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Abstract: Drug abuse remains one of the major public health issues at the global level. In this article,
we propose a drug epidemic model with a complete addiction–rehabilitation–recovery process,
which allows the initiation of new users under the influence of drug addicts undergoing treatment
and hidden drug addicts. We first conduct qualitative analyses of the dynamical behaviors of the
model, including the existence and positivity of the solutions, the basic reproduction number, global
asymptotic stabilities of both the drug-free and the drug-persistent equilibria, as well as sensitivity
analysis. Then we use the model to predict the drug epidemic in China during 2020–2030. Finally,
we numerically simulate the potential impact of intervention strategies on different drug users. The
results show that the drug epidemic will decrease significantly during 2020−2030, and the most
effective intervention strategy to eliminate drug epidemics is to strengthen the investigation and
rehabilitation admission of hidden drug users.

Keywords: drug epidemic model; basic reproduction number; stability; sensitivity; China; numeri-
cal simulation

1. Introduction

The phenomenon of drug abuse, which involves the consumption of illicit drugs and
nonmedical use of prescription drugs, has become one of the global health issues threaten-
ing the safety and sustainability of human society in the 21st century. According to 2019
World Drug Report released by the United Nations Office on Drugs and Crime (UNODC),
approximately 271 million people, which constituted 5.5% of the global population aged
15−64, had used drugs in 2016 [1]. From a historical perspective, the world has witnessed
a 30% increase in the drug-using population ever since 2009 [1,2]. In terms of drug type,
opioids remained the most lethal group, which resulted in around 66% of overdose-related
deaths worldwide in 2017 [1]. The level of manufacture and trafficking of conventional
drugs such as cocaine and cannabis remained high, and that of synthetic drugs such as
methamphetamine and 3,4-methylenedioxy-n-methylamphetamine (MDMA) even soared
in recent years. Some 35 million people suffered from drug use disorders and required
treatment service around the world, and the death toll attributed to drug use totaled 585,000
in 2017 [1].

Despite its amelioration for two consecutive years, the drug situation in China remains
a serious issue. According to the 2019 Report of Drug Situation in China, by the end of
2019, the number of drug users in China totaled 2.14 million (excluding the dead, those
who went abroad, or those who remained abstinent for at least 3 years), which accounted
for 0.16% of the total population [3]. In the same year, law enforcement agencies of China
settled 83,000 drug-related crimes and seized 65.1 tons of drugs. Globally, around 43%
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of the People Who Inject Drugs (PWIDs) reside in three countries: China, Russia, and
the United States [1]. All the evidence above aroused the need for global attention to the
problem of drug abuse as well as targeted intervention to address this issue.

The mathematical model has long been an effective tool in the area of public health, and
extensive research has been conducted in terms of drug users and drug-using behaviors. In
the 1970s, the analogy between heroin use and communicable disease was proposed, which
verified the validity and utility of the epidemiologic approach to studying heroin use [4–6].
This paved the way for the utilization of compartmental dynamic models, which could date
back to 1926, when Kermack and McKendrick formulated the famous Susceptible–Infected–
Recovered (SIR) compartmental model while studying the Great Plague of London during
1665−1666 and the 1906 plague in Bombay [7,8]. Compartmental dynamic modeling has
undergone extensive development in the past decades and has proved itself as an effective
tool in the research of infectious diseases, including influenza, smallpox, coronavirus,
HIV, etc. [9–13]. In recent years, the application of compartmental dynamic models has
been extended to other research fields, for instance, dynamics of the spread of alcoholism,
cigarette smoking, internet virus, rumors, or drug-using behavior [14–17].

After several explorative research studies since the 1980s, a classic three-compartment
dynamical model was proposed by White and Comiskey in 2006, which paved the way for
drug epidemic models to come [18]. The authors utilized ordinary differential equations
(ODE) systems and made calculations on several key aspects of the model, including
basic reproduction number (R0), drug-free equilibrium, and drug-persistent equilibrium.
Later on, with the aid of development in theories of nonlinear dynamic systems and
computer-assisted simulation tools, plenty of research studies have sprung up worldwide,
adding to this field of the drug epidemic model. A secondary analysis of the White-
Comiskey model was conducted by Mulone et al. in 2009, who loosened the assumption of
constant inflow rate [19]. Other modification studies, which were mostly heroin epidemic
models, took advantage of various mathematical tools to account for practical factors.
For example, delayed differential equations were used to simulate processes with known
durations [20–23], partial differential equations were utilized to incorporate the effect of
age or treatment duration [24–29], multi-layered models were proposed when population
heterogeneity was involved [30–33], and stochastic differential equations were formulated
to reflect unexpected fluctuations in reality [34–38]. In addition to theoretical analyses,
some synthetic drug epidemic models were applied to real settings and fitted to historical
data, most of which were based on methamphetamine epidemics in South Africa [39–44].

Despite these modeling efforts, few of them have investigated the drug situation in
China [45]. Hence, it is our objective to model the scale and trend of the drug epidemic in
China and thoroughly discuss specified intervention strategies. In this article, we formulate
a drug epidemic model with a complete addiction–rehabilitation–recovery process. Unlike
many other studies, we do not allow self-abstinence without treatment or any other
unrealistic assumptions incompatible with the social background in China [46–57]. After
qualitative analyses of the theoretical behaviors of the model system, we fit the model to
historical data of drug abuse in China and make projections of the future. Efficiencies of
various interventions are discussed. Our study is innovative from two aspects. First, a
new version of the drug epidemic model is applied to the drug abuse epidemic in China.
Second, new insights into intervention strategies to curtail the drug epidemic are provided.

This article is arranged as follows: In Section 2, we formulate the model and establish
its basic properties. The existence and stability of the model equilibria was discussed in
Section 3. In Section 4, sensitivity analysis and some numerical results were provided.
Section 5 includes parameter estimation, model fitting, and projections, as well as sim-
ulations of intervention efficiencies. In Section 6, we conclude this paper with detailed
discussions.
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2. Model Assumptions, Formulations, and Basic Properties
2.1. Basic Assumptions

To study the dynamics of drug abuse in China, we formulate this drug epidemic
model, in which the total population is divided into five mutually exclusive compartments:
the susceptible population (S), light drug users (I1), drug addicts undergoing treatment
(I2), hidden drug addicts (I3), and recovered individuals (R).

