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Abstract: The global rise of urbanization has led to the formation of surface urban heat islands and
surface urban cool islands. Urban heat islands have been shown to increase thermal discomfort, which
increases heat stress and heat-related diseases. In Kuwait, a hyper-arid desert climate, most of the
population lives in urban and suburban areas. In this study, we characterized the spatial distribution
of land surface temperatures and investigated the presence of urban heat and cool effects in Kuwait.
We used historical Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra satellite 8-day
composite land surface temperature (LST) from 2001 to 2017. We calculated the average LSTs of
the urban/suburban governorates and compared them to the average LSTs of the rural and barren
lands. We repeated the analysis for daytime and nighttime LST. During the day, the temperature
difference (urban/suburban minus versus governorates) was −1.1 ◦C (95% CI; −1.2, −1.00, p < 0.001)
indicating a daytime urban cool island. At night, the temperature difference (urban/suburban versus
rural governorates) became 3.6 ◦C (95% CI; 3.5, 3.7, p < 0.001) indicating a nighttime urban heat island.
In light of rising temperatures in Kuwait, this work can inform climate change adaptation efforts in
the country including urban planning policies, but also has the potential to improve temperature
exposure assessment for future population health studies.

Keywords: urban heat island; urban cool island; Kuwait; land surface temperature; MODIS; Google
earth engine; climate change

1. Introduction

The rise of urbanization and urban development has been associated with energy-intensive land
use that replaces natural land cover. Urban structures, such as buildings, pavements, and asphalt, have
direct influence on surface temperatures [1]. The use of air conditioners [2], reduced air flow from
narrow streets and tall buildings [3], and the absorbance of solar energy from dark surfaces [4] are all
mechanisms that contribute to a well-studied phenomenon of urban heat islands, where urban areas
are hotter than surrounding rural areas. Much of the research in previous decades has been dominated
by the characterization, health effects, and policy implications of the urban heat island. Urban heat
islands have been shown to have adverse health impacts. First, they have been linked to an increase
in the frequency and magnitude of thermal discomfort, which increases heat stress and heat-related
diseases [5–7]. Secondly, the urban warming also enhances the photochemical reaction that leads to
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higher levels of ozone (O3) [8]. Environmental sustainability is also affected by urban warming. It
is associated with an increase in electricity consumption [9], per-capita water consumption [10], and
extensive irrigation of green cover [11].

Yet, the surface urban cool island is another phenomenon that, contrary to the heat island, occurs
when surface temperatures of rural areas are hotter than urban areas [12]. Compared to the urban heat
island, the urban cool island is relatively weaker in intensity, always occurs during the day, and is
commonly seen in semi-arid and arid regions [13]. The mechanisms and hypotheses behind urban cool
islands vary by geographic locations; examples include increased shady areas due to tall buildings [14],
inhibition of early morning advection events by warm continental air [15], sea breeze [16], and cooling
from evaporation of moist urban soil compared to dry rural soil in arid desert climates [13]. It is
unknown whether the daytime urban cool island mitigates the adverse outcomes of heat islands.

While there is growing evidence that temperature affects health outcomes, there is limited literature
on the spatial distribution of temperature in Kuwait. Kuwait is a desert country with a hyper-arid
climate. Ambient temperatures in Kuwait frequently rise above 50 ◦C during the long summer that
extends for more than five months of the year (from 21 May to 4 November). In 2016, Asia’s highest
ambient temperature ever recorded (54.0 ◦C) was seen in Mitribah, Kuwait [17]. With the current rate
of climate change, projections of future temperatures towards the end of this century in the region will
possibly exceed the threshold of human adaptability [18]. Our previous studies in Kuwait revealed an
alarming increase in the overall mortality risk and cardiovascular mortality risk among vulnerable
subpopulations during days of extremely high ambient temperatures measured from monitoring
stations across the country [19,20]. Kuwait is also a small urban country; the vast majority of the
population lives in urban and suburban neighborhood units around the Kuwait City metropolitan
area [21]. Spatial characterization of the distribution of temperature exposure can be critical for
population health studies.

