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Abstract: This study presents an empirical investigation of the impacts of real-time weather conditions
on the freeway crash severity. A Bayesian spatial generalized ordered logit model was developed for
modeling the crash severity using the hourly wind speed, air temperature, precipitation, visibility,
and humidity, as well as other observed factors. A total of 1424 crash records from Kaiyang Freeway,
China in 2014 and 2015 were collected for the investigation. The proposed model can simultaneously
accommodate the ordered nature in severity levels and spatial correlation across adjacent crashes.
Its strength is demonstrated by the existence of significant spatial correlation and its better model fit
and more reasonable estimation results than the counterparts of a generalized ordered logit model.
The estimation results show that an increase in the precipitation is associated with decreases in
the probabilities of light and severe crashes, and an increase in the probability of medium crashes.
Additionally, driver type, vehicle type, vehicle registered province, crash time, crash type, response
time of emergency medical service, and horizontal curvature and vertical grade of the crash location,
were also found to have significant effects on the crash severity. To alleviate the severity levels
of crashes on rainy days, some engineering countermeasures are suggested, in addition to the
implemented strategies.

Keywords: crash severity; weather condition; generalized ordered logit model; spatial correlation;
conditional autoregressive prior; Bayesian inference

1. Introduction

Weather conditions have been found to affect traffic crash risk and severity (e.g., [1–5]). Especially,
adverse weather conditions (e.g., typhoon, rainstorm, and heavy fog) may result in severe crashes on
rural freeways, which are characterized with a high vehicle speed and a large proportion of heavy
vehicles [6]. Quantifying the effects of weather conditions on the crash severity has a potential to
provide directions for developing countermeasures and policies aimed at decreasing the amount of
property damage and mitigating the level of injury severity sustained by involved road users, and thus
improving the safety performance of freeways.
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However, in most of the previous crash severity analyses [6–8], researchers collected weather
information from historical crash reports, where police officers recorded the weather information based
on their subjective judgements at crash scenes or even their memories when they were back at their
offices [8]. The vague information on weather conditions may lead to a biased estimation of their effects
on crash severity. A better alternative is collecting real-time data on weather conditions from proximate
weather observation stations where precise information on wind speed, air temperature, precipitation,
visibility, and humidity is usually measured continuously by specific sensors and recorded at small
intervals (e.g., 2 or 15 min) [9,10]. Incorporating them into crash severity models is expected to uncover
a more explicit relationship between crash severity and weather conditions, as well as the attributes
related to drivers, vehicles, roadways, emergency medical service (EMS), and crash configuration.

A number of previous studies have examined the impacts of real-time weather conditions on crash
injury severity [8,9,11]. However, these studies are specific to certain crash types. Specifically, Jung,
Qin, and Noyce [11] used sequential logistic models to assess the effects of wind speed, temperature,
rainfall intensity, and water film depth on the injury severity of single-vehicle and multi-vehicle crashes
respectively in rainy weather. They found that wind speed has significant effects on the severity of both
single-vehicle and multi-vehicle crashes and rainfall intensity has a significant effect on single-vehicle
crashes only. Naik et al. [9] investigated the relationship between the injury severity of single-vehicle
truck crashes and real-time weather conditions using mixed ordered and unordered logit regressions.
The results showed that more severe injuries in single-vehicle truck crashes are associated with higher
wind speed and air temperature, heavier precipitation, and lower humidity. Recently, Zhai et al. [8]
developed a mixed logit model to analyze the impacts of weather conditions on pedestrian crash
severity and found that higher air temperature and presence of rainfall were linked to a higher level of
pedestrian injuries.

To the best of our knowledge, there is only one reported study [12] that focused on the effects of
real-time weather conditions on the injury severity of freeway crashes (regardless of crash types). The
importance of explanatory variables was estimated using the random forest method and temperature
was identified as the only important weather factor. Nonetheless, there are several limitations of the
research with respect to generalization and methodology. First, only two injury levels (no-injury versus
injury) were classified, which may result in inadequate use of crash severity data and cannot provide a
thorough understanding of the effects of significant factors on the likelihood of certain specific injury
levels (e.g., fatality). Second, the factors related to drivers, vehicles, EMS, and crash configuration were
not considered in the analysis. Third, the employed support vector machine, and fixed and mixed logit
models cannot account for the spatial correlation among adjacent crashes, the significance of which
has been demonstrated in extensive previous studies on modeling crash frequency/rate [13–17] and
severity [18–21]. Using a more rigorous modeling scheme for the analysis of crash severity in a more
comprehensive metric with more external factors controlled is beneficial to improve the accuracy of
the estimated effects of real-time weather conditions on the adverse outcomes of freeway crashes.