The population of interest is civilians aged between 15 and 64 years, while those
outside of this age bracket are supposedly either too young to get in touch with drugs
or old enough to mature out [18,58]. The susceptible compartment, which is defined as
civilians with no history of drug use, receives a constant population inflow at an annual rate
λ. This inflow takes into account young people reaching 15 years old as well as immigrants,
and it is the only approach of population replenishment from outside the system. Light
drug users (I1) are defined as individuals who tried drugs but have not reached addiction
level, the criteria of which could be referred to Methods for the Identification of Drug
Addiction issued by the Ministry of Public Security of China [59]. Drug addicts undergoing
treatment (I2) are defined as drug users who have reached addiction level and are currently
receiving detoxification rehabilitation. The drug rehabilitation system in China comprises
compulsory-isolated detoxification centers, voluntary detoxification facilities, community
detoxification and methadone maintenance treatment clinics (MMTs) [60–63], among which
compulsory-isolated detoxification centers adopt in-patient bases and require isolation
for two years, and other forms of detoxification facilities allow certain degrees of free
movement. As a consequence, the I2 compartment is actually a mixture of patients receiving
various forms of detoxification rehabilitation. Hidden drug addicts (I3) are defined as drug
users who have reached addiction level and remained hidden to the law enforcement
system, and the recovered compartment (R) is defined as individuals who have reached
abstinence through detoxification treatment.

We assume homogeneous mixing and that the spread of drug-using behavior in the
public can be modeled similar to an infectious disease. Susceptible individuals may initiate
drug-using behavior and be converted to light drug users following interactions with drug
addicts undergoing treatment (I2) or hidden drug addicts (I3), in which process we adopt
a bilinear incidence rate. The compartment of drug addicts undergoing treatment (I2),
which is a mixture of patients receiving various forms of rehabilitation, when regarded as a
whole, manifests a lower mobility and an effective contact rate when compared with their
hidden counterparts. Due to the illicit nature of drug-using behaviors in China, hidden
drug addicts (I3) would try to evade law enforcement departments and are able to impose
a larger impact on the transmission of drug addiction. We assume no fast progressor,
which means a susceptible person must first become a light drug user before entering the
compartments of addicts. While progressing to a drug addict, an individual would either be
discovered and admitted to treatment facilities or remain hidden, corresponding to transfer
rates k1 and k2, respectively. Hidden drug addicts (I3) could also be transferred to the I2
compartment at admission rate α, and those who finish rehabilitation will leave I2 and enter
the recovered group R at recovery rate r. Without direct scientific proof of self-abstinence,
we assume no other recovery approach without treatment in this model. Each compartment
bears a natural death rate µ, and hidden drug addicts (I3) suffer from an additional death
rate µd resulting from drug abuse [39,44]. The definitions of all compartment variables and
parameters are listed in Table 1.
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Table 1. Descriptions of model variables and parameters.

Variable/
Parameter Description

S(t) The susceptible individuals at time t
I1(t) Light drug users at time t
I2(t) Drug addicts undergoing treatment at time t
I3(t) Hidden drug addicts at time t
R(t) Recovered individuals at time t

λ Inflow rate into the susceptible individuals
µ Natural death rate
µd Additional death rate resulting from drug abuse
β1 Effective contact rate between drug addicts in treatment and susceptibles
β2 Effective contact rate between hidden drug addicts and susceptibles
k1 Progression rate from light drug users to drug addicts in treatment
k2 Progression rate from light drug users to hidden drug addicts
α Discovery and admission rate from hidden addicts to addicts in treatment
r Recovery rate of drug addicts undergoing treatment

2.2. Model Formulations

The total population at time t is given by N(t) = S(t) + I1(t) + I2(t) + I3(t) + R(t).
Based on the model assumptions above, we can obtain the model diagram (Figure 1) and
the following set of nonlinear differential equations:

dS
dt = λ− β1SI2 − β2SI3 − µS

dI1
dt = β1SI2 + β2SI3 − (k1 + k2 + µ)I1

dI2
dt = k1 I1 + αI3 − (r + µ)I2
dI3
dt = k2 I1 − (α + µ + µd)I3

dR
dt = rI2 − µR

(1)

with initial conditions S(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, I3(0) ≥ 0, R(0) ≥ 0.

Int. J. Environ. Res. Public Health 2020, 17, x 5 of 29 
 

 

 
Figure 1. Flow diagram of the drug epidemic model. 

2.3. Existence and Uniqueness of the Solution 
Lemma 1. The model system admits a unique solution for non-negative initial conditions 

( ) ( ) ( ) ( ) ( )0 0, 0 0, 0 0, 0 0, 0 01 2 3S I I I R≥ ≥ ≥ ≥ ≥ . 

Proof Suppose [ ]( )5, ,C a b   is the Banach space of continuous functions mapping 

the interval [ ],a b  into 5  with the topology of uniform convergence. System (1) with 
non-negative initial conditions can be considered as the following initial-value problem: 

( ) ( )
( )0 0

,x t f t x

x t x

=


=


. 

Let Ω  be an open subset in C×  and 5:f Ω →   is the mapping function of 
System (1). It is obvious that ( ),f t x  is continuous and Lipschitzian in x  in each compact 

set in Ω . Since the initial point ( )0 0,t x ∈ Ω , according to Cauchy–Lipschitz Theorem, 
there is a unique solution of System (1) passing through ( )0 0,t x  [64]. 

2.4. Feasible Region 
The feasible region is an interval where System (1) will be analyzed, and it should be 

forward invariant for biological reasons. Thus, the following lemma will state the positive 
invariance and attractiveness of the system’s feasible region. 

Lemma 2. The feasible region of the model system is defined by  

( ) 5
1 2 3 1 2 3, , , , ;0S I I I R S I I I R λ

μ+
 Γ = ∈ ≤ + + + + ≤ 
 

  (2)

with initial conditions ( ) ( ) ( ) ( ) ( )1 2 30 0 , 0 0 , 0 0 , 0 0 , 0 0S I I I R≥ ≥ ≥ ≥ ≥ , Γ is a positively in-
variant set, and it is attracting with regard to system (1) for all 0t > . 

Proof Adding all the equations of System (1), we obtain 

3d
dN N I N
dt

λ μ μ λ μ= − − ≤ − . 

Solving this differential inequality, we have ( ) ( )0 0 tN t N e μλ λ
μ μ

− ≤ ≤ + − 
 

, where

( )0N  represents the sum of the initial values of all variables. Taking the limit as t→∞, 

Figure 1. Flow diagram of the drug epidemic model.

2.3. Existence and Uniqueness of the Solution

Lemma 1. The model system admits a unique solution for non-negative initial conditions
S(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, I3(0) ≥ 0, R(0) ≥ 0.

Proof Suppose C
(
[a, b],R5) is the Banach space of continuous functions mapping

the interval [a, b] into R5 with the topology of uniform convergence. System (1) with
non-negative initial conditions can be considered as the following initial-value problem:{ .

x(t) = f (t, x)
x(t0) = x0

.
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Let Ω be an open subset in R× C and f : Ω→ R5 is the mapping function of Sys-
tem (1). It is obvious that f (t, x) is continuous and Lipschitzian in x in each compact set in
Ω. Since the initial point (t0, x0) ∈ Ω, according to Cauchy–Lipschitz Theorem, there is a
unique solution of System (1) passing through (t0, x0) [64].