Land surface temperature (LST) represents the radiative temperature of any land surface,
such as soil, grass, pavements, asphalt, or roofs of buildings [22]. It can, therefore, be directly
affected by albedo, vegetation cover, and soil moisture. On the other hand, conventional ambient
temperatures measure the temperature of the air near the surface. Land surface temperatures are
usually measured by remote sensing techniques that retrieve satellite thermal infrared data [22],
while ambient temperatures are measured by ground thermometers. Most temperature-related health
studies rely on ambient temperatures to reflect the human microenvironmental exposure in their
exposure-response estimation [23,24]. The problem of using ambient air temperature data to investigate
urban heat or cool islands is the limited number and limited geographical distribution of local weather
stations. In addition, not all weather stations produce continuous data. For these reasons, many studies
have turned to the use of remotely sensed data in urban heat island analyses [25]. Nasrallah et al. [26]
used ground monitoring stations in and around Kuwait City to investigate the presence of urban
heat islands.

In this investigation, we made use of available historical satellite data on daytime and nighttime
LST to study the spatial distribution of land surface temperature in Kuwait. To the best of our
knowledge, there was no previous study that utilized satellite data to characterize temperature
differences between urban and non-urban areas in Kuwait. We hypothesized that urban and suburban
areas will have higher daytime and nighttime remotely sensed LST compared to rural non-urban areas.

2. Materials and Methods

2.1. Study Area

Kuwait is located at the northeastern corner of the Arabian Peninsula between 46.5◦ and 48.5◦ E
and 28.5◦ and 30.0◦ N (Figure 1). The landscape slopes gently from about 280 m above sea level in the
extreme south-west of the country towards the Arabian Gulf coast in the east [27]. Kuwait shares land
borders with Saudi Arabia and Iraq and sea borders with Iran. The total land area is approximately
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18,000 km2 (nearly the size of New Jersey, USA) with a total population of about 4.12 million in 2017 [28].
It has a large petrochemical industry with associated urban land uses. Kuwait City is the capital and
the main city in the country. A land-use survey in 2000 concluded that nearly 75% of the country’s area
was rangeland in the form of barren and open sandy fields, while the urbanized area did not exceed 5%
of the total land use [29]. The country is divided administratively into six governorates; Al Ahmadi, Al
Farwaniyah, Al Jahrah, Al Kuwait (Capital City), Hawalli and Mubarak Al-Kabeer (Figure 1). Based
on land cover, governorates that include barren lands were classified as rural governorates. There
were two rural governorates: Al Ahmadi and Al Jahrah. We classified Al Farwaniyah, Al Kuwait
(Capital City), Hawalli and Mubarak Al-Kabeer as urban/suburban governorates. According to the
Kuwait Meteorological Department, seasons in Kuwait are classified as follows: winter (6 Decembe–15
February), spring (16 February–20 May), summer (21 May–4 November) and fall (5 November–5
December) [30].
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2.2. Data

We used Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra satellite data from the
National Aeronautics and Space Administration (NASA). The MOD11A2 (version 6) product from
MODIS/Terra includes an 8-day average of land surface temperature and emissivity with a 1 km
spatial resolution (each pixel is 1 × 1 km). The user guide explained that the 8-day compositing period
was chosen because twice that period is the exact ground track repeat period of the Terra and Aqua
platforms [31]. The MODIS/Terra LST products were repeatedly validated over a set of locations and
time periods via several ground-truth and validation efforts [32–34]. Recent LST products (collection 6
or version 6) have addressed previous accuracy issues, and measurement errors in arid regions for
bare soil and validation studies now recommend their application in these regions [35]. The daytime
and nighttime LST data for the period from 2001 to 2017 were extracted for Kuwait using Google Earth
Engine (https://earthengine.google.com). The data consists of one measure for every 8 days. For better
interpretation, we converted the unit of temperature from Kelvin to Celsius. First, we multiplied by a
given scale factor (from the user guide) of 0.02 to return the units to Kelvin [31]. Then, we subtracted
273.15 to convert Kelvin to Celsius.

