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Abstract: Hospitals need to prepare large amounts of domestic hot water (DHW) to develop their
healthcare activity. The aim of this work was to analyse potential savings that can be achieved by
installing solar thermal energy for production of domestic hot water in the hospitals of Extremadura
(Spain). For this purpose, 25 hospitals between 533 and 87,118 m2 and between 15 and 529 beds were
studied, three solar factor scenarios were simulated (0.70, 0.75 and 0.80) and the necessary investment
and corresponding economic and environmental savings were calculated. Better economic results
and energy ratios for 70% of solar contribution were obtained. These results show an average payback
of 4.74 years (SD = 0.26) reaching 4.29 kWh/€ per year (SD = 0.20). Undertaking an investment
of 674,423 €, 2,895,416 kWh/year of thermal energy could be generated with which to save both
145,933 € and 638 tons of CO2 per year. It was statistically demonstrated the priority of carrying out
an installation with a solar factor of 70%, investing preferably in hospitals in Cáceres over those in
Badajoz, especially in the public sector with more than 300 beds. These findings will provide hospital
managers with useful information to make decisions on future investments.

Keywords: green buildings; energy and environmental costs; domestic hot water (DHW); healthcare
engineering; solar thermal energy

1. Introduction

Hospitals are very energy-intensive buildings, because they operate continuously with high
technical demands on supply and system reliability [1]. Water distribution systems in hospitals are an
imperative service, especially for the preparation and distribution of domestic hot water (DHW) [2].
The Spanish hospital stock represents 3% of non-residential buildings [3] and is on average over
25 years old [4]. The equipment’s antiquity, combined with stringent demand specifications, means
that hospitals are neither energy nor environmentally efficient [5]. Kolokotsa et al. [6] compiled
technologies and strategies to promote energy savings and a reduction of CO2 emissions in hospital
facilities and concluded that a series of measures can save up to 10% of primary energy while taking
into account that the level of services provided in a hospital cannot be reduced [7].

Domestic hot water is an essential facility in hospitals which accounts for a large part of the
thermal energy demand and represents approximately 15% of a hospital’s thermal consumption [8].
Moreover, hot water in a hospital is used mainly for sanitary purposes, laundry, kitchen and heated
swimming pools for rehabilitation. It has been estimated that up to 50 kWh are needed to prepare 1 m3

of domestic hot water [9].
Adapting to new assistance services needs requires reforming and redesigning spaces which can

influence the energy consumption of hospitals [10]. Thermal consumption in Spanish hospitals in 2017
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was 5024.86 MWh, representing 11.1% of total consumption in the service sector [11]. The primary
energy consumed in hospitals operating under normal operating conditions has been calculated as
0.27 MWh/m2, 9.99 MWh/worker and 34.61 MWh/bed [12]. Another study has gone deeper, creating
indicators that relate thermal energy consumption to healthcare activity: 0.50 MWh/hospital discharge,
0.20 MWh/hospital stay, 1.60 MWh/surgery and 0.07 MWh/emergency action [13].

Southwest Spain receives an enormous amount of solar radiation that can be harnessed by
installing renewable technologies to produce thermal energy for DHW. It has been proven that
hospitals are a suitable type of building for these renewable energy installations, because they have a
constant demand throughout the year [14]. Furthermore, these types of technical solutions contribute
to improving the environmental efficiency of hospitals by reducing the CO2 emissions of their facilities.
Studies have even shown that it is possible to achieve zero emissions by satisfying the energy needs of
a hospital through hybridization of renewable energy sources [15].

The energy consumption of a DHW facility is related to the care activity carried out at the centre,
the working hours, whether it has hospitalization services, its geographical location, etc. [16,17].

Several studies justify the suitability of applying solar thermal energy to meet the demand for
DHW in buildings which have a constant demand throughout the year [18] such as hospitals. A series
of annual, monthly, daily and even hourly indicators have been designed to control the operation of
the system [19]. For example, it has been estimated that 8.5% of energy savings can be achieved by
applying this technology to a hospital’s laundry service through simulation [20]. Other simulations
have estimated the possible solar contribution using this technology at 61% for the Czech Republic [21].

