.180	0.290	0.005	0.650	0.004	0.140
I ^{2 d}	81.0%	67.0%	65.2%	0.1%	0.0%	0.0%	0.0%
Cochran's Q- statistic	31.57	18.81	17.21	4.00	3.12	0.41	0.37
P-heterogeneity ^e	< 0.001	0.005	0.008	0.405	0.537	0.81	0.827
AIC	25.97	17.01	24.59	11.86	13.85	8.77	12.10

 Table S4. Pooled relative risks (95% confidence intervals) for different CVD types and CVD markers in relation to drinking water arsenic concentrations lower than 100 ppb.

CVD: cardiovascular disease; CHD: coronary heart disease.

a: Sum of studies included; the total number of relative risks in each model.

b: treat 1 μ g/L water arsenic concentration as the referent.

c: P-value for linear trend from a Wald test of the coefficient for water arsenic concentrations.

d: Proportion of total variance due to between-study heterogeneity.

e: P-value for heterogeneity is chi-square p-value of the Q-statistic.

f: Non-linear trend p-value for the non-linear spline coefficient in a model with water arsenic concentrations entered as a restricted cubic spline with knots at 10th, 50th and 90th percentiles.

Figure S1. Flow diagram of study selection procedure.

Figure S2. Association of CVD endpoints with drinking water arsenic concentrations. Dose-response relationships for individual studies were overprinted by the pooled dose-response relationship for each CVD endpoint to visually test the model goodness-of-fit. Shaded area represents the 95 % confidence intervals of log-linear model (red) and non-linear model (blue) (CVD: cardiovascular disease; CHD: coronary heart disease).

Figure S3. Funnel Plots for the analysis of publication bias. Funnel plots of the pooled linear doseresponse models for each CVD endpoint. In this study, funnel plots were created using the metafor package in R. Each funnel plot was cantered at the overall model estimate, with the effect estimated from each study (log- relative risk) plotted against the accordingly standard error. Shaded area represents the region in which 95% of the study points might be expected to lie without the presence of both heterogeneity and publication bias (CVD: cardiovascular disease; CHD: coronary heart disease).