https://earthengine.google.com
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Shapefiles of first-level Kuwait Administrative Divisions (polygons of the six governorates in
2015) were available from the University of California, Berkeley, Museum of Vertebrate Zoology. The
shapefiles can be downloaded from the Harvard Geospatial Library open portal (https://hgl.harvard.
edu).

2.3. Analysis

Over the entire study period and across all pixels, LST was summarized by mean, standard
deviation, median, and interquartile range. We plotted LST against time (8-day intervals) for the study
period from 2001 to 2017. The descriptive analyses were repeated for both daytime and nighttime LST
and were stratified by each governorate. Before visualizing the raster data, we created a normalized
land surface temperature (NLST) by scaling the LST values for a given pixel between the minimum
(LSTmin) and maximum (LSTmax) values in each image:

NLST = (LST − LSTmin)/(LSTmax − LSTmin) (1)

where the NLST ranges between 0 and 1 and enables the comparison between images calculated from
the equation below [36]. An NLST value of 1 represents the maximum temperature and a value of 0
represents the minimum temperature, for a given season or image. We compared images of NLST
spatial distribution in winter, spring, summer and fall.

The differences between the average daytime and nighttime LST between each governorate were
calculated using analysis of variance (ANOVA) and Tukey’s honest significant difference (HSD) method,
a Studentized range statistic. The Tukey’s HSD sets confidence intervals on the differences between the
means of the levels of a factor with the specified family-wise probability of coverage. Surface urban
heat and cool islands were determined by calculating the average LST of the urban/suburban (Tu/s)
governorate pixels minus the average LST of the rural and barren (Tr) pixels. A negative difference
(Tu/s < Tr) indicates an urban cool effect, while a positive difference (Tu/s > Tr) indicates an urban
heat effect.

Extraction, processing and exporting of raster satellite data was done using Google Earth
Engine code editor (hands-on tutorials are available from: https://developers.google.com/earth-engine/

tutorials). All other analyses were conducted using R software (version 3.6.0) (R Foundation for
Statistical Computing, Vienna, Austria).

3. Results

Over the entire study period from January 2001 to March 2017, the time trends of 8-day composite
LST in Kuwait showed clear seasonal variability (Figure 2). Remotely sensed daytime land surface
temperatures were higher than nighttime temperatures, but both showed similar patterns over time.
In general, the spatial distribution of NLST in Kuwait showed similar patterns across seasons, but with
lesser intensity in fall and winter seasons (Figure 3).

When summarizing the average daytime LST by governorates, we found that urban and suburban
governorates had lower temperatures compared to rural governorates, except for Al Farwaniyah. The
nighttime LST showed opposite findings, where urbanized areas had higher LST. The mean daytime
LST in the capital city (Al Kuwait governorate) was 33.7 ± 3.1 ◦C, and the nighttime mean was 22.4 ±
0.5 ◦C. The mean LSTs in Al Jahrah governorate, where most of the large rangeland and open sandy
fields are, were 37.2 ± 1.1 ◦C in the day and 18.3 ± 0.9 ◦C at night (Table 1).