Payback is often used as a financial performance index. Solar thermal showed three years
lower payback (14 years versus 17 years) compared to solar photovoltaic for this application [21].
Hybridizing solar thermal technology with photovoltaic and biomass for DHW production is emerging;
however, solar thermal is still more cost-effective today [22,23]. Research on architectural integration of
renewable energy installations is trying to overcome the lack of roof area [24]. The technical-economic
and environmental viability of installing solar collectors on facades is being evaluated [25,26]. Some
studies have estimated the payback time of a single-family building investment at 15–20 years for
different locations in Italy [27] and at 13.2 years on average for different Mediterranean cities [28].

Therefore, no author has so far studied in depth the economic and environmental savings possible
in the DHW facilities of a representative group of hospitals. The aim of this paper was to analyse and
quantify the potential for feasible savings through the installation of solar thermal energy for DHW
production in the hospitals of Extremadura (Spain).

This work focused on calculating the energy savings for a heterogeneous set of hospitals, evaluating
the corresponding economic and CO2 emissions savings to the atmosphere. This will complement the
data that currently exist in the literature to apply tools for benchmarking the energy performance of
buildings in order to direct efforts towards the most appropriate investments [29].

Given that all publicly owned buildings in Europe should be nearly zero energy buildings
(NZEBs) from 2020 onwards, analysing the potential for savings in DHW facilities through the use
of solar thermal energy in hospitals will provide useful information for making decisions on future
investments [30].

2. Methodology

Twenty-five existing hospitals in the region of Extremadura, located in the southwest of Spain,
were analysed. Their size ranged from 533 to 87,118 m2 and their beds from 15 to 529. After gathering
functional parameters from each hospital, as explained below, those that did not have an available
rooftop area to undertake an installation were discarded.

The following data were obtained from the Ministry of Health [31] to characterise each hospital:
number of beds (NBs) and built surface area (BS). Roof surface (RS) was calculated by evaluating the
construction plans of each building. The unusable surface (US) was then calculated by means of visual
inspection of the RS. The ground on which it was not possible to install the solar collectors because of
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installed equipment and/or shading was taken into account. The value of US was deducted from RS
thus obtaining the available surface (AS).

The hospitals were classified according to the following categories: geographical location (Badajoz
or Cáceres), type of management (public or private) and size of the hospital (<120 beds, 120–300 beds
and >300 beds). The study by García-Sanz-Calcedo et al. [32] on water consumption in the public
hospitals of Extremadura justify the categorization of hospital size according to the NBs in the case of
water consumption.

All hospitals are located between the latitude N 38.4◦ (H10) and N 40.0◦ (H22). Table 1 shows the
functional characteristics of the analysed hospitals.

Table 1. Functional characteristics of the hospitals under study.

Hospital Province Type of
Management NB BS 1 (m2) RS 2 (m2) US 3 (m2) AS 4 (m2)

H1 Badajoz Public 510 75,173 16,314 3900 12,414
H2 Badajoz Public 529 87,118 20,731 6374 14,357
H3 Badajoz Public 331 46,207 8,145 4600 3545
H4 Badajoz Public 270 36,308 18,446 6080 12,366
H5 Badajoz Public 50 32,074 9992 1200 8722
H6 Badajoz Public 284 21,439 14,943 2500 12,443
H7 Badajoz Public 43 14,630 12,336 3850 8386
H8 Badajoz Public 136 6486 5667 2300 3367
H9 Badajoz Public 91 21,381 9842 7492 2350
H10 Badajoz Private 74 4903 1016 816 200
H11 Badajoz Private 20 5025 797 797 0
H12 Badajoz Private 101 3130 1412 1412 0
H13 Badajoz Private 26 1549 795 105 690
H14 Badajoz Private 100 7678 3189 430 2759
H15 Badajoz Private 29 2950 2293 2293 0
H16 Badajoz Private 15 2556 586 586 0
H17 Cáceres Public 404 38,880 11,187 3240 7947
H18 Cáceres Public 116 21,024 6297 4747 1550
H19 Cáceres Public 103 20,998 6447 1732 4715
H20 Cáceres Public 102 23,702 7416 967 6449
H21 Cáceres Public 250 22,192 6761 1280 5481
H22 Cáceres Public 330 19,489 6187 1300 3887
H23 Cáceres Private 35 2920 646 646 0
H24 Cáceres Private 32 7320 2077 1414 663
H25 Cáceres Private 24 533 549 154 395

1 BS: built surface area; 2 RS: rooftop surface; 3 US: unusable surface; 4 AS: Available surface.

The DHW demand to be satisfied on a daily basis was calculated according to Spanish
regulations [33] using Equation (1) adapted for hospitals and clinics:

D = 55 × NB (1)

where D is the reference demand for DHW at 60 ◦C (litres/day) and NB (units) the number of beds
installed as the hospital’s fixed capacity.