References

- Chen, Y.; Graziano, J.H.; Parvez, F.; Liu, M.; Slavkovich, V.; Kalra, T.; Argos, M.; Islam, T.; Ahmed, A.; Rakibuzzaman, M. Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. *BMJ: British Medical Journal (Overseas & Retired Doctors Edition)* 2011, 342, d2431, doi:10.1136/bmj.d2431.
- Chen, Y.; Wu, F.; Parvez, F.; Ahmed, A.; Eunus, M.; McClintock, T.R.; Patwary, T.I.; Islam, T.; Ghosal, A.K.; Islam, S. Arsenic exposure from drinking water and QT-interval prolongation: results from the Health Effects of Arsenic Longitudinal Study. *Environmental health perspectives* 2013, 121, 427-432.
- Chen, Y.; Factor-Litvak, P.; Howe, G.R.; Graziano, J.H.; Brandt-Rauf, P.; Parvez, F.; van Geen, A.; Ahsan, H. Arsenic exposure from drinking water, dietary intakes of B vitamins and folate, and risk of high blood pressure in Bangladesh: A population-based, cross-sectional study. *American Journal of Epidemiology* 2007, 165, 541-552, doi:10.1093/aje/kwk037.
- Tsinovoi, C.L.; Xun, P.C.; McClure, L.A.; Carioni, V.M.O.; Brockman, J.D.; Cai, J.W.; Guallar, E.; Cushman, M.; Unverzagt, F.W.; Howard, V.J., et al. Arsenic Exposure in Relation to Ischemic Stroke The Reasons for Geographic and Racial Differences in Stroke Study. *Stroke* 2018, 49, 19-26, doi:10.1161/strokeaha.117.018891.
- Sohel, N.; Persson, L.A.; Rahman, M.; Streatfield, P.K.; Yunus, M.; Ekstrom, E.C.; Vahter, M. Arsenic in Drinking Water and Adult Mortality A Population-based Cohort Study in Rural Bangladesh. *Epidemiology* 2009, 20, 824-830, doi:10.1097/EDE.0b013e3181bb56ec.
- 6. D'Ippoliti, D.; Santelli, E.; De Sario, M.; Scortichini, M.; Davoli, M.; Michelozzi, P. Arsenic in Drinking Water and Mortality for Cancer and Chronic Diseases in Central Italy, 1990-2010. *Plos One* **2015**, *10*, e0138182, doi:10.1371/journal.pone.0138182.
- Medrano, M.J.; Boix, R.; Pastor-Barriuso, R.; Palau, M.; Damian, J.; Ramis, R.; del Barrio, J.L.; Navas-Acien,
 A. Arsenic in public water supplies and cardiovascular mortality in Spain. *Environmental Research* 2010, 110, 448-454, doi:10.1016/j.envres.2009.10.002.
- Moon, K.A.; Guallar, E.; Umans, J.G.; Devereux, R.B.; Best, L.G.; Francesconi, K.A.; Goessler, W.; Pollak, J.; Silbergeld, E.K.; Howard, B.V., et al. Association Between Exposure to Low to Moderate Arsenic Levels and Incident Cardiovascular Disease. *Annals of Internal Medicine* 2013, 159, 649-659, doi:10.7326/0003-4819-159-10-201311190-00719.
- Islam, M.R.; Khan, I.; Attia, J.; Hassan, S.M.N.; McEvoy, M.; D'Este, C.; Azim, S.; Akhter, A.; Akter, S.; Shahidullah, S.M., et al. Association between Hypertension and Chronic Arsenic Exposure in Drinking Water: A Cross-Sectional Study in Bangladesh. *International Journal of Environmental Research and Public Health* 2012, 9, 4522-4536, doi:10.3390/ijerph9124522.
- 10. James, K.A.; Byers, T.; Hokanson, J.E.; Meliker, J.R.; Zerbe, G.O.; Marshall, J.A. Association between Lifetime Exposure to Inorganic Arsenic in Drinking Water and Coronary Heart Disease in Colorado Residents. *Environmental Health Perspectives* **2015**, *123*, 128-134, doi:10.1289/ehp.1307839.
- 11. Li, X.; Li, B.; Xi, S.H.; Zheng, Q.M.; Wang, D.; Sun, G.F. Association of urinary monomethylated arsenic concentration and risk of hypertension: a cross-sectional study from arsenic contaminated areas in northwestern China. *Environmental Health* **2013**, *12*, 37-46, doi:10.1186/1476-069x-12-37.
- 12. Wade, T.J.; Xia, Y.J.; Mumford, J.; Wu, K.G.; Le, X.C.; Sams, E.; Sanders, W.E. Cardiovascular disease and arsenic exposure in Inner Mongolia, China: a case control study. *Environmental Health* **2015**, *14*, 35-44, doi:10.1186/s12940-015-0022-y.
- 13. Mumford, J.L.; Wu, K.G.; Xia, Y.J.; Kwok, R.; Wang, Z.H.; Foster, J.; Sanders, W.E. Chronic arsenic exposure and cardiac repolarization abnormalities with QT interval prolongation in a population-based study. *Environmental Health Perspectives* **2007**, *115*, 690-694, doi:10.1289/ehp.9686.
- Mendez, M.A.; Gonzálezhorta, C.; Sánchezramírez, B.; Ballinascasarrubias, L.; Cerón, R.H.; Morales, D.V.; Terrazas, F.A.B.; Ishida, M.C.; Gutiérreztorres, D.S.; Saunders, R.J. Chronic Exposure to Arsenic and Markers of Cardiometabolic Risk: A Cross-Sectional Study in Chihuahua, Mexico. *Environmental Health Perspectives* 2016, 124, 104-111, doi:10.1289/ehp.1408742.
- 15. Wu, M.M.; Chiou, H.Y.; Hsueh, Y.M.; Hong, C.T.; Su, C.L.; Chang, S.F.; Huang, W.L.; Wang, H.T.; Wang, Y.H.; Hsieh, Y.C., et al. Effect of plasma homocysteine level and urinary monomethylarsonic acid on the

risk of arsenic-associated carotid atherosclerosis. *Toxicology and Applied Pharmacology* **2006**, *216*, 168-175, doi:10.1016/j.taap.2006.05.005.