The results of tests for statistical differences between each governorate are presented in Table 2.
The mean daytime LST in the capital city was higher than in Al Jahrah governorate by 3.5 ◦C (95%
CI: 3.1, 3.9, p < 0.001), and higher than in Al Ahmadi governorate by 3.2 ◦C (2.8, 3.6, p < 0.001). The
nighttime effect was in the opposite direction, Al Jahrah governorate was warmer than the capital city
by 4.1 ◦C (3.8, 4.5, p < 0.001), while Al Ahmadi was warmer than the capital city by 3.8 ◦C (3.4, 4.8, p <

0.001). We then combined all pixels of urban and suburban governorates (Tu/s) and rural governorates
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(Tr) and tested for the presence of surface urban heat and cool islands (Table 3). In daytime, the
difference of urban and suburban governorates versus rural governorates (Tu/s – Tr) was −1.1◦C (−1.2,
−1.00, p < 0.001) indicating an urban cool effect. At night, the difference (Tu/s – Tr) became 3.6 ◦C (3.5,
3.7, p < 0.001) indicating an urban heat effect.
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Figure 2. Time trends of land surface temperature (LST) in Kuwait, stratified by daytime and nighttime
from January 2001 to March 2017.

Table 1. Descriptive statistics of average surface temperatures in Kuwait (2001–2017).

Governorate Mean SD Median IQR Min Max

Daytime LST (◦C)

Rural Governorates
Al Ahmadi 36.91 0.89 36.93 1.08 29.9 39.32
Al Jahrah 37.24 1.10 37.30 0.90 25.56 40.25

Urban/Suburban Governorates

Al Farwaniyah 37.20 1.30 37.17 1.76 34.92 40.4
Al Kuwait (Capital City) 33.74 3.06 33.27 3.63 28.55 40.37

Hawalli 35.10 2.74 34.69 4.03 29.12 39.72
Mubarak Al-Kabeer 34.86 1.05 34.93 1.02 31.27 36.92

Nighttime LST (◦C)

Rural Governorates
Al Ahmadi 18.57 1.06 18.44 1.36 16.82 23.22
Al Jahrah 18.25 0.94 18.15 1.23 16.68 22.25

Urban/Suburban Governorates

Al Farwaniyah 21.52 1.02 21.61 1.72 19.67 23.50
Al Kuwait (Capital City) 22.40 0.52 22.38 0.81 21.14 23.38

Hawalli 23.05 0.46 23.13 0.58 21.89 23.80
Mubarak Al-Kabeer 22.19 0.51 22.35 0.59 20.82 22.98

SD; standard deviation, IQR; interquartile range. LST; land surface temperate over 8 days (in degrees Celsius), Min;
average minimum temperature, Max; average maximum temperature.
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Table 2. Matrix of differences in land surface temperature between governorates in Kuwait (2001–2017).

Rural Governorates Urban/Suburban Governorates

Al Ahmadi Al Jahrah Al Farwaniyah Al Kuwait (Captial City) Hawalli Mubarak Al−Kabeer

Absolute Difference in Daytime LST (◦C), row minus column (95% CI)

Rural Governorates

Al Ahmadi
−0.29 −0.32 3.17 1.81 2.06

(−0.09, −0.49) (−0.27, −0.37) (3.59, 2.75) (2.20, 1.42) (2.40, 1.71)

Al Jahrah 0.32 0.03 3.49 2.13 2.38
(0.27, 0.37) (−0.16, 0.23) (3.91, 3.08) (2.52, 1.74) (2.72, 2.04)

Urban/Suburban Governorates

Al Farwaniyah 0.29 −0.03 3.46 2.10 2.35
(0.09, 0.49) (0.16, −0.23) (3.92, 3.00) (2.53, 1.67) (2.74, 1.96)

Al Kuwait (Captial City) −3.17 −3.49 −3.46 −1.36 −1.12
(−3.59, −2.75) (−3.91, −3.08) (−3.92, −3.00) (−0.79, −1.93) (−0.58, −1.65)

Hawalli
−1.81 −2.13 −2.10 1.36 0.25

(−2.20, −1.42) (−2.52, −1.74) (−2.53, −1.67) (0.79, 1.93) (0.76, −0.27)

Mubarak Al-Kabeer
−2.06 −2.38 −2.35 1.12 −0.25

(−2.40, −1.71) (−2.72, −2.04) (−2.74, −1.96) (0.58, 1.65) (−0.76, 0.27)