2.4. Feasible Region

The feasible region is an interval where System (1) will be analyzed, and it should be
forward invariant for biological reasons. Thus, the following lemma will state the positive
invariance and attractiveness of the system’s feasible region.

Lemma 2. The feasible region of the model system is defined by

Γ =

{
(S, I1, I2, I3, R) ∈ R5

+; 0 ≤ S + I1 + I2 + I3 + R ≤ λ

µ

}
(2)

with initial conditions S(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, I3(0) ≥ 0, R(0) ≥ 0, Γ is a positively
invariant set, and it is attracting with regard to system (1) for all t > 0.

Proof Adding all the equations of System (1), we obtain

dN
dt

= λ− µN − µd I3 ≤ λ− µN.

Solving this differential inequality, we have 0 ≤ N(t) ≤ λ
µ +

[
N(0)− λ

µ

]
e−µt, where

N(0) represents the sum of the initial values of all variables. Taking the limit as t→ ∞ ,
we have that 0 ≤ N ≤ λ

µ . Thus, the state variables will remain biologically meaningful
in the feasible region Γ for all positive initial conditions, and Γ is positively invariant and
attractive with respect to system (1). Hence, System (1) is well-posed mathematically and
biologically in Γ, and it would suffice to study the dynamics of the system in Γ.

2.5. Positivity of Solutions

According to their biological meanings, all state variables and parameters are sup-
posed to remain positive during the modeling period. In the following lemma, we will
show that with positive initial conditions, each variable would remain non-negative for all
t > 0.

Lemma 3. Given the initial conditions S(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, I3(0) ≥ 0, R(0) ≥ 0, the
solutions S(t), I1(t), I2(t), I3(t) and R(t) will remain non-negative for all t > 0.

Proof Assume that t = sup{t > 0 : S > 0, I1 > 0, I2 > 0, I3 > 0, R > 0} ∈ [0, t]. Thus,
t > 0, and from the first equation of System (1), we have dS

dt = λ− β1SI2 − β2SI3 − µS.
Based on the Leibniz integral rule,

d
dt

∫ t
0 (β1 I2 + β2 I3)ds = β1 I2 + β2 I3 +

∫ t
0

∂
∂t (β1 I2 + β2 I3)ds ≥ β1 I2 + β2 I3

d
dt

[
eµt+

∫ t
0 (β1 I2+β2 I3)ds

]
≥ (µ + β1 I2 + β2 I3)eµt+

∫ t
0 (β1 I2+β2 I3)ds

d
dt

[
S(t)eµt+

∫ t
0 (β1 I2+β2 I3)ds

]
≥
[

dS(t)
dt + S(t) · (µ + β1 I2 + β2 I3)

]
eµt+

∫ t
0 (β1 I2+β2 I3)ds = λeµt+

∫ t
0 (β1 I2+β2 I3)ds

S
(
t
)
eµt+

∫ t
0 (β1 I2+β2 I3)ds − S(0) ≥

∫ t
0 λeµt+

∫ t
0 (β1 I2+β2 I3)dsdt,

S
(
t
)
≥ e−[µt+

∫ t
0 (β1 I2+β2 I3)ds]

[
S(0) +

∫ t
0 λeµt+

∫ t
0 (β1 I2+β2 I3)dsdt

]
> 0.

From the second equation of System (1), we obtain

dI1

dt
≥ −(k1 + k2 + µ)I1.
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Solving the differential inequality, we have:

I1(t) ≥ I1(0)e−(k1+k2+µ)t > 0.

Similarly, it can be shown that I2(t) > 0, I3(t) > 0 and R(t) > 0 for all t > 0.

3. Model Equilibria Analysis
3.1. The Basic Reproduction Number

In this model, the basic reproduction number is defined as the number of secondary
drug users converted from susceptible individuals by a single drug addict (either hidden
or undergoing treatment) introduced into a totally susceptible population during his entire
addiction period [8,54]. The basic reproduction number plays a vital role in determination
of the existence of the drug epidemic, as well as the analysis of dynamics of the model.
In this section, we will obtain the formula of the basic reproduction number with the
next-generation matrix method [65].

First, we rearrange the equations of System (1) according to the order of I1, I2, I3, S, R
and let x = (I1, I2, I3, S, R) be the solution to the system; then, System (1) can be rewritten
as:

dx
dt

= F − V =


β1SI2 + β2SI3

0
0
0
0

−


(k1 + k2 + µ)I1
(r + µ)I2 − k1 I1 − αI3
(α + µ + µd)I3 − k2 I1

β1SI2 + β2SI3 + µS− λ
µR− rI2


where F represents the new initiate terms, and V corresponds to the interior transfer terms.
The corresponding linearized matrices of F and V evaluated at the drug-free equilibrium
E0 =

(
λ
µ , 0, 0, 0, 0

)
are

F =

 0 β1S0 β2S0
0 0 0
0 0 0

, V =

 k1 + k2 + µ 0 0
−k1 r + µ −α
−k2 0 α + µ + µd

.

The next-generation matrix is given by FV−1 =

 A11 A12 A13
0 0 0
0 0 0

, where

A11 =

[
(α + µ + µd)k1 + αk2

(k1 + k2 + µ)(r + µ)(α + µ + µd)
β1 +

k2

(k1 + k2 + µ)(α + µ + µd)
β2

]
λ

µ
,

A12 =
β1λ

µ(r + µ)
, A13 =

[
αβ1

(r + µ)(α + µ + µd)
+

β2

α + µ + µd

]
λ

µ
. (3)

Thus, the basic reproduction number R0 is defined as the spectral radius of the next-
generation matrix, which is the largest absolute value of its eigenvalues:

R0 = ρ
(

FV−1
)
=

[
(α + µ + µd)k1 + αk2

(k1 + k2 + µ)(r + µ)(α + µ + µd)
β1 +

k2

(k1 + k2 + µ)(α + µ + µd)
β2

]
λ

µ
.

The epidemiological meaning of this formula can be understood in the following
way. The first term of the expression above represents the role of drug addicts undergoing
treatment, i.e., when a drug addict in treatment is introduced into a wholly susceptible
population with a size of λ

µ , the number of light drug users converted from susceptible

individuals under his/her influence in unit time is β1λ
µ , the proportion of which who

progress to I2 compartment is k1
k1+k2+µ , whose average addiction period is 1

r+µ ; hence, the

number of I2 directly generated during this period is k1β1λ
µ(k1+k2+µ)(r+µ)

. On the other hand,
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the proportion of I1 who progress to I3 is k2
k1+k2+µ , and the proportion of I3 who progress to

I2 is α
α+µ+µd

; hence, the number of I2 generated through I3 during this period is obtained

as αk2β1λ
µ(k1+k2+µ)(r+µ)(α+µ+µd)

. Adding these two parts gives the first term of the formula. The
latter term can be explained in a similar way, which represents the role of hidden drug
addicts. When a hidden drug addict is introduced into this wholly susceptible population,
the number of light drug users converted from susceptible individuals under his/her
influence in unit time is β2λ

µ , the proportion of which who progress to I2 compartment

is k2
k1+k2+µ , and the average addiction period of I3 is 1

α+µ+µd
; hence, the number of I2

generated during this period is obtained as k2β2λ
µ(k1+k2+µ)(α+µ+µd)

. To sum up, the formula
of basic reproduction number represents the overlay of the influence of drug addicts
undergoing treatment and hidden drug addicts.