Methodologically, the substantial progress in analytical methods over the years has enabled a more
precise determination of the influence of risk factors on crash severity. A wide range of sophisticated
methods have been developed by accommodating the fundamental characteristics of crash severity data,
including ordered nature [22,23], underreporting [24], endogeneity [25], within-crash correlation [26,27],
spatial and temporal correlation [19,20,28,29], unobserved heterogeneity [30,31], etc. Please refer
to [32,33] for a comprehensive introduction and assessment on the methodological alternatives. More
recently, a Bayesian spatial generalized ordered logit model proposed by Zeng et al. [6] is one of the
state-of-the-art methods for modeling crash severity. The model is able to account for the ordered
nature and spatial correlation simultaneously. The thresholds are allowed to vary with the observed
explanatory variables, which can remove the restrictions imposed by the fixed thresholds in standard
ordered response models [34]. Moreover, the conditional autoregressive (CAR) priors incorporated can
accommodate not only the spatial correlation across crashes but also the unobserved heterogeneity [19].
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In the current research, the Bayesian spatial generalized ordered logit model was developed to
investigate the impacts of real-time weather conditions on freeway crash severity. A comprehensive
crash dataset collected from Kaiyang Freeway in Guangdong Province, China in 2014 and 2015 was used
for the empirical investigation, where crash severity is categorized by Chinese police administration
according to an integrative assessment of the adverse crash outcomes, i.e., the number of people injured
at various degrees (e.g., slight and serious injury, and fatality) and the amount of property damage.
To demonstrate the superiority of the proposed spatial model, it is compared with a generalized
ordered logit model in terms of model fit and parameter estimates.

The remainder of this paper is organized as follows: In Section 2, we introduce the collected
freeway crash dataset for the analysis. In Section 3, we specify the formulations of the traditional and
spatial generalized ordered logit models, the criteria for model fit comparison, and the calculation of
the marginal effects of risk factors. Section 4 presents the Bayesian estimation process of the models
and analyzes the results of the model comparison and estimation. In Section 5, some remarkable
conclusions are drawn and several directions for future research are provided.

2. Data Assembly

A comprehensive dataset from the Kaiyang Freeway in 2014 and 2015 was used in the current
research. It was assembled with information from three different resources on crash data, roadway
inventory, and real-time weather conditions, respectively.

2.1. Crash Data

We obtain the freeway crash data from the Highway Maintenance and Administration Management
System, which is maintained by Guangdong Transportation Group (Guangzhou, China). In the system,
crash severity is classified into four ordered levels according to the criteria defined by the Ministry of
Public Security in China. Specifically,

1. a “light crash” refers to one resulting in a property damage value of no more than 1000 CNY,
or no more than two people slightly injured;

2. a “medium crash” refers to one resulting in a property damage value between 1000 and 30,000 CNY,
or more than two people slightly injured, or one or two people severely injured;

3. a “severe crash” refers to one resulting in a property damage value between 30,000 and 60,000 CNY,
or three to ten people severely injured, or one or two fatalities; and

4. a “very severe crash” refers to one resulting in a property damage value of over 60,000 CNY,
or more than ten people severely injured, or more than eight people severely injured and one
fatality, or more than five people severely injured and two fatalities, or no less than three fatalities.

Among all the 1424 freeway crashes reported in the two years, there were 756 light crashes (53.1%),
621 medium crashes (43.6%), 45 severe crashes (3.2%), and only two very severe crashes (0.1%). Due to
the rareness of very severe crashes, they were combined with severe crashes, to constitute the highest
level (termed as “severe crash” in the rest of the paper) of crash severity in the research.

Some important features of driver, vehicle, EMS, and crash configuration are also recorded in the
system, including: whether the involved driver(s) were professional (i.e., those taking vehicle driving
as their jobs) or not, the involved vehicles’ types and license numbers, the EMS response time, and the
crash type, time and location (recorded as kilometer markers on the freeway).

2.2. Roadway Inventory

We extracted more detailed roadway characteristics of crash locations from the freeway geometric
profile provided by Guangdong Province Communication Planning and Design Institute Co., Ltd.
(Guangzhou, China). These roadway characteristics include horizontal curvature, vertical grade, and
whether the crash location is on a bridge or near a ramp. To explore the spatial correlation in the
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crashes, Kaiyang Freeway was split into 154 segments according to the homogeneity in horizontal
and vertical alignments, which is consistent to the freeway segmentation in our previous studies on
freeway crash analysis [35,36].