Absolute Difference in Nighttime LST (◦C), row minus column (95% CI)

Rural Governorates

Al Ahmadi
−2.95 0.32 −3.82 −4.48 −3.62

(−2.77, −3.13) (0.36, 0.28) (−3.44, −4.84) (−4.13, −4.84) (−3.31, −3.39)

Al Jahrah −0.32 −3.27 −4.14 −4.8 −3.94
(−0.36, −0.28) (−3.45, −3.09) (−3.76, −4.53) (−4.45, −5.16) (−3.63, −4.25)

Urban/Suburban Governorates

Al Farwaniyah 2.95 3.27 −0.87 −1.53 −0.67
(2.77, 3.13) (3.45, 3.09) (−0.45, −1.29) (−1.14, −1.93) (−0.31, −1.02)

Al Kuwait (Capital City) 3.82 4.14 0.87 −0.66 0.20
(3.44, 4.84) (3.76, 4.53) (0.45, 1.29) (−0.14, −1.18) (0.70, −0.29)

Hawalli
4.48 4.8 1.53 0.66 0.86

(4.13, 4.84) (4.45, 5.16) (1.14, 1.93) (0.14, 1.18) (1.33, 0.39)

Mubarak Al-Kabeer
3.62 3.94 0.67 −0.20 −0.86

(3.31, 3.39) (3.63, 4.25) (0.31, 1.02) (−0.70, 0.29) (−1.33, −0.39)

LST; land surface temperate (in degrees Celsius). The 95% confidence intervals were constructed from analysis of variance (ANOVA) and Tukey’s honest significant difference (HSD) with
specified family-wise probability of coverage.
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Table 3. Urban heat and cool effects of urban/suburban and rural governorates in Kuwait.

Difference 95% CI p-Value Urban Effect

Difference in Daytime LST (◦C)
TUrban /Suburban – TRural −1.07 −1.17, −0.96 <0.001 Surface urban cool island

Difference in Nighttime LST (◦C)
TUrban /Suburban – TRural 3.62 3.53, 3.71 <0.001 Surface urban heat island

LST; land surface temperate (in degrees Celsius). Urban/Suburban governorates include Al Farwaniyah, Al Kuwait
(Capital City), Hawalli and Mubarak Al-Kabeer. Rural governorates include Al Jahrah and Al Ahmadi.

4. Discussion

In this study, we used publicly available historical satellite data to characterize temperature
differences between urban and non-urban areas in Kuwait. We found a daytime urban cool island
and a nighttime urban heat island. On average, the magnitude of the difference estimate was higher
for the nighttime heat effect. This work can inform urban planning policies and help establish spatial
temperature exposure data for future population health studies.

To the best of our knowledge, we have identified only one study that investigated urban heat
islands in Kuwait. Nasrallah et al. [26] analyzed 23 years (between 1951 and 1980) of maximum and
minimum air temperature data from selected monitoring stations in and near Kuwait City, Kuwait.
They concluded that there is a general lack of a well-developed heat island in Kuwait. The authors
hypothesized that the similarities in the urban and rural landscape of Kuwait City, and its close
proximity to a large water body, were the possible explanations for the lack of heat island development.
In this investigation, we now show with more spatial granularity a clear development of a daytime
urban cool island and a nighttime urban heat island using a different measure of temperature and a
different study period. The development of urban heat islands is commonly found in big metropolitan
cities in many regions in the world, [25,37–39] while the daytime urban cool island seems to be a
distinctive feature of arid cities. Our findings of a daytime cool island and nighttime heat island
aligned with previous literature from neighboring cities that have similar arid desert climates such as
Dubai and Abu Dhabi, United Arab Emirates [40,41], Erbil, Iraq [13], and Tehran, Iran [36].