The cold-water temperature was estimated for the different hospital locations according to UNE
94002:2005 [34] to calculate the energy required to raise it to the 60 ◦C reference. According to Spanish
legislation [33], at least 70% of this energy must be provided by the Sun. Furthermore, two conditions
were imposed against overheating that establish the upper limit of solar utilization: (1) not to produce
110% of the demand in any month and (2) not to exceed 100% of production for more than three months
in a row.

A commercial model of solar collector was used, and the technical characteristics are indicated in
Table 2. In this way, it was possible to obtain the number of solar thermal collectors (NSTCs) required.
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Table 2. Technical characteristics of the solar thermal collectors employed.

Dimensions Absorber
Surface Absorptance Zero-Loss

Efficiency
1st Order

Coefficient
2nd Order
Coefficient

1753 × 1147 × 87 mm 3.76 m2 95% 0.724 3.860 W/m2K 0.017 W/m2K

Subsequently, the thermal energy generated by the solar field for DHW production during a
calendar year (E), expressed in kWh per year, was calculated using MetaSol methodology [35]. MetaSol
methodology uses solar radiation data collected hourly in the “Atlas of Solar Radiation in Spain” by
the State Agency of Meteorology during the period 1983–2005 [36]. Its calculation procedure is based
on curves obtained by the f-chart statistical method [37] from results of more than 69,000 dynamic
simulations performed in TRNSYS [38]. Over 800,000 data are obtained on a monthly basis which
constitute the information used to generate correlations.

An iterative process on the MetaSol methodology was carried out to check the upper limit of
possible solar contribution, taking into account the lower and upper limitations described. A solar
factor greater than 0.8 could not be achieved; therefore, three situations were considered to be feasible
and representative of the percentage of solar contribution (solar fraction, fs) that can be achieved:
70% (minimum), 75% (intermediate) and 80% (maximum). For each level of this factor, the necessary
capturing area was estimated, knowing the value of global horizontal solar radiation for each location
and the conversion factor k that relates it to the radiation on the tilted plane for each latitude (embedded
in MetaSol methodology).

Next, the amount of CO2 not emitted was estimated with Equation (2), considering that the E
should have been produced by the DHW facility currently installed in the hospitals.

CO2 eq = E × CF (2)

where CF is a conversion factor for the technology currently installed in each hospital to the amount of
CO2 equivalent indicated by the Spanish Ministry of Development [39].

Then, the capital expenditure (CAPEX) for the physical construction of the planned facilities was
calculated according to Equation (3) after contact with suppliers, and operational expenditure (OPEX)
was calculated annually as 2% of the CAPEX.

CAPEX = NSTC × 580 €/u + NSTC/32 × 3000 €/u (3)

where CAPEX is the value of the material investment in euros (€) and NSTC is the number of solar
thermal collectors installed (units).

Finally, the annual savings attributed to DHW production facilities (S), were calculated, estimating
a value of 0.055 €/kWh per year. Ten years of the plant life were proposed. With these data it
was possible to obtain the economic payback index for each case. Possible government aid for the
investment was not taken into account which would further reduce the payback.

Additionally, the area occupied by each thermal collector unit was calculated using Equation (4)
with the measurements of the commercial model selected with an inclination between 48.4◦ and 50◦

above the horizontal (latitude increased by 10◦) and zero azimuth, taking into account the minimization
of shadow production between them, as shown in Figure 1.