2.3. Real-Time Weather Conditions

The weather data from three county-level weather stations along the freeway were drawn from
the Meteorological Information Management System (MIMS) maintained by the Guangdong Climate
Center. In the MIMS, weather indexes, which include wind speed, air temperature, precipitation,
visibility, and humidity, are recorded hourly. The crashes are assigned to the nearest weather station
in accordance with their crash locations [9,12]. For each crash, the weather indexes observed at
the assigned weather station during the hour of the crash time were used to reveal the real-time
weather conditions.

Table 1 shows the definitions and descriptive statistics of the explanatory variables for the
empirical analysis.

Table 1. Descriptive statistics of explanatory variables for analyzing freeway crash severity.

Covariates Description Mean SD

Professional driver All drivers involved are non-professional = 0; otherwise = 1 0.039 0.193

EMS response time Duration between crash reporting and the arrival of
EMS (min) 19.4 16.6

Day of week Crash occurred on a weekend = 1; otherwise = 0 0.345 0.476

VEHICLE TYPE

Passenger car * All vehicles involved are passenger cars = 1; otherwise = 0 0.579 0.494

Coach At least one coach was involved = 1; otherwise = 0 0.064 0.245

Truck At least one truck was involved = 1; otherwise = 0 0.313 0.464

Other vehicle At least one other vehicle (e.g., a vehicle with trailer) was
involved = 1; otherwise = 0 0.099 0.299

Non-local vehicle
All vehicles involved were registered in Guangdong Province
(local vehicles) = 0; otherwise (at least one non-local vehicle

was involved) = 1
0.284 0.451

CRASH TYPE

Single-vehicle crash * The crash involved only one vehicle = 1; otherwise = 0 0.454 0.498

Rear-end crash The crash is a rear-end one = 1; otherwise = 0 0.383 0.486

Angle crash The crash is an angle one where the directions of involved
vehicles are not parallel = 1; otherwise = 0 0.162 0.368

TIME OF DAY

Before dawn * Crash occurred during 12 a.m. to 6 a.m. = 1; otherwise = 0 0.184 0.387

Morning Crash occurred during 6 a.m. to 12 p.m. = 1; otherwise = 0 0.222 0.416

Afternoon Crash occurred during 12 p.m. to 6 p.m. = 1; otherwise = 0 0.372 0.483

Evening Crash occurred during 6 p.m. to 12 a.m. = 1; otherwise = 0 0.222 0.416

ROADWAY GEOMETRY

Horizontal curvature The horizontal curvature of the freeway segment where the
crash occurred (0.1 km−1) 1.84 1.23

Vertical grade The grade of the freeway segment where the crash
occurred (%) 0.710 0.592

Bridge Crash occurred on a bridge = 1; otherwise = 0 0.537 0.499

Ramp Crash occurred in the proximity of a ramp = 1; otherwise = 0 0.244 0.430
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Table 1. Cont.

Covariates Description Mean SD

REAL-TIME WEATHER CONDITION

Wind speed Wind speed during the hour of crash time (m/s) 3.83 2.06

Temperature Air temperature during the hour of crash time (◦C) 23.7 6.08

Precipitation Precipitation during the hour of crash time (mm) 0.769 3.43

Visibility Visibility during the hour of crash time (km) 18.0 18.7

Humidity Humidity during the hour of crash time (%) 81.3 15.5

* The reference category. EMS: emergency medical service.

3. Methodology

In this section, the structures of generalized ordered logit model and spatial generalized ordered
logit model for analyzing crash severity are presented first (Section 3.1). We then introduce two criteria
for assessing the performance of the two models in the context of Bayesian inference (Section 3.2).
Finally, the method for calculating the marginal effects of explanatory variables is described (Section 3.3).

3.1. Model Specification

3.1.1. Generalized Ordered Logit Model

Ordered nature is an important characteristic of crash-severity data [32,33]. The generalized
ordered logit model can accommodate the characteristic appropriately, without suffering from
inconsistent estimations caused by fixed thresholds. Specifically, the severity level, yi, of crash i
is formulated as follows:

yi =


1, zi ≤ µi,1

2, µi,1 < zi ≤ µi,2

3, zi > µi,2

, (1)

where 1, 2, 3 denotes the crash severity levels categorized above, i.e., light crash, medium crash, and
severe crash, respectively. zi is a latent variable indicating the latent severity propensity of crash i and
is assumed to be a linear function of the explanatory variables (including a constant element) Xi:

zi = βXi + εi, (2)

where β is a vector of estimable parameters corresponding to Xi, and εi is a residual term which is
assumed to follow a logistic distribution.

