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1 Spatial Weights

To analyze the effect of choice of spatial weights, 8 row-normalized spatial weight
constructions were considered for both tracts and places: contiguity, inverse
distance weights (with an outer limit of 50 km and a decay of 1

d ), and k-nearest-
neighbors (KNN) with k ranging from 3 to 8. As noted above, 62% of places had
no contiguity-based neighbors. Moran’s I was calculated for population densities
corresponding to independent variables, e.g., density of Hispanic population,
calculated as the number of Hispanic residents per square kilometer.

Among tracts, contiguity produced the highest values of Moran’s I, followed by
KNN, and finally distance weights. For example, for Hispanic population density,
Moran’s I was slightly less than .7 for contiguity weights; was between .45-.55
for KNN; and was slightly greater than .3 for distance weights. Among places,
KNN and distance-based weights were similar, especially for larger values of K,
while contiguity-based values were much smaller for most variables. For example
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for Hispanic population density, Moran’s I was between .55-.65 for KNN; about
.53 for distance weights; but only .3 for contiguity weights.

LeSage and Pace (2014) argue that inferences in spatial statistical analysis are
much less sensitive to the choice of spatial weights than is typically thought.
By contrast, in the context of the present study, the choice of CTD produces
multiple-order-of-magnitude differences across DV values. I therefore judged
that different CTD values were likely to be a more important source of variation
in effects than different spatial weights. KNN weights produced moderate and
consistent values of Moran’s I across tracts and places, and therefore KNN
weights with k = 3 were selected for use in further analysis.

2 Regression Specification

For higher CTD values (30, 60, 90), distributions are bi- or trimodal. Plotting
separate distributions for each county suggested that this was due to very
different county-level baselines. For counties with many tracts or places, the
distribution of values appeared to be sufficiently Gaussian for standard regression.
County-level dummy variables were considered, and were found to improve
homoscedasticity in non-spatial models, but also introduced multicollinearity in
spatial lagged models (see below). However, inspection of residuals in the spatial
Durbin models suggested that lagged dependent variables substantially improved
homoscedasticity without county-level dummies. Still, even the spatial Durbin
models exhibit some heteroscedasticity. Separate county-level regression models
were therefore constructed. These models could only be fit for counties with 30
or more places or 50 or more tracts, which excluded many counties; and many
of the estimates had high uncertainty. Full-data models are therefore used for
primary analysis, with county-level models used as a robustness/heterogeneity
check.

Spatial exploratory data analysis of both independent and dependent variables
suggested substantial degrees of spatial autocorrelation on both sides of the
regression formula (tables ?? and ??). A sequence of three model specifications
was considered: “standard” linear regression, without any spatial component
(referred to simply as “regression” below); spatial regression with lagged in-
dependent variables, or “spatial lag X”; and spatial Durbin regression, which
incorporates lags for both dependent and independent variables (LeSage and
Pace 2009). If the regression model is specified as

Y = α1n +Xβ + ε (1)

where α is a scalar parameter, 1n is a length-n column vector of 1s, X is a n× p
design matrix, β is a length-p column vector of regression coefficients, and ε is a
Gaussian noise term, then the spatial lag X model is specified as

Y = α1n +Xβ +WXθ + ε (2)
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where W is the n× n spatial weights matrix and θ is a length-p column vector
of coefficients. The spatial Durbin model is further specified as

Y = α1n +Xβ +WXθ + ρWY + ε (3)
Y = (In − ρW )−1(α1n +Xβ +WXθ) (4)

where ρ is a scalar parameter and In is the n× n identity matrix.

3 Model Selection and Evaluation

Model selection considered a “standard” non-spatial linear regression, spatial
lagged X, and spatial Durbin models across each of the 10 = 2 × 5 geography-
CTD combinations. This can be interpreted as taking the “general-to-specific”
approach to spatial model selection (Elhorst 2010).

KNN spatial weights, with k = 3, were used for all of these models. This sequence
of models was fitted for both places and tracts and for CTD values 10 through
90. Residual plots were examined for indications of heteroscedasticity, and
R2, AIC, and Moran’s I of the residuals were compared within model-dataset
combinations.

Across each of the 10 geography-CTD combinations, spatial Durbin models
consistently outperformed both regression and spatial lagged X models in terms
of AIC, Moran’s I, and visual inspection for heteroscedasticity. Spatial Durbin
models were therefore selected for further analysis.

However, Moran’s I was still substantially greater than 0 for all spatial Durbin
models, with values of approximately .07 for tracts and .15 for places. This
suggests that there may be spatial non-stationarity; that is, the effects of the
independent variables may vary across different sub-regions in the study area.

County-level regression models were used to examine this possibility further.
(No resampling was done for county-level models.) Moran’s I was consistently
close to 0 (±.05) for some county-CTD combinations; but was still greater than
.05 for tracts in several counties, especially with larger CTD values. In contrast,
Moran’s I was consistently substantially negative (less than −.05) for places in
Fresno and Kern county. Thus, even at the county level, there are indications of
spatial non-stationarity. Non-stationary models were not explored in the current
study, but may be an important direction for future work.

4 IV Impacts

Unlike non-spatial linear regression models, spatial models treat observations
— locations or geographic units — as statistically dependent. This means that
changes in an IV at one location can influence the DV at another location,
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corresponding to the term WXθ. Further, the spatial Durbin model’s lagged
dependent variable term, WY ρ, introduces the possibility for feedback loops: a
change in IV ∆xi at location l induces a change ∆yl′ = wl′lθ∆xi in y at neighbor
l′, which feeds back to location l as wll′∆yl′ρ. (This and the next paragraph
generally follow LeSage and Pace (2009), §2.7.)

Spatial econometricians have introduced the notion of impacts for the interpre-
tation of regression coefficients under spatial feedback. In non-spatial linear
regression models without interaction, the coefficient βi for IV xi is identical
to the partial derivative ∂y/∂xi. βi can therefore be interpreted directly as the
marginal effect of xi on y (bracketing concerns about causal inference, etc.). But
in the spatial Durbin model, the partial derivative

∂y

∂xi
= (In −Wρ)−1(Inβi +Wθi) = Si(W )

depends not just on the coefficients βi and θi, but also the autoregression
coefficient ρ. And the value of this partial derivative at location l depends on its
connection to other locations, as encoded in W . The total impacts for IV xi are
formally defined as the mean row sum of Si(W ), which corresponds to averaging
Si(W ) across locations.
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Figures

Figure S1: Total impacts from county-level models, with non-resampled full data
estimates for comparison. All estimates on log scale. Tract estimates in blue;
place estimates in red. Ends of line ranges indicate 5th and 95th percentiles of
Monte Carlo impact draws; circles/triangles indicate medians.
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