Minimal distance =·L × cos β + (L × sin β)/tg ϕmin (4)

where L (mm) is the length of the solar collector, β (◦) is the tilt angle that the solar collector forms
with the horizontal surface and ϕmin (◦) is the minimum solar declination (angle between sun–earth
centreline and the equatorial plane).
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Pearson’s coefficient was used to check whether there was a relationship among energy results and
functional parameters of a hospital. This was a measure of the linear correlation among quantitative
variables used to determine if this correlation was significant with a 95% significance level. Significant
correlation between energy generated and the built surface area of hospitals was the only one noticed.
A linear regression model was proposed to determine a mathematical equation that relates them. This
model was validated after verifying that its residuals complied with the premises of independence,
normality and homoscedasticity.

Independence implies that there was no correlation among the residues of the intervening variables.
For this purpose, the Durbin–Watson test was used which takes values between 0 and 4, with those
around 2 being acceptable for ensuring the lack of correlation among residues [40]. The residues
were checked for normality with a histogram of the standardized residues. The homoscedasticity of
the model variables was verified by graphical methods using the residual versus fitted plot. Values
between −2 and +2 were taken as valid and no association pattern was detected between them.

Samples were tested for normality with Shapiro–Wilk (N < 30) and for homogeneity of variances
with the Levene test. The non-parametric Kruskal–Wallis test was applied to determine if there was a
significant difference in average values among groups.

3. Results

3.1. Energetic, Environmental and Economic Results

The NSTCs required to achieve the expected solar factor in each hospital is shown in Table 3.
Due to the unavailability of rooftop area, there are hospitals that do not have an assigned value (number
11, 12, 15, 16 and 23). For each level of solar factor, NSTCs ranges from 6 to 138 for fs = 0.70, for fs =

0.75 the minimum is 7 and the maximum is 160, and for fs = 0.80 it ranges from 9 to 204.

Table 3. Number of solar thermal collectors for each hospital according to the solar factor.

Solar Factor H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

70% 134 138 88 72 14 77 12 43 28 19
75% 154 160 103 84 16 90 15 53 33 23
80% 196 204 134 110 25 142 21 70 47 29

Solar factor H13 H14 H17 H18 H19 H20 H21 H22 H24 H25

70% 7 27 105 30 25 25 62 81 8 6
75% 8 31 122 35 29 29 71 94 10 7
80% 12 41 155 45 35 36 87 115 13 9

The value of the investment to be assumed by each hospital according to the level of solar
contribution desired to carry out these projects is shown in Figure 2. The CAPEX ranges from 4042.50 €
for a hospital with 24 beds and an fs = 0.70, to 137,445.00 € for a hospital with 529 beds and an fs =
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0.80. For each level of solar factor, the full investment would be: 674,423 € (OPEX = 13,488.48 €/year),
786,266 € (OPEX = 15,725.33 €/year) and 1,028,142 € (OPEX = 20,562.85 €/year), respectively.Int. J. Environ. Res. Public Health 2020, 17, x 6 of 16 
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Adding the individual results of each hospital, 2,895,417 kWh/year will be generated for the
minimum solar contribution (70%), 3,068,977 kWh/year for the 75% contribution and 3,239,578 kWh/year
for the 80% solar factor which means an annual economic savings of 145,933.41 €, 153,503.46 € and
157,723.94 €, respectively. The proportion of thermal energy according to province and type of
management that will be generated by the DHW installations of the analysed hospitals is shown in
Figure 3.
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Figure 3. Proportion of thermal energy generated based on province and type of management.

Separating by provinces and by type of management, the results shown in Figure 4 were obtained.
For each level of solar contribution, the hospitals in Badajoz would generate 82% more on average
than those in Cáceres. The difference between public and private was much greater, being on average
1382.5% in favour of public ones.
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In all cases, the ratio of energy generated to CAPEX decreases as the solar factor increases. For the
minimum solar contribution, we have an average of 4.29 kWh/€ per year (standard deviation, SD = 0.20)
for fs = 0.70, for the 75% contribution we calculated 3.90 kWh/€ per year (SD = 0.23) and for the highest
solar factor, 3.15 kWh/€ per year (SD = 0.39). The value of this ratio for each hospital can be seen in
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Figure 5. (a) Ratio: energy/CAPEX (kWh/€ per year); (b) payback calculated for each investment (years).