The thresholds µi,1 and µi,2 in Equation (1) represent the boundaries between the ordered severity
levels for crash i. To allow flexibility in measuring the effects of explanatory variables, the relationship
between the thresholds is defined as follows:

µi,2 = µi,1 + exp(αZi), (3)

where Zi is a vector of explanatory variables (also including a constant element) and α is the
corresponding parameter vector. For the uniqueness of identification, and without loss of generality,
the threshold between light and medium crash levels, µi,1, is fixed to zero for all crashes.

As the residual term εi is logistically distributed, the cumulative probability for crash i to present
a severity level up to j (= 1, 2, 3), Pi, j, can be calculated as:

Pi,1 =
exp(µi,1 −βXi)

1 + exp(µi,1 −βXi)
=

exp(−βXi)

1 + exp(−βXi)
, (4)
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Pi,2 =
exp(µi,2 −βXi)

1 + exp(µi,2 −βXi)
=

exp[exp(αZi) −βXi]

1 + exp[exp(αZi) −βXi]
, (5)

Pi,3 = 1. (6)

Consequently, the probability for crash i resulting in the jth level of severity, pi, j, is calculated as:

pi,1 = Pi,1 =
exp(−βXi)

1 + exp(−βXi)
, (7)

pi,2 = Pi,2 − Pi,1 =
exp(−βXi)[exp(exp(αZi)) − 1]

[1 + exp(−βXi)][1 + exp(exp(αZi) −βXi)]
, (8)

pi,3 = 1− Pi,2 =
1

1 + exp[exp(αZi) −βXi]
. (9)

3.1.2. Spatial Generalized Ordered Logit Model

Spatial correlation is also a fundamental characteristic of crash-severity data [32,33]. The spatial
generalized ordered logit model is developed by accounting for the ordered nature and spatial
correlation simultaneously [6]. Specifically, a residual term ϕm with CAR priors is added into the
formulation of the latent severity propensity, that is,

zi = βXi + εi + ϕm, (10)

ϕm∼N
(∑

n,m ωm,nϕn∑
n,m ωm,n

,
1

τϕ
∑

n,m ωm,n

)
, (11)

where the ϕm captures the spatial effects of crashes (including crash i) occurring on roadway segment
m. The ωm,n is the adjacency weight for roadway segments m and n in the proximity matrix. The most
extensively used structure [6,20,24], a binary first-order neighbor, was employed to define the proximity
matrix in the current research. Specifically, ωm,n = 1, if segments m and n are connected; ωm,n = 0,
otherwise. The τϕ(> 0) is the precision parameter of the spatial correlation term.

Thus, the probability for crash i to exhibit the jth severity level is formulated as:

pi,1 =
exp(−βXi −ϕm)

1 + exp(−βXi −ϕm)
, (12)

pi,2 =
exp(−βXi −ϕm)[exp(exp(αZi)) − 1]

[1 + exp(−βXi −ϕm)][1 + exp(exp(αZi) −βXi −ϕm)]
, (13)

pi,3 =
1

1 + exp[exp(αZi) −βXi −ϕm]
. (14)

3.2. Assessment Criteria

The performances of the above models were compared via the deviance information criterion (DIC)
and classification accuracy. As a Bayesian generalization of Akaike information criterion (AIC) and
Bayes information criterion (BIC), the DIC provides a combined measure of model fit and complexity.
Specifically, it is defined as [37]:

DIC = D + pD, (15)

where D is the posterior mean deviance, which can be taken as a Bayesian measure of model fit, and pD

is the effective number of model parameters that can be used to measure model complexity. Th lower
the DIC value, the better the overall model performance. Empirically, over 10 differences can rule out
the model with a higher DIC [38].
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The classification accuracy for the whole dataset is calculated as [6]:

CA =

∑
yi=yi

yi/yi∑
i yi/yi

, (16)

where y is the predicted severity level of crash i.

3.3. Marginal Effects

Understanding the impacts of explanatory variables within the framework of generalized ordered
response modeling is not straightforward. The regression coefficients β and α in the proposed model
do not directly provide the magnitude of the effects of a certain explanatory variable on the likelihood
of each severity level. For this purpose, the marginal effects of significant variables in the spatial model
are calculated. Specifically, the marginal effect of a continuous variable x on pi, j is computed by taking
the first-order derivative with respect to x [6,39]:

∂pi,1

∂x
= βxpi,1(pi,1 − 1), (17)

∂pi,2

∂x
= αxµipi,3(1− pi,3) + βxpi,2(pi,1 − pi,3), (18)

∂pi,3

∂x
= (βx

− αxµi)pi,3(1− pi,3), (19)

where βx and αx are the coefficient estimates associated with variable x in the functions of latent
propensity, zi, and threshold, µi, respectively.