3.2. Existence of the Equilibria

In order to investigate the existence of the drug-free equilibrium and the drug-
persistent equilibrium, we set the left side of the equations of System (1) at zero:

λ− β1SI2 − β2SI3 − µS = 0
β1SI2 + β2SI3 − (k1 + k2 + µ)I1 = 0

k1 I1 + αI3 − (r + µ)I2 = 0
k2 I1 − (α + µ + µd)I3 = 0

rI2 − µR = 0.

(4)

Through direct calculations, we obtain:

[(α + µ + µd)k1 + αk2]β1 + (r + µ)k2β2

(r + µ)(α + µ + µd)
SI1 = (k1 + k2 + µ)I1.

1. When I1 = 0, it is easy to acquire I2 = I3 = R = 0, S = λ
µ . At this point, N = S = λ

µ ,

and dN
dt = λ− µN − µd I3 = 0 is also satisfied. We refer to this point as the drug-free

equilibrium E0 =
(

λ
µ , 0, 0, 0, 0

)
.

2. When I1 6= 0, it is obvious that S∗ = (r+µ)(α+µ+µd)(k1+k2+µ)
[(α+µ+µd)k1+αk2]β1+(r+µ)k2β2

and I∗1 = λ−µS∗
k1+k2+µ , I∗2 =

(α+µ+µd)k1+αk2
(r+µ)(α+µ+µd)

I∗1 ,I∗3 = k2
α+µ+µd

I∗1 , R∗ = r
µ I∗2 . At this point, we obtain N = S∗ + I∗1 +

I∗2 + I∗3 + R∗ = [(α+µ+µd)(k1+µ)+k2(α+µ)]λ+k2µµdS∗

µ(k1+k2+µ)(α+µ+µd)
, and it can be easily verified that

dN
dt = λ − µN − µd I3 = 0 also holds. We refer to this point as the unique drug-

persistent equilibrium E∗ =
(
S∗, I∗1 , I∗2 , I∗3 , R∗

)
. For biological reasons, it requires that

S∗ < λ
µ , which corresponds to the condition that R0 > 1.

3.3. Global Stability of the Drug-Free Equilibrium

Theorem 1. The drug-free equilibrium E0 is globally asymptotically stable when R0 ≤ 1.

Proof See Appendix A for a detailed proof of Theorem 1.

3.4. Global Stability of the Drug-Persistent Equilibrium

Theorem 2. The drug-persistent equilibrium E∗ is globally asymptotically stable when R0 > 1.

Proof See Appendix B for a detailed proof of Theorem 2.

4. Sensitivity and Numerical Simulations
4.1. Sensitivity Analysis

Due to the critical role of the basic reproduction number R0 in determination of the
persistence of the drug epidemic, it is of vital importance to identify the most effective
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approach to bring R0 down to below one. In this section, we calculate the normalized
forward sensitivity index (NFSI) of R0 with respect to each parameter following Arriola and
Hyman [66]. Considering their biological and epidemiological meanings, the changes of
some parameters are either impractical or unethical (demographic parameters or inherent
progression rates, etc.). Hence, we have identified four parameters of interest and calculated
their NFSIs:

Aβ1 =
∣∣∣ ∂R0

∂β1

∣∣∣ · ∣∣∣ β1
R0

∣∣∣ = [(α+µ+µd)k1+αk2]β1
[(α+µ+µd)k1+αk2]β1+k2(r+µ)β2

,

Aβ2 =
∣∣∣ ∂R0

∂β2

∣∣∣ · ∣∣∣ β2
R0

∣∣∣ = k2(r+µ)β2
[(α+µ+µd)k1+αk2]β1+k2(r+µ)β2

,

Ak1 =
∣∣∣ ∂R0

∂k1

∣∣∣ · ∣∣∣ k1
R0

∣∣∣ = k1
k1+k2+µ ·

|(α+µ+µd)(k1+µ)β1−k2[αβ1+(r+µ)β2]|
[(α+µ+µd)k1+αk2]β1+k2(r+µ)β2

,

Aα =
∣∣∣ ∂R0

∂α

∣∣∣ · ∣∣∣ α
R0

∣∣∣ = α
α+µ+µd

· |(µ+µd)k2β1−(r+µ)k2β2|
[(α+µ+µd)k1+αk2]β1+k2(r+µ)β2

.

The signs of the numerators of Ak1 and Aα depend on the final values of the parame-
ters, and it is easy to prove that all NFSIs are lower than one. According to their biological
meanings, we have β2 � β1 for most cases; hence, it seems obvious that Aβ2 > Aβ1 . That
is to say, R0 is more sensitive to changes in β2 than those in β1. The relative sizes of Aβ2 ,
Ak1 , and Aα are yet to be determined, depending on the exact value of each parameter.

4.2. Simulation of Sensitivity

With the aim of illustrating the sensitivity of the basic reproduction number R0 with
respect to the parameters of interest, we conduct a series of numerical simulations based on
artificial training parameters. The parameter ranges are chosen to accommodate reasonable
biological meanings, and extra attention is paid when the basic reproduction number R0
crosses one, which acts as the threshold for the persistence of the drug epidemic.

(1) Comparison between β1 and β2
Fix the parameters at λ = 100, µ = 0.007, µd = 0.025, k1 = 0.05, k2 = 0.2, α = 0.05,

and r = 0.5. Set β1 ∈ [1e− 7, 1e− 5] and β2 ∈ [1e− 7, 1e− 5], and draw the phase plane as
well as the contour plot of R0 with respect to β1 and β2 (Figure 2). According to the phase
plane (Figure 2a), the value of R0 decreases sharply as β2 decreases, but the change of β1
has a significantly smaller impact on R0. The contour plot (Figure 2b) demonstrates similar
results, which indicates that R0 is far more sensitive to β2 than to β1 in this case.

(2) Comparison between β2 and k1
Fix the parameters at λ = 100, µ = 0.007, µd = 0.025, k2 = 0.2, α = 0.05, r = 0.5, and

β1 = 1e− 6. Set β2 ∈ [1e− 7, 1e− 5] and k1 ∈ [0.005, 0.5], and draw the phase plane as
well as the contour plot of R0 with respect to β2 and k1 (Figure 3). Both the phase plane
(Figure 3a) and the contour plot (Figure 3b) indicate that β2 is more effective than k1 in
controlling R0. In this case, increasing k1 also lowers R0 to some extent; note that R0 is
negatively correlated with k1.