The payback for each investment is shown in Figure 5b. The increase in the average global
payback with respect to fs = 0.70 is 10.55% and 43.46% for fs = 0.75 and for fs = 0.80, respectively;
in some cases reaching 72.9% (hospital number 6) and 68.7% (hospital number 5). If all investments
were undertaken, it would mean a payback of 4.74 years (SD = 0.26 years) for a solar contribution of
70%, 5.24 years (SD = 0.38 years) for 75% and 6.80 years (SD = 1.07 years) for 80%.

Separating by province, providing 70% of the demand continues to be the most appropriate as
the lowest payback value is presented by the hospitals of Cáceres (average of 4.52 years) followed by
those of Badajoz (average of 4.89 years). In the next level of solar contribution, those of Caceres present
a payback of 0.46 years less than those of Badajoz. For the highest solar factor value, this difference
increases to 1.40 years. The worst payback results were obtained for the hospitals of Badajoz if an
installation is projected for fs = 0.80.

According to the hospital size NB-based classification, the best results were obtained for type C
(NB > 300) with a payback of 4.66 years (SD = 0.12 years) for fs = 0.70. The worst results were for type
B (NB = 120–300) with 7.32 years (SD = 1.44 years) and solar factor 0.80. For the intermediate step
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of solar contribution, the best results were again for type C with 5.09 years (SD = 0.15 years) and the
worst results were for type B with 5.43 years (SD = 0.64 years).

Assuming that the installed solar thermal system replaces the current technology of each hospital,
it is estimated that annual CO2 emissions range from 637,991 kg for the lowest solar factor to 721,016 kg
for the highest one and 678,462 kg for the intermediate level. The average savings of hospitals according
to their size per year is shown in Table 4.

Table 4. Amount of CO2 (ton/year) not emitted to the atmosphere.

Category Fs = 0.70 Fs = 0.75 Fs = 0.80

NB < 120
Mean 11,466.18 12,332.27 13,080.82

SD 5772.66 6152.41 6537.60

120 ≤ NB ≤ 300
Mean 39,267.50 42,124.00 44,541.50

SD 10,581.70 11,369.59 12,870.84

NB > 300
Mean 69,358.60 74,422.20 79,592.20

SD 15,829.35 16,816.71 18,052.30

3.2. Relationship between Built Surface Area and Produced Energy

The energy that can be produced was estimated as a function of the built surface area according to
the desired solar fraction. The results for Pearson’s (R) correlation test are shown in Table 5, and the
significance level indicates that they were indeed correlated. It was then proposed to establish the
regression model shown in Figure 6.

Table 5. Pearson’s correlation test between built surface area and energy input according to solar fraction.

Energy Supplied
Fs = 0.70 Fs = 0.75 Fs = 0.80

CS
R 0.854 0.853 0.855
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Values of 2.641, 2.642 and 2.624 were obtained from the Durbin–Watson test for fs = 0.70, fs = 0.75
and fs = 0.80, respectively. Values close to 2 were obtained thus confirming the independence
among residuals.
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Figure 7 shows (a) the test for normality of the residues and (b) the relationship among standardized
forecasts (X) and standardized residues (Y). It can be seen that (a) most of the points are in the interval
[–2,2], and (b) there is no pattern of association among variables which means that there is homogeneity
of variances.
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Therefore, the proposed linear regression model was adequate to predict the value of savings
(or energy contributed by the facility) as a function of the built surface area of a hospital. The key
performance indicator (KPI) shown in Equation (5) was constructed to help adjust the plant equipment
at start-up:

KPI #1 = Supplied Energy/CS. (5)

3.3. Prioritisation of Investment Alternatives

The significance level of Shapiro–Wilk’s test for payback was 0.032 for fs = 0.70, 0.003 for fs = 0.75
and 0.007 for fs = 0.80. If any case had a p-value > 0.05, consequently, it was not verified that the samples
followed a normal distribution for the three levels of solar fraction. After applying the Kruskal–Wallis
test, a p-value of 1.5 × 10−10 was obtained (K-W’s H was 45.201 and df = 2), so there was a significant
difference in the mean payback among the three levels of solar fraction.