For an indicator (binary) variable, x, its marginal effect on pi, j is calculated as the difference in the
estimated probabilities with it varying from zero to one (∆x = 1):

∆pi,1

∆x
=

exp
(
−β̃X̃i −ϕm

)
[exp(−βx) − 1][

1 + exp
(
−β̃X̃i −ϕm

)][
1 + exp

(
−β̃X̃i − βx −ϕm

)] , (20)

∆pi,2
∆x =

exp(−β̃X̃i−β
x
−ϕm)

{
exp[exp(α̃Z̃i+α

x)]−1
}{

1+exp[exp(α̃Z̃i+αx)−β̃X̃i−βx−ϕm]
}{

1+exp[−β̃X̃i−βx−ϕm]
}

−
exp(−β̃X̃i−ϕm)

{
exp[exp(α̃Z̃i)]−1

}{
1+exp[exp(α̃Z̃i)−β̃X̃i−ϕm]

}{
1+exp[−β̃X̃i−ϕm]

} (21)

∆pi,3

∆x
=

exp
(
−β̃X̃i −ϕm

){
exp

[
exp

(
α̃Z̃i

)]
− exp

[
exp

(
α̃Z̃i + αx

)
− βx

]}{
1 + exp

[
exp

(
α̃Z̃i

)
− β̃X̃i −ϕm

]}{
1 + exp

[
exp

(
α̃Z̃i + αx

)
− β̃X̃i − βx −ϕm

]} , (22)

where X̃i and Z̃i are the vectors Xi and Zi less element x, respectively, and β̃ and α̃ are the corresponding
parameter vectors (i.e., β less βx and α less αx, respectively).

The calculations of the marginal effects (no matter for continuous variables or indicator variables)
are specific to a certain crash. To represent the whole dataset, the average marginal effects for all
observations are computed and reported.

4. Results and Discussion

4.1. Model Estimation

Since the traditional maximum-likelihood method is not applicable to the models with CAR
Gaussian priors [40], the parameters in the models were calibrated by Bayesian method which can be
easily conducted via programming in WinBUGS [41]. To obtain the Bayesian estimates, specification
of the prior distribution of each parameter in the models is required. In the absence of sufficient
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knowledge, noninformative (vague) prior distributions were used for the parameters. To be specific,
a diffused normal distribution, Normal

(
0, 104

)
, was used as the priors of the coefficients in β and α.

A diffused gamma distribution, gamma(0.01, 0.01), was used as the priors of the spatial precision
parameter, τϕ. The CAR priors were specified by the function car.normal in WinBUGS [40]. For each
model, a chain of 60,000 Markov chain Monte Carlo (MCMC) simulation iterations was run, with
the first 50,000 iterations acting as a burn-in. The MCMC trace plots for the model parameters were
inspected visually to ensure the simulations converge. In addition, we monitored the ratios between
the Monte Carlo simulation errors and the respective estimates’ standard deviations to ensure that
they were less than 0.05 (a rule-of-thumb threshold). The estimation and assessment results for the
traditional and spatial generalized ordered logit models are summarized in Tables 2 and 3, where
only the factors that have statistically significant (at least at 90% credibility level) effects on the latent
propensity or threshold are included.

Table 2. Estimation and assessment results for the generalized ordered logit model.

Variable
Latent Severity Propensity Threshold between Median and Severe

Crash Levels

Mean 90% BCI a 95% BCI Mean 90% BCI 95% BCI

Constant 0.64 (0.01, 1.29) (−0.09, 1.39) 1.75 (1.32, 2.14) (1.22, 2.21)
Precipitation 0.06 (0.02, 0.09) (0.01, 0.10) 0.12 (0.02, 0.24) (0.01, 0.26)

Rear-end crash −2.47 (−2.75, −2.20) (−2.81, −2.12) −0.80 (−1.03, −0.55) (−1.08, −0.50)
Angle crash −2.10 (−2.42, −1.78) (−2.49, −1.73) −0.83 (−1.11, −0.56) (−1.16, −0.51)

Professional driver 2.11 (1.36, 2.97) (1.2, 3.21) 0.32 (0.05, 0.60) (0.001, 0.66)
Coach 0.59 (0.16, 1.01) (0.06, 1.09) — — —

Other vehicle 0.83 (0.44, 1.21) (0.37, 1.29) — — —
EMS response time 0.027 (0.019, 0.035) (0.018, 0.036) — — —

Wind speed −0.07 (−0.13, −0.01) (−0.14, 0.002) — — —
Vertical grade — — — −0.23 (−0.37, −0.11) (−0.40, −0.08)

Afternoon — — — 0.42 (0.18, 0.68) (0.13, 0.73)
Evening −0.45 (−0.79, −0.10) (−0.85, −0.03) — — —

D 1720 — — — — —
pD 41 — — — — —

DIC 1761 — — — — —
CA 75% — — — — —

a BIC: Bayesian credible interval. D: posterior mean deviance; pD: effective number of model parameters; DIC:
deviance information criterion; CA: classification accuracy.