(3) Comparison between β2 and α
Fix the parameters at λ = 100, µ = 0.007, µd = 0.025, k1 = 0.05, k2 = 0.2, r = 0.5,

and β1 = 1e− 6. Set β2 ∈ [1e− 7, 1e− 5] and α ∈ [0.005, 0.5], and draw the phase plane as
well as the contour plot of R0 with respect to β2 and α (Figure 4). As demonstrated in the
phase plane (Figure 4a) and the contour plot (Figure 4b), the relative effectiveness of β2
and α in controlling R0 seems debatable. In the top-left corner of the contour plot, which
corresponds to lower values of α and higher values of β2, α turns out more efficient in
adjusting the basic reproduction number R0.
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4.3. Simulation of Model Equilibria

With the aid of numerical simulation tools, we are also able to illustrate the global
stability of the model equilibria. For this purpose, we fix the parameters and obtain five
distinct solutions for five different sets of initial values.

(1) Drug-free equilibrium
Fix the parameters at λ = 400, µ = 0.007, µd = 0.025, k1 = 0.05, k2 = 0.2, r = 0.5,

α = 0.05, β1 = 1e− 7, and β2 = 1e− 6. The solutions of five sets of initial values were
demonstrated in Figure 5, including 3D trajectories in the I1 − I2 − I3 space and long-term
time-series plot of each compartment. In this case, R0 = 0.5498 and the model equilibrium
manifests as a drug-free equilibrium. The statement is supported by Figure 5, where
the number of susceptible individuals stabilizes at somewhere above zero, and all other
compartments fade away with time.
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Figure 5. Numerical simulations with five sets of initial conditions with respect to a drug-free equilibrium, including 3D
trajectories in the I1 − I2 − I3 space (a) and long-term time-series plots of drug addicts undergoing treatment (b), susceptible
individuals (c), light drug users (d), hidden drug addicts (e), and the recovered individuals (f).

(2) Drug-persistent equilibrium
Fix the parameters at λ = 400, µ = 0.007, µd = 0.025, k1 = 0.05, k2 = 0.2, r = 0.5,

α = 0.05, β1 = 1e− 6, and β2 = 1e− 5. The solutions of five sets of initial values were
demonstrated in Figure 6. In this case, R0 = 5.4985 and the model equilibrium manifests
as a drug-persistent equilibrium. This statement is supported by Figure 6, where all
compartments persist and stabilize somewhere above zero.
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3D trajectories in the I1 − I2 − I3 space (a) and long-term time-series plots of drug addicts undergoing treatment (b),
susceptible individuals (c), light drug users (d), hidden drug addicts (e), and the recovered individuals (f).

5. Application of the Model

Based on the qualitative results of dynamical behaviors acquired above, we now
apply the model to the drug epidemic in real world. Since our model possess a complete
addiction–rehabilitation–recovery process, and its basic assumptions are more compatible
with the current situation in mainland China, we fit our model to the historical data of
drug users in China and aim to predict the scale and trend of drug users in the near future
as well as analyze the potential effect of various intervention strategies.

5.1. Data Source and Variables

The most comprehensive and publicly available official sources are the Annual Report
of Drug Situation in China and Annual Report on Drug Control in China released by the
National Narcotics Control Committee (NNCC) [67]. Since 2015, the reports have changed
their scopes of statistics and provided the numbers of all existing drug users (excluding
those who had died, emigrated, or remained abstinent for three or more years) instead
of the numbers of cumulative totals previously reported [3,68]. According to the Law of
Drug Control and the Drug Rehabilitation Ordinance, all drug users identified will receive
their corresponding type of rehabilitation treatment; thus, we can safely conclude that the
numbers of all existing drug users released by the NNCC correspond to the compartment
of drug addicts undergoing treatment (I2) in our model. The numbers of former drug users
who had remained abstinent for three or more years reported by the NNCC approximately
correspond to the compartment of individuals who have reached abstinence through
detoxification treatment (R). Without a direct data source, the initial value of hidden
drug addicts (I3) can be ascertained through the initial value of I2 compartment and the
explicit-to-implicit ratio of 1:4 reported by the NNCC and the existing literature [62,68–70].
Likewise, the initial value of light drug users is estimated based on dynamical relationships
with neighboring compartments. Finally, the initial value of the susceptible individuals
(S) is obtained through subtracting all other compartments from the total population
aged 15−64 recorded by the National Bureau of Statistics [71]. The historical numbers of
population aged 15−64, existing drug users, and former drug users who had remained
abstinent for three or more years are listed in Table 2.
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Table 2. Historical data of population aged 15−64, number of existing drug users, and former drug
users who had remained abstinent for three or more years during 2015−2019.

Year Population Aged
15−64 * Existing Drug Users * Former Drug Users

Abstinent for ≥3 Years *

2015 100,361 234.5 114.8
2016 100,260 250.5 141.1
2017 99,829 255.3 167.9
2018 99,357 240.4 207.3
2019 98,914 214.8 253.3

* The unit of all numbers is 10,000 people.

5.2. Parameter Estimation

We obtain demographic parameters mainly from official data released by the authori-
ties, among which the natural death rate µ was acquired from the website of The National
Bureau of Statistics, and inflow rate into the susceptible compartment λ was ascertained
through the equation that Net population growth = Inflow–Death [71]. Other parameters
with explicit sources include the additional death rate of hidden drug addicts µd and the
progression rate from light drug users to hidden drug addicts k2 [23,25,39,44,72]. Without
direct data, the recovery rate was ascertained according to the rehabilitation durations
of the detoxification facilities [60]. Other parameters involve implicit processes that are
hard to study directly and will need to be ascertained through fitting procedures. The po-
tential ranges of the parameters were chosen based on dynamical relationships between
neighboring compartments and parameters with similar roles in other modeling studies
as well [23,25,39,44,60,72]. For instance, with around 1 billion susceptible individuals and
10 million hidden drug addicts at the starting point, the incidence rate of new initiates
under the influence of hidden drug addicts shall not exceed 1 million/year (which ap-
proximates the number of light drug users at the initial phase). According to the bilinear
incidence rate adopted, we obtain that an effective contact rate of β2 < 1e− 6 /10 thousand
people*year from this inequality. We list the parameter units, value ranges, final values
used, and their sources in Table 3.

Table 3. Parameter units, value ranges, final values used, and sources.