When the data were categorized according to province and solar factor, the significance values
in Table 6 were obtained after applying S–W’s test. Two of the three categories for Cáceres were the
only ones that followed a normal distribution, so the K–W’s test was performed. The test results
show p-value of 4.9 × 10−10 (K–W’s H was 52.219 and df = 5), so there was a significant difference
among groups.

Table 6. Shapiro–Wilk’s test results for data categorized by province.

Province Solar Factor
Badajoz Cáceres

70% 75% 80% 70% 75% 80%

Significance 0.010 0.003 0.030 0.116 * 0.046 0.295 *

* Normal distribution.

When we performed the same procedure for type of management, we obtained the significance
levels in Table 7. There were samples that did not fit a normal distribution, so a K–W’s test was done.
A p-value of 1.2 × 10−8 was obtained (K–W’s H was 45.468 and df = 5). This implies that there was a
significant difference among the average of the six groups.



Int. J. Environ. Res. Public Health 2020, 17, 2658 10 of 16

Table 7. Shapiro–Wilk’s test results for data categorized by type of management.

Type of Management
Solar Factor

Public Private

70% 75% 80% 70% 75% 80%

Significance 0.103 * 0.023 0.009 0.418 * 0.001 0.481

* Normal distribution.

According to the hospital size classification by number of beds, the significance value in Table 8
was obtained after applying S–W’s test. There were two cases of significance value lower than 0.05,
so these did not follow a normal distribution. Therefore, K–W’s test was performed. The test results
showed a p-value of 2.9 × 10−7 (K–W’s H was 45.502 and df = 8), so there was a significant difference
among groups.

Table 8. Shapiro–Wilk’s test results for data categorized by NB-based size.

Size NB < 120 120 ≤ NB ≤ 300 NB > 300

Solar Factor 70% 75% 80% 70% 75% 80% 70% 75% 80%

Significance 0.428 0.174 0.243 0.266 0.135 0.175 0.971 0.034 * 0.020 *

* Non-normal distribution.

These analyses are shown graphically in Figure 8, where the boxes of the different groups do not
overlap with all the others which means that there is a difference among them. In all cases, better
results can be detected for fs = 0.70. In general, it can be said that it is more attractive to invest to satisfy
70% of the demand, more profitable in the hospitals of Cáceres than those of Badajoz and the priority
cannot be determined graphically according to the type of management. Depending on the size of the
hospital, it also remains more interesting to invest to achieve 70% of demand. The differences in the
payback rate among sizes within this solar factor were not remarkable. However, the most profitable
were those in NB > 300 category.Int. J. Environ. Res. Public Health 2020, 17, x 11 of 16 
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The analysis was specified for 70% of solar contribution, since it was the best investment
considering its payback. Figure 9 shows this index by province, by type of management, by both and
by NB-based classification. It is more interesting in the hospitals of Cáceres than those of Badajoz.
According to the type of management is indifferent. Combining both, investments should be prioritized
over public hospitals in Cáceres despite having a similar average payback, because they are more
numerous than private ones. As per NB-based classification, the most profitable investments would be
in NB > 300 hospitals; it would be quite similar in Cáceres for NB < 120 and NB > 300; finally, priority
by size and type of management could not be determined graphically.
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4. Discussion

Throughout the research, it was proven that hospitals are among the most cost-effective tertiary
sector buildings for implementing solar thermal hot water production systems. The use of the facilities
24 h/365 days makes the return on investment pay off in a short period of time [41]. In addition, the use
of solar energy to produce DHW avoids constant variations in the price of gas and electricity, which
tends to be upward [42], which is important for adjusting the hospital’s annual budgets.

Positioning panels at an inclination 10◦ higher than the geographical latitude allows for increased
capture during months of lower solar radiation [43]. The solar fraction will decrease in summer,
consequently. Nevertheless, less energy is required to bridge the thermal gap in summer than
winter, and the support system’s cost will be reduced. Consequently, this arrangement will be more
cost-effective and auxiliary energy consumption will be reduced in favour of the solar contribution.
Another advantage of implementing solar thermal energy for DHW generation is that the internal
space available in the hospital will be increased, because the infrastructure is located on the hospital’s
rooftops, usually without defined use [44].
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It was noted that the NSTC does not increase proportionally with increasing solar fraction. For all
cases studied, the demand for DHW was completely satisfied with the solar capture during the months
of June, July and August due to the enormous amount of solar radiation received. During the rest of
the year, it would be necessary to install a greater number of solar collectors to increase the overall
solar contribution due to the significantly lower radiation.