Table 3. Estimation and assessment results for the spatial generalized ordered logit model.

Variable
Latent Severity Propensity Threshold between Median and Severe

Crash Levels

Mean 90% BCI a 95% BCI Mean 90% BCI 95% BCI

Constant 2.7 (1.35, 3.99) (1.20, 4.18) 1.73 (1.30, 2.13) (1.23, 2.21)
Precipitation 0.04 (0.004, 0.08) (−0.01, 0.09) 0.13 (0.03, 0.25) (0.02, 0.28)

Rear-end crash −2.53 (−2.82, −2.24) (−2.88, −2.19) −0.80 (−1.04, −0.57) (−1.09, −0.53)
Angle crash −1.84 (−2.19, −1.50) (−2.27, −1.44) −0.81 (−1.09, −0.55) (−1.15, −0.50)

Professional driver 2.23 (1.45, 3.11) (1.33, 2.29) 0.33 (0.06, 0.60) (0.004, 0.65)
Coach 0.48 (0.23, 0.93) (−0.05, 1.00) — — —

Other vehicle 0.71 (0.30, 1.11) (0.23, 1.18) — — —
Non-local vehicle 0.28 (0.01, 0.57) (−0.06, 0.62) — — —

EMS response time 0.03 (0.025, 0.043) (0.024, 0.045) — — —
Horizontal curvature 0.13 (0.03, 0.23) (0.01, 0.25) — — —

Vertical grade — — — −0.24 (−0.38, −0.11) (−0.41, −0.07)
Afternoon — — — 0.42 (0.16, 0.68) (0.11, 0.75)
Evening −0.43 (−0.81, −0.02) (−0.89, 0.05) — — —
sd(ϕ) b 0.54 (0.36, 0.80) (0.32, 0.84) — — —

D 1684 — — — — —
pD 64 — — — — —

DIC 1748 — — — — —
CA 76% — — — — —

a BIC: Bayesian credible interval; sd(ϕ) b denotes the standard deviation of the spatial term.
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4.2. Model Comparison

Comparing the results in Tables 2 and 3, one can observe that the spatial generalized ordered logit
model yields a lower D value, which indicates its better fitting with the crash data. The outperformance
of the spatial model in goodness-of-fit is further confirmed by its relatively higher classification accuracy
(76% for the spatial model versus 75% for the traditional model). The results are reasonable, because a
number of previous studies [6,19,20] have demonstrated that capturing spatial effects via CAR priors
can significantly reduce model misspecification. While the generalized ordered logit model is more
parsimonious (as suggested by the lower pD value), the DIC value of the spatial model is 13 points
lower than that of the traditional one, which implies the better overall performance of the proposed
spatial model.

In addition, the standard deviation of the spatial term, sd(ϕ), was estimated. Its posterior
mean equals 0.56 and the 95% Bayesian credible interval is (0.32, 0.84), which manifest that there are
significant spatial correlations among crashes occurring on adjacent freeway segments. The spatial
correlations may be attributed to some omitted factors (e.g., terrain feature and lighting condition)
shared by adjacent crashes.

Further comparison between the two models shows that there are certain discrepancies in the
identified significant factors of crash severity. For example, horizontal curvature was found to be
positively associated with the latent severity propensity only in the spatial model, while wind speed
was found to be negatively associated with the latent severity propensity only in the generalized
ordered logit model. The results also imply that the spatial model is more consistent with the findings
in the literature than the traditional one. Note that many studies have reported that: (i) crashes
occurring on segments with higher smaller horizontal curve radius tend to be more severe [7,42]; and
(ii) stronger wind increases the likelihood of severe crashes [43].

4.3. Parameter and Marginal Effect Interpretation

The marginal effects of significant factors on the probability of each crash severity level were
calculated for the spatial model via the method in Section 3.3. The results are shown in Table 4. This
research mainly aims to assess the impacts of real-time weather conditions on freeway crash severity.
Therefore, we interpret the estimated regression coefficients and marginal effects of real-time weather
index(es) first (Section 4.3.1) and then those of other significant variables (Section 4.3.2).

Table 4. Marginal effects of significant variables in the spatial generalized ordered logit model.