Parameter Unit Range Value Source

λ 10 thousand
people/year (235, 610) 400 Estimated from [71]

µ /year (0.0064, 0.00716) 0.007 [71]
µd /year (0.021, 0.102) 0.025 [39,44]
β1

/10 thousand
people*year (1 × 10−9, 1 × 10−6) 1.2481 × 10−7 Curve fit

β2
/10 thousand
people*year (1 × 10−9, 1 × 10−6) 3.8611 × 10−7 Curve fit

k1 /year (0.05, 0.3) 0.176 Curve fit
k2 /year (0.05, 0.5) 0.2 [23,25,72]
α /year (0.05, 0.6) 0.124 Curve fit
r /year (0.33,0.6) 0.45 Estimated from [60]

5.3. Model Fitting and Projections

In this section, we fit our model to historical data of drug abuse in China, where re-
ported numbers of existing drug users during 2015–2019 were used to model the growth of
drug addicts undergoing treatment. Instead of using all five data points in the curve-fitting
procedure, we set the point of 2019 aside and used it for verification. Least square curve
fitting was realized through the fminsearch function in the Matlab program (Mathworks
Corp, Natick, MA, USA), and numerical solutions of the model system were obtained
by the Runge–Kutta method of order 4. The iteration procedures of fitting are plotted in
Figure 7a, where blue crosses are historical data of existing drug users during 2015–2018.
From Figure 7b to Figure 7f, time series of I2, N, I1, I3 and R are plotted along with their
projections until 2030. Blue crosses in Figure 7b have the same meanings as in Figure 7a,
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and the red cross marks the corresponding data in 2019. Crosses in Figure 7c represent
historical data of population aged 15−64 recorded by The National Bureau of Statistics,
which acted as verification with the sum of all compartments. It can be seen from the results
in Figure 7 that the numbers of light drug users, drug addicts undergoing treatment, and
hidden drug addicts experience decreases of 81.22%, 71.98%, and 84.69% respectively in
15 years, so long as the model dynamics remain unperturbed. The sum of all compartments
experiences a mild decrease of 4.44%, which is in consistent with the tendencies of historical
data. The final values of the parameters acquired through curve fitting are listed in Table 3,
and the corresponding basic reproduction number was calculated as R0 = 0.087256, which
is quite low and accords with the rapid decreases observed in the number of drug addicts
undergoing treatment and hidden drug addicts.
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5.4. Evaluation of Intervention Strategies

Despite the delightful tendency of decrease generated by model simulation in the
previous section, it is still the objective of policy makers and public health workers to
further shrink the scale of drug epidemic. In this section, we present hypothesized results
of several potential intervention strategies through numerical simulation and compare
their effects on drug control.

(1) Intervention 1: anti-drug education and propaganda
Previous studies have shown that a misconception of drugs (86−90%) and peer

influence (13−44%) are the most common reasons for initiating drug use among Chinese
drug users [73,74]. School-based anti-drug education or preventive propaganda through
media publicity has been implemented in China in the past decades and proved itself as
an effective tool against drug epidemic [75]. Strengthening anti-drug propaganda could
correct misunderstandings of drugs among the susceptible individuals and lower the risk
of first exposure to illicit drugs. We assume that the effective contact rates β1 and β2 are
inversely proportional to the intensity of anti-drug education and propaganda, and that
doubling the frequency and budgets of such activities could lower β1 and β2 by 50%.
Suppose this strategy starts to take effect since the end of 2020, and plot the new curves of
the model solution in parallel with the original ones (Figure 8). The results show that the
implementation of this intervention will be able to lower the number of light drug users
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(−49.27%) and drug addicts undergoing treatment (−12.79%) by 2030, but its effect on
hidden addicts (−9.58%) is relatively smaller.
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(2) Intervention 2: moderate anti-drug propaganda
Accounting for the limited resources available for anti-drug education and propa-

ganda, as well as the huge number of susceptible individuals, we might consider an
alternative approach instead of an amplification of 100% in the intensities of such activities.
Hence, in this intervention strategy, the frequency and budgets of anti-drug education
and propaganda are increased by 50%, which correspond to a 33% decrease in effective
contact rates β1 and β2. We repeat the rest of the procedures and obtain simulation results
in Figure 9. The results showed that the number of light drug users will be lowered by
33.20% compared to the original curve, and the impact on hidden drug addicts is minimal.

(3) Intervention 3: investigation and admission
In contrast to preventive strategies, we now consider improving the intensity of

investigation of hidden drug users and their admission into drug rehabilitation facilities.
We assume that the transfer rates k1 and α are proportional to the intensity of investigation
and admission, and that doubling the frequency and budgets of such activities, as well as
the number of rehabilitation facilities, could increase k1 and α by 100%. Supposing this
change of parameters takes place since the end of 2020, we obtained the simulation results
shown in Figure 10. It could be observed that the number of light drug users (−71.18%)
and hidden drug addicts (−71.44%) undergoes sharp decreases compared to the original
curves, and that of drug addicts in treatment I2, though experiencing a temporary increase,
ends up lower than the original curve (−16.82%).
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(4) Intervention 4: moderate investigation
On account of the available police strengths and limited rehabilitation capacities of the

detoxification facilities, we might consider an alternative approach instead of a thorough
search of hidden drug users for the time being [67]. Hence, in this intervention strategy, the
frequency and budgets of investigation activities, as well as the number of rehabilitation
facilities are increased by 50%, corresponding to increases of 50% in k1 and α. Repeat the
rest of the procedures, and we obtain the results in Figure 11. A considerable drop is still
observed in the I3 compartment (−46.66%), and the final number of I2 is also smaller than
its original counterpart (−4.78%).

(5) Comparison of the interventions
In order to visually compare the effects of different intervention strategies on drug

control, we tabulate the final numbers of all compartments in 2030 and their relative
growth compared to the original curves in Table 4. The results show the high efficiency of
Interventions 3 and 4 in reducing the number of drug users, especially hidden drug addicts.
For instance, though possessing proximate basic reproduction numbers, Interventions 1
and 3 generated totally diverse outcomes in that the declining percentage of hidden drug
addicts in Intervention 3 (−71.44%) was around 7 times larger than that in Intervention 1
(9.58%). Similar situations are also observed for Interventions 2 and 4.
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hidden drug addicts (c), and recovered individuals (d).
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Table 4. Comparison of Interventions 1−4 and their corresponding basic reproduction numbers.

Original Intervention 1 Intervention 2 Intervention 3 Intervention 4

2020 * 2030 * 2030 * Increase
(%) 2030 * Increase

(%) 2030 * Increase
(%) 2030 * Increase

(%)
S 97,368.48 94,533.21 94,592.85 0.06% 94,572.98 0.04% 94,566.47 0.04% 94,552.61 0.02%
I1 77.42 23.28 11.81 −49.27% 15.55 −33.20% 6.71 −71.18% 12.31 −47.12%
I2 206.86 65.70 57.30 −12.79% 60.10 −8.52% 54.65 −16.82% 62.56 −4.78%
I3 496.84 143.57 129.81 −9.58% 134.40 −6.39% 41.00 −71.44% 76.58 −46.66%
R 639.97 1140.08 1116.05 −2.11% 1124.13 −1.40% 1261.71 10.67% 1216.28 6.68%
R0 0.087256 0.043628 0.058462 0.042853 0.057216

* The unit of all numbers of compartments is 10,000 people.