- Hall, E.M.; Acevedo, J.; Lopez, F.G.; Cortes, S.; Ferreccio, C.; Smith, A.H.; Steinmaus, C.M. Hypertension among adults exposed to drinking water arsenic in Northern Chile. *Environmental Research* 2017, 153, 99-105, doi:10.1016/j.envres.2016.11.016.
- 17. Rahman, M.; Tondel, M.; Ahmad, S.A.; Chowdhury, I.A.; Faruquee, M.H.; Axelson, O. Hypertension and arsenic exposure in Bangladesh. *Hypertension* **1999**, *33*, 74-78, doi:10.1161/01.hyp.33.1.74.
- 18. Wang, S.L.; Li, W.F.; Chen, C.J.; Huang, Y.L.; Chen, J.W.; Chang, K.H.; Tsai, L.Y.; Chou, K.M. Hypertension incidence after tap-water implementation: A 13-year follow-up study in the arseniasisendemic area of southwestern Taiwan. *Science of the Total Environment* **2011**, 409, 4528-4535, doi:10.1016/j.scitotenv.2011.07.058.
- 19. Wade, T.J.; Xia, Y.; Wu, K.; Li, Y.; Ning, Z.; Le, X.C.; Lu, X.; Feng, Y.; He, X.; Mumford, J.L. Increased mortality associated with well-water arsenic exposure in Inner Mongolia, China. *Int J Environ Res Public Health* **2009**, *6*, 1107-1123, doi:10.3390/ijerph6031107.
- 20. Wang, C.H.; Chen, C.L.; Hsu, L.I.; Chiou, H.Y.; Hsueh, Y.M.; Chen, S.Y.; Wu, M.M.; Hsiao, C.K. *Chronic Arsenic Exposure Increases Mortality from Ischemic Heart Disease and Stroke: A Follow-up Study on 26,851 Residents in Taiwan*; National Taiwan University: Taipei, Taiwan, 2005.
- Rahman, M.; Sohel, N.; Yunus, M.; Chowdhury, M.E.; Hore, S.K.; Zaman, K.; Bhuiya, A.; Streatfield, P.K. A prospective cohort study of stroke mortality and arsenic in drinking water in Bangladeshi adults. *BMC Public Health* 2014, 14, 1-8, doi:10.1186/1471-2458-14-174.
- Chen, Y.; Wu, F.; Liu, M.L.; Parvez, F.; Slavkovich, V.; Eunus, M.; Ahmed, A.; Argos, M.; Islam, T.; Rakibuz-Zaman, M., et al. A Prospective Study of Arsenic Exposure, Arsenic Methylation Capacity, and Risk of Cardiovascular Disease in Bangladesh. *Environmental Health Perspectives* 2013, 121, 832-838, doi:10.1289/ehp.1205797.
- 23. Hsieh, Y.C.; Hsieh, F.I.; Lien, L.M.; Chou, Y.L.; Chiou, H.Y.; Chen, C.J. Risk of carotid atherosclerosis associated with genetic polymorphisms of apoliploprotein E and inflammatory genes among arsenic exposed residents in Taiwan. *Toxicology and Applied Pharmacology* **2008**, 227, 1-7, doi:10.1016/j.taap.2007.10.013.
- Hsieh, Y.C.; Lien, L.M.; Chung, W.T.; Hsieh, F.I.; Hsieh, P.F.; Wu, M.M.; Tseng, H.P.; Chiou, H.Y.; Chen, C.J. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes. *Environmental Research* 2011, *111*, 804-810, doi:10.1016/j.envres.2011.05.003.
- Jones, M.R.; Tellezplaza, M.; Sharrett, A.R.; Guallar, E.; Navasacien, A. Urine Arsenic and Hypertension in U.S. Adults: the 2003–2008 NHANES. *Epidemiology* 2011, 22, 153-161, doi:10.1097/EDE.0b013e318207fdf2.
- Chen, C.J.; Chiou, H.Y.; Chiang, M.H.; Lin, L.J.; Tai, T.Y. Dose-response relationship between ischemic heart disease mortality and long-term arsenic exposure. *Arteriosclerosis Thrombosis and Vascular Biology* 1996, 16, 504-510, doi:10.1161/01.atv.16.4.504.
- 27. Farzan, S.F.; Chen, Y.; Rees, J.R.; Zens, M.S.; Karagas, M.R. Risk of death from cardiovascular disease associated with low-level arsenic exposure among long-term smokers in a US population-based study. *Toxicology and Applied Pharmacology* 2015, 287, 93-97, doi:10.1016/j.taap.2015.05.013.
- Ersboll, A.K.; Monrad, M.; Sorensen, M.; Baastrup, R.; Hansen, B.; Bach, F.W.; Tjonneland, A.; Overvad, K.; Raaschou-Nielsen, O. Low-level exposure to arsenic in drinking water and incidence rate of stroke: A cohort study in Denmark. *Environment International* 2018, 120, 72-80, doi:10.1016/j.envint.2018.07.040.