Variable Light Crashes (%) Medium Crashes (%) Severe Crashes (%)

Precipitation −0.6 1.6 −1.0
Rear-end crash 47.5 −47.3 −0.2

Angle crash 36.1 −38.8 2.7
Professional driver −32.8 27.2 5.6

Coach −7.4 5.6 1.8
Other vehicle −11.0 8.3 2.7

Non-local vehicle −4.3 3.4 0.9
EMS response time −0.5 0.4 0.1

Horizontal curvature −1.9 1.5 0.4
Vertical grade 0.0 −2.2 2.2

Afternoon 0.0 3.3 −3.3
Evening 6.7 −5.4 −1.3

4.3.1. Real-Time Weather Conditions

According to the results in Tables 2 and 3, precipitation has significantly positive effects on both
the latent severity propensity and the threshold between medium and severe crashes. Specifically,
a one-millimeter increase in precipitation during the hour of the crash time tends to result in the
likelihood of light and severe crashes decreasing by 0.6% and 1.0%, respectively, and the likelihood
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of medium crashes increasing by 1.6%. The decreased likelihood of light crashes is anticipated,
because precipitation makes the roadway surface wet or even slippery, thereby reducing skidding
resistance [4,44]. The reduced skidding resistance increases the difficulties in manipulating vehicles,
which could increase drivers’ mental effort and thereby adversely influence driving behavior by
occupying limited cognitive resources and interfering with information processing. Once an emergency
occurs, drivers may need more time to perceive its existence and take proper actions to reduce the severity
of an oncoming crash. Moreover, the reduced skidding resistance also increases stopping distance.

While it is somewhat counterintuitive, the decreased probability of severe crashes in heavy rain
conforms to many existing findings of the effects of the wet road surface on crash severity [7,45,46].
They argued that it could be illustrated by the risk compensation theory, which indicates that drivers
tend to adjust their driving behavior (e.g., driving more carefully and at a lower speed) in adverse
driving conditions (e.g., heavy rain or wet road surface). In practice, some transportation engineering
and management strategies are implemented to enhance freeway safety. For example, the variable
message signs (as shown in Figure 1) deployed along the freeway would be activated to alert drivers
to be cautious on rainy days. The transportation management agency usually sets a more intensive
police patrol schedule in seasons with high precipitation.
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Furthermore, it is worth noting that precipitation impacts the likelihood of light and severe crashes
in the same direction, which cannot be formulated in standard ordered response models. The fixed
thresholds in standard ordered response models limit that the marginal effects of a certain factor on
the probabilities of the lowest and highest severity levels always have different signs [34]. The results
justify the necessity of modeling crash severity under a generalized response framework.

4.3.2. Other Significant Variables

Regarding other significant variables, professional drivers were associated with a higher latent
severity propensity and a higher threshold between medium and severe crashes, which indicate that
the probability of light crashes is expected to decrease by 32.8% and that the probabilities of medium
and severe crashes are expected to increase by 27.2% and 5.6%, respectively, when there are professional
drivers involved in the crash. The result is generally consistent with the finding of our previous
research [6]. In the collected crash data, most professional drivers operated intercity buses. Because of
the long driving hours, they are more likely to experience fatigue driving, which may increase the
likelihood of severe crashes [47].
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The positive signs of the coefficients for coaches and other vehicles on the latent severity propensity
imply that these two types of vehicles are more likely to be involved in severe crashes. The estimated
marginal effects showed that, when a coach is involved, the likelihood of a severe crash will increase
by 1.8%; while when another type of vehicle (e.g., a vehicle with trailer) is involved, the counterpart
will increase by 2.7%. The results are reasonable, because coaches and other types of vehicles possess
stronger crash aggressivity, compared to automobiles [27]. The stronger crash aggressivity means that
greater hazards would be imposed on the vehicle(s) colliding with them [48].

“Non-local vehicle” has a negative effect on the latent severity propensity, which indicates that
non-local vehicles are more likely to be involved in severe crashes. Specifically, when at least one
non-local vehicle is involved, the probabilities that the crash severity is medium and severe will increase
by 3.4% and 0.9%, respectively. The result is generally consistent with engineering intuition: the drivers
of non-local vehicles may be unfamiliar with the roadway and weather conditions. As a consequence,
they may need more time to perceive and comprehend the driving environment. Thus, less time is
left for them to slow down or perform other actions that could alleviate the adverse outcomes of an
upcoming crash.