6. Discussion

In this article, we propose a drug epidemic model with a complete addiction–
rehabilitation–recovery process, which assumes the conversion of susceptible individ-
uals into light drug users under the influence of drug addicts undergoing treatment and
hidden drug addicts. Unlike many previous studies, we discard unrealistic assumptions
such as self-detoxification without treatment or permanent immunity to drugs granted
by “vaccines” or education [49,57]. We have acquired qualitative results of the dynamical
behaviors of the model, including the feasible region, basic reproduction number, global
asymptotic stabilities of the drug-free equilibrium and the drug-persistent equilibrium,
as well as sensitivity analysis realized through normalized forward sensitivity indices.
Subsequently, we applied the model to the drug epidemic in China and obtained the
numerical simulation results via curve fitting and projections. The results show significant
decreases in the numbers of all groups of drug users, including light drug users, drug
addicts undergoing treatment, and hidden drug addicts. Should the model dynamics
remain undisturbed, the predicted drug shrink in the following decade will be a positive
signal to the accumulative anti-drug efforts by the Chinese government and public health
workers, and it is in accordance with the 2030 Agenda for Sustainable Development by the
United Nations [1].

One of the most interesting results could be observed in Section 5.4, where Interven-
tions 3 and 4, which correspond to increasing transfer rates k1 and α, turned out to be more
efficient in reducing the numbers of existing drug users (including light drug users, drug
addicts undergoing treatment, and hidden drug addicts) as well as the basic reproduction
number than Interventions 1 and 2 (corresponding to lowering the effective contact rates
β1 and β2). This conclusion is in accordance with the sensitivity analyses in Section 4, in
that the parameters β2 = 3.86e− 7, α = 0.124 acquired through curve fitting correspond
to the bottom-left corner of Figure 4b, where the basic reproduction number R0 is more
sensitive to changes in α than in β2. Likewise, it can be shown that R0 is far more sensitive
to β2 than to k1 or β1. As a consequence, it would not be surprising that a combination of α
and k1 (Interventions 3 and 4) is slightly more efficient in reducing R0 than the combination
of β1 and β2 (Interventions 1, 2). The conclusions above seem to contradict one of the
most frequently stated conclusions that “prevention is better than cure” made by several
previous studies [18,20,21] at first glimpse, but they are actually different aspects of the
drug epidemic. Basic reproduction number R0 focuses on the capability of new addicts to
convert susceptible individuals into new initiates, whose effect on the existing drug addicts
are realized through complex dynamical processes. On the contrary, transfer rates α and
k1 directly act on the existing number of hidden drug addicts and light drug users, and
they proved to be efficient in controlling the scale of the drug epidemic. A direct proof of
this phenomenon is the slight effect of Intervention 1 or 2 on the number of hidden drug
addicts compared to that of Intervention 3 or 4, despite their similar basic reproduction
numbers.

Another fact worth noticing is the tiny value of the basic reproduction number
(R0 = 0.087256 in the baseline). The calculation of this value was based on the formulation
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obtained in Section 3.2 and the parameter values acquired through curve fitting. Since we
used the historical data of 2015−2018 to ascertain the parameter values and the data of
2019 to verify the projected trend, the result showed an overall well goodness of fit, and
we have reasons to believe that this value of R0 is an authentic manifestation of the drug
situation in China for the modeling period. Given the illicit nature of drug-taking behaviors
in China and the low reported number of existing drug users in official data, the scale of
drug epidemic is by no means comparable to those of infectious diseases, and it seems
reasonable that the R0 of drug-using behaviors is smaller than those of infectious diseases
by an order of magnitude [11]. Based on this R0 and the already-decreasing number of
drug users observed since 2018, it would not be difficult to understand the larger impact
of Intervention 3 or 4 compared with Intervention 1 or 2 on the already-shrinking drug
epidemic. In addition, it should also be noted that the number of drug addicts undergoing
treatment in Interventions 3 and 4 even ended up lower than the original curves, and we
owe this fact to the relatively higher value of β2 compared with β1, as well as the relevant
dynamical processes. We believe the discussion above partially explains the observed
results, and in the meantime, it offers new insights into formulations of anti-drug strategies
and policies. The basic reproduction number R0 is still an important threshold value for
determination of the persistence of the drug epidemic, but cautions should be taken when
choosing the appropriate strategy to further eliminate drug spread.

Our study possesses the following novelties: (1) a complete addiction–rehabilitation–
recovery process, without unrealistic assumptions such as self-detoxification or permanent
immunity; (2) application to the historical data of drug users in China and projection to the
future; (3) novel insights in discussions of intervention strategies to accelerate the reduction
of existing drug users. Similar to all existing modeling research studies, we acknowledge
that our present study bears certain limitations. Above all, the assumption of permanent
abstinence and absence of a relapse process is adopted for ease of analysis and application
of the model, which is a major contradiction with the real situation around the world [76].
Secondly, the scarcity of historical data occurred due to former scopes of statistics adopted
by the NNCC, which only provided accumulative numbers of drug users, and there
was no other direct source available to secure the data of interest. Drug-use patterns
and demographic characteristics may differ greatly among different subgroups divided
according to age, gender, drug type consumed, etc., which requires advanced mathematical
tools such as stratified models or partial differential equations [24–33]. Despite these
limitations, our model still offers a universally applicable tool for prediction and analysis
of the drug situation, and the complex issues listed above will be considered in our future
research.

7. Conclusions

In this study, we have formulated a drug epidemic model with a complete addiction–
rehabilitation–recovery process, which allows the generation of new initiates under the
influence of drug addicts undergoing treatment and hidden drug addicts. We have estab-
lished the basic properties of the model system, including the existence, uniqueness, and
positivity of the solution, the forward-invariance of the feasible region, and the formu-
lation of the basic reproduction number. We have shown that the drug-free equilibrium
is globally asymptotically stable when R0 ≤ 1, and the drug-persistent equilibrium is
globally asymptotically stable when R0 > 1. We have also carried out sensitivity analysis
based on normalized forward sensitivity indices and numerical simulations, and we found
that the relative efficiencies of parameters in adjusting R0 can be debatable. Based on the
established qualitative results, we use the model to simulate the drug epidemic in China,
generate projections of the future, and provide in-depth discussions of intervention strate-
gies. The simulation results show that the drug epidemic undergoes significant decreases
in the following decade, and it would be more efficient to strengthen the investigation
and admission of implicit drug users in order to pace up the elimination of drug spread.
However, it should also be noticed that our model is a simplification of the real situation
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and can be further enhanced in its mathematical form. Further research could take into
account the heterogeneous nature of the human society and incorporate complexities (e.g.,
delayed diffusive equations, multi-layer stochastic equations, and co-transmission models
of various types of drugs) into their models. Moreover, regional-level modeling studies
could also be carried out based on the availability of historical data, which arouses the
needs for co-operation among epidemiologists, public health specialists, and governmental
authorities.
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Appendix A

Proof of Theorem 1. To investigate the local asymptotic stability of the drug-free equi-
librium E0 =

(
λ
µ , 0, 0, 0, 0

)
, we obtain the Jacobian matrix associated with System (1)

evaluated at E0:

J
∣∣E0 =


−µ 0 − β1λ

µ − β2λ
µ 0

0 −(k1 + k2 + µ)
β1λ

µ
β2λ

µ 0
0 k1 −(r + µ) α 0
0 k2 0 −(α + µ + µd) 0
0 0 r 0 −µ

.