In general, urban structures and tall buildings absorb heat, reduce air flow, and generate hot air
from air conditioner usage [1–4]. Manmade dark impervious surfaces absorb shortwave radiation and
store heat during the daytime and then release longwave radiation slowly at night contributing to the
nighttime urban heat island [25,42]. Urban areas also have higher concentrations of cars and other
heat-generating activities released from burning fuel [43]. A study by Al-Hemoud et al. [44] identified
a surface temperature inversion in urban areas in Kuwait that occurs immediately after sunset and
diminishes at daylight after sunrise; this natural phenomenon could add to the occurrence of nighttime
surface urban heat islands. On the other hand, daytime urban cool islands can be attributed to several
other factors. Soil in urban lands is moist, and daytime evaporation could potentially reduce the surface
temperature compared to the dry soil in barren lands in arid areas [13]. Additionally, large water
bodies have greater specific heat capacity and provide a potential cooling effect during the daytime [45].
In contrast to the rural areas, the urban areas in Kuwait are located on the Arabian Gulf, which showed
significant daytime cool island effect. The temporal variation in LST between coastal and inland pixels
can be strongly driven by sea breeze circulation in coastal cities, especially during clear-sky days in hot
summers [46]. It is possible that sea breeze is the main driver of lower surface temperatures around the
coastal areas in Kuwait. However, we observed daytime urban cool island effects throughout the four
seasons and not just in the summer. Additionally, there was an east–west oriented belt of high LST in
the inland part of the city (Al Farwaniyah) in the daytime of winter, fall, and faintly in spring (Figure 3).
In other words, although a number of arid and desert countries reported an urban cool effect, it seems
that the concept is more complicated than is explained by a simple concept of a cool island. More
research that can detect high spatial and temporal LST patterns from an aircraft or new-generation
geostationary satellite would help urban planners understand urban cool islands better [46].
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This study can inform policymakers and urban planners in Kuwait when considering how to
relieve the urban heat effect, especially at night. There are several mitigation strategies that have been
proposed worldwide to tackle urban warming. Replacing low-albedo surface material (asphalt and
concrete) with high-albedo and high-emissivity surfaces may keep the surfaces cooler when exposed
to solar radiation [47–49]. Vegetation can intercept solar energy, provide shade to surfaces and has
higher albedo than pavement; plants absorb and accumulate less heat, while the evapotranspiration
process helps to cool the environment [50–52]. Green roofs may also contribute to the mitigation of
urban heat islands. The albedo value of bitumen, tar, and gravel roofs typically ranges from 0.1 to 0.2,
while the albedo value of green roofs is between 0.7 and 0.85 [53]. Experimental evidence showed that
large-scale applications of green roofs reduced ambient temperatures by 0.3 to 3 ◦C [54].

There are a number of limitations to this study. First, we did not compare the satellite data
to observed data from ground facilities, as we did not have surface temperature data to reference.
Secondly, although satellites provide extensive historical and geographical coverage, we were limited
to a 1 km spatial resolution and we could not obtain historical LST data from Google Earth Engine
before 2001 to compare our results to the previously published study in 1990 in Kuwait. The spatial
resolution of 1 km may not describe finer details of hot or cool spots within the urban city. Additionally,
satellites may not be able to accurately capture temperatures from surfaces that are obscured by trees
or tall buildings. Data were only available for clear weather conditions and only during the day and
night times when the satellite passes over Kuwait. However, we had data approximately every 8 days,
which would reduce the amount of missing data. Finally, we did not investigate how land use land
cover change influences the intensity of urban heat or cool effects, and we did not investigate spatial
differences in LST trends over each year.

5. Conclusions

Urbanization in Kuwait has converted natural landscapes of open soil and undisturbed desert
areas to manmade engineered surfaces and infrastructure. About 17 years of historical satellite data
suggest the presence of a nighttime urban heat island, but also an urban cool island in the daytime.
This work can inform climate change adaptation efforts, especially urban planning policies. Our
spatial analysis of land surface temperatures in Kuwait can be used to improve temperature exposure
assessment for population health studies.
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