For the crash time of day, afternoon is linked to a higher threshold between medium and severe
crashes, while evening is linked to a lower latent severity propensity. The results of marginal effects
indicate that the probabilities of severe crashes in afternoon and evening decrease by 3.3% and 1.3%,
respectively, compared to their counterparts before dawn (the reference category). Probably due to the
light traffic, speeding is more likely to occur before dawn [26]. Moreover, human circadian rhythmicity
may lead to more frequent fatigue/sleep-deprived driving during this period [49]. Speeding and
fatigue driving are major causes of severe crashes in China [6]. Moreover, drivers’ vision is better in
the afternoon than before dawn, which reserves more time for drivers to recognize and respond to
potential dangers [7].

With respect to roadway characteristics, horizontal curvature has a positive effect on the latent
severity propensity, which implies that the probabilities of medium and severe crashes will increase by
1.5% and 0.4% respectively, for a 10−1 km increase in horizontal curvature. A greater curvature (i.e.,
a smaller curve radius) makes for stronger centrifugal forces on vehicles negotiating the curve and
brings about the harsher transition between tangent sections [50], which may lead to a reduction in
vehicle control. Zegeer et al. [42] claimed that more head-on crashes, fixed object crashes, and rollover
crashes tend to occur on horizontal curves. These crashes usually result in great casualties. “Vertical
grade” was found to be negatively associated with the threshold between medium and severe crashes.
Specifically, a 1% increase in the vertical grade is expected to result in a 2.2% increase in the probability
of severe crashes. This finding may be attributed to a shorter sight distance rendered by a steeper
grade, which reduces the time available for drivers to react properly to potential hazards [7,46].

By providing first aid treatments and transportation to hospitals, EMS is a crucial post-crash
countermeasure for mitigating the injuries sustained by the occupants involved in traffic crashes.
It is anticipated that the EMS response time has a positive impact on the latent severity propensity.
Its estimated marginal effects reveal that an increase of one minute in EMS response time will increase
the likelihood of medium and severe crashes by 0.4% and 0.1%, respectively, which is in line with the
findings in many previous studies [6,51,52].

With regard to crash type, the results in Table 3 indicate that both rear-end and angle crashes are
linked to a reduction in the latent severity propensity and a reduction in the threshold between medium
and severe crashes, as compared against single-vehicle crashes (the reference category). Specifically, the
probability of light crashes increases by 47.5% and 36.1% for rear-end and angle crashes, respectively.
The probability of severe crashes decreases by 0.2% for rear-end crashes but increases by 2.7% for angle
crashes. Similar findings can be found in [27,48], which concluded that rear-end crashes are one of the
least severe crash types.
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5. Conclusions

This paper empirically investigated the impacts of real-time weather conditions on freeway
crash severity using a two-year crash dataset collected from Kaiyang Freeway in China, where the
information on hourly wind speed, air temperature, precipitation, visibility, and humidity were derived
from three adjacent weather stations. A state-of-the-art method, the Bayesian spatial generalized
ordered logit model, was used for the empirical analysis, to link the observed crash severity to real-time
weather conditions and factors related to drivers, vehicles, roadways, EMS, and crash configuration.

The results indicate that heavier precipitation during the hour of crash occurrence decreases
the probabilities of light and severe crashes but increases the probability of medium crashes. The
decreased probability of severe crashes may imply the effects of some implemented strategies for
transportation safety management, including variable message signs and police patrol schedules.
Nonetheless, some other strategies may further improve freeway safety performance on rainy days.
For example, variable speed limits have the potential to reduce crash risk and severity in rainy weather,
by continually regulating travel speed based on real-time traffic and weather conditions [53]. The
advanced driver-assistance system and emerging connected and autonomous vehicles constantly
detect potential dangers and facilitate drivers to make proper response decisions, which is especially
helpful in inclement weather.

The results also suggest that: (1) professional drivers, coaches, other vehicles (especially those
with trailers), and non-local vehicles are more likely to be involved in severe crashes; (2) severe crashes
tend to occur on freeway segments with small horizontal curve radius and high vertical gradient before
dawn; (3) rapid response of EMS can significantly decrease crash severity; (4) rear-end crashes usually
result in less severe outcomes than single-vehicle and angle crashes; (5) significant spatial correlation
exists across the severities of adjacent crashes.

A limitation of the current research is that the weather information was recorded by hour.
Higher-resolution weather data (e.g., at 1-, 5-, or 10-min intervals) may provide a more precise
assessment of their effects on crash severity. Methodology-wise, it is of interest to further account for
the heterogeneous effects of the observed factors in the proposed model by using methods such as
random-parameters [30], although it may significantly increase the complexity of model structure and
the time-consumed in model estimation. In addition, more field data are required to demonstrate the
random-parameters model.
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