It was also found that for the solar factor of 0.70, the best payback values were obtained both for
the overall investment and by separating the hospitals by province and by management. The hospitals
in the province of Cáceres presented better payback data at all levels.

Investment policy in hospitals tends to prioritize more urgent actions, leaving aside investments
in energy efficiency [45]. However, there are alternative sources of financing such as energy service
companies (ESCO) or public–private partnership (PPP) contracts [46]. Crowdfunding has also been
tried [47].

The modernization of hospital buildings, both public and private, to promote energy efficiency is
essential [48]. The incorporation of government subsidies and incentives can make investment even
cheaper, encouraging rapid amortization of facilities [49].

District generation can be a suitable solution, because it allows a better use of energy. It has been
found that most of the EU28 member states have good conditions for district heating [50]. Hybrid
photovoltaic-thermal systems are also interesting, because they have the ability to convert solar energy
into electricity and into thermal energy simultaneously [51] and can be used to meet, to a large extent,
the energy demand of hospitals [52]. Another interesting option is to use solar energy to produce cold
by means of absorption equipment [53].

One option to further reduce CO2 emissions to the atmosphere is to supplement production with
biomass which will improve the environmental outlook, although facilities are made more sophisticated
by increasing maintenance costs [54].

It is essential monitoring and modifying operation set points of different pumped systems
according to the results obtained by calculation [55]. Another important consideration can be the use
of available energy resources in the hospital centre, produced by other systems or equipment which
must be registered in energy audit reports [56,57].

In any case, the elimination of Legionella has to be guaranteed [58], since the hospital is a very
sensitive building to Legionella infection due to the fragility of the patients admitted [59,60].

This paper is useful for hospital managers to assess investment, savings and environmental
benefits. The geographical location of the hospitals studied and the applicable regulatory requirements
can be established as a limitation; nevertheless, the methodology used can be extended to other regions.

Future work should focus on analysing the feasibility of introducing other renewable energy
sources to support the solar thermal energy production facility.

5. Conclusions

This paper reported all the energy, economic and environmental calculations related to the
implementation of solar thermal energy to prepare DHW in the 25 hospitals of Extremadura (Spain).
An exhaustive analysis of the decomposed calculations for different classifications (i.e., province,
management and size) was carried out for three levels of solar contribution (i.e., 70%, 75% and 80%).

Better overall results were obtained for investing in an installation that covers 70% of DHW
demand with solar thermal energy. For all cases studied, this level of solar contribution shows the
lowest payback values (mean of 4.74 years and SD = 0.26 years). Furthermore, the highest ratio of
thermal energy for each monetary unit invested (mean 4.29 kWh/€ per year and SD = 0.20 kWh/€ per
year) will be generated. Carrying out an investment of 674,423 € (plus an OPEX of 13,488.48 €/year),
2,895,416 kWh/year of thermal energy could be generated with which to save both 145,933.41 and
637.99 tons of CO2 per year.

For this level of solar factor: on the one hand, Badajoz hospitals require an investment of
444,001.25 €with OPEX of 8,880.03 €/year to produce 1,870,439 kWh/year with a ratio of 4.21 kWh/€
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(SD = 0.17 kWh/€). Annual savings of 94,127.05 € and 411.51 tons CO2 are achieved which means an
average payback of 4.89 years (SD = 0.23 years). On the other hand, the hospitals of Cáceres would
produce 1,024,978 kWh/year of thermal energy with an index of 4.45 kWh/€ (SD = 0.08 kWh/€) if an
investment of 230,422.50 € with an OPEX of 4608.45 €/year is made. The annual savings are 51,806.36 €
and 226.48 tons CO2 which translates into an average payback of 4.52 years (SD = 0.09 years).

It has been statistically proven that the investment is more profitable in the hospitals of Cáceres
than those in Badajoz. The priority cannot be determined according to type of management; however,
managers should give priority to investment in the public hospitals of Cáceres considering both
province, type of management and size.
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