Through direct calculations, we see that the eigenvalues of J
∣∣E0 are −µ (multiplicity 2)

and the solution to the cubic equation a3x3 + a2x2 + a1x + a0 = 0, where

a3 = 1, a2 = α + 3µ + µd + k1 + k2 + r,
a1 = (k1 + k2 + µ)(α + µ + µd) + (r + µ)(k1 + k2 + 2µ + α + µd)− (k1β1 + k2β2)

λ
µ ,

a0 = − β1λ
µ [k2α + k1(α + µ + µd)] + (r + µ)

[
(k1 + k2 + µ)(α + µ + µd)− k2β2

λ
µ

]
.

It is obvious that a3 > 0, a2 > 0, and from

R0 =
[(α + µ + µd)k1 + αk2]β1 + k2(r + µ)β2

(k1 + k2 + µ)(r + µ)(α + µ + µd)
· λ

µ
< 1,

we can easily obtain that a0 > 0. It can be deduced that

k1β1λ

µ
< (k1 + k2 + µ)(r + µ) and

k2β2λ

µ
< (k1 + k2 + µ)(α + µ + µd).

Hence, we have a1 > (r + µ)(α + µ + µd) > 0. Moreover, it can also be obtained that

a2a1 − a3a0 > (α + µ + µd)(r + µ)(2k1 + 2k2 + 4µ + r + α + µd) + k2αβ1
λ

µ
> 0.

http://www.nncc626.com/2020-06/24/c_1210675813.htm
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According to Routh–Hurwitz criterion, all eigenvalues of J
∣∣E0 have negative real parts

when a0, a1, a2, a3 > 0 and a2a1 − a3a0 > 0, which leads to the conclusion that E0 is locally
asymptotically stable when R0 < 1 [64].

To prove the global asymptotic stability of E0, we need to construct a suitable Lya-
punov function. By applying the method introduced by Li et al. [77], we define b ≥ 0 as
the left eigenvector of the non-negative matrix V−1F with respect to the eigenvalue R0.
We can easily obtain that b = (0, β1, β2) is a suitable eigenvector and further establish the
following Lyapunov function:

L = bV−1x =
µR0

λ
I1 +

β1

r + µ
I2 +

αβ1 + (r + µ)β2

(r + µ)(α + µ + µd)
I3. (A1)

Compute the time-derivative of L along the trajectory of System (1):

dL
dt = µR0

λ ·
dI1
dt + β1

r+µ ·
dI2
dt + αβ1+(r+µ)β2

(r+µ)(α+µ+µd)
· dI3

dt

= µR0
λ [β1SI2 + β2SI3 − (k1 + k2 + µ)I1] +

β1
r+µ [k1 I1 + αI3 − (r + µ)I2]

+ αβ1+(r+µ)β2
(r+µ)(α+µ+µd)

[k2 I1 − (α + µ + µd)I3].

Through tedious algebraic manipulations, we acquire the coefficients of I1 ∼ I3.
Coefficient of I1:

β1k1

r + µ
+

αk2β1 + (r + µ)k2β2

(r + µ)(α + µ + µd)
− (k1 + k2 + µ)

µR0

λ
= 0,

Coefficient of I2:
µR0

λ
β1S− β1 ≤ β1(R0 − 1) ≤ 0

when R0 ≤ 1,
Coefficient of I3:

µR0

λ
β2S− β2 ≤ β2(R0 − 1) ≤ 0

when R0 ≤ 1.
The equalities above can be satisfied only when R0 = 1, which corresponds to the

drug-free equilibrium E0 =
(

λ
µ , 0, 0, 0, 0

)
. By LaSalle’s invariance principle, the largest

invariant set in

Γ =

{
(S, I1, I2, I3, R) ∈ R5

+; 0 ≤ S + I1 + I2 + I3 + R ≤ λ

µ

}
is reduced to the singleton E0 in this case. Hence, the unique drug-free equilibrium is
globally asymptotically stable; thus, it completes the proof. �

Appendix B

Proof of Theorem 2. The Jacobian matrix method seems impractical for the analysis of
local stability of the drug-persistent equilibrium E∗, since determination of the eigenvalues
requires solving a quartic equation, which is difficult to handle even for Routh–Hurwitz
criterion. Alternatively, we choose the bifurcation method based on center manifold theory
by Castillo-Chavez and Song [78].

Consider System (1) as an ODE system with bifurcation parameter ϕ:

dx
dt

= f (x, φ), f : R5 ×R→ R5, f ∈ C2
(
R5 ×R

)
.
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The choice of the bifurcation parameter ϕ should satisfy f (E0, φ) ≡ 0 for ∀φ. In this
case, β1 is obviously an eligible parameter for φ. To proceed, we substitute the variables as
S = x1, I1 = x2, I2 = x3, I3 = x4, R = x5, and System (1) changes to:

f1 = λ− β1x1x3 − β2x1x4 − µx1
f2 = β1x1x3 + β2x1x4 − (k1 + k2 + µ)x2

f3 = k1x2 + αx4 − (r + µ)x3
f4 = k2x2 − (α + µ + µd)x4

f5 = rx3 − µx5.

(A2)

Set R0 = [(α+µ+µd)k1+αk2]β1+k2(r+µ)β2
(k1+k2+µ)(r+µ)(α+µ+µd)

· λ
µ = 1, and based on previous results of the

Jacobian matrix J
∣∣E0 , it is not difficult to find that zero is an eigenvalue of J

∣∣E0 , and all
other eigenvalues have negative real parts. Hence, the criterion for the application of the
bifurcation method is met. Subsequently, we compute the right and left eigenvectors corre-
sponding to zero eigenvalue. The right eigenvector is given by

→
w = (w1, w2, w3, w4, w5)

T ,
where

w1 = − k1+k2+µ
µ · w2, w3 = µ(k1+k2+µ)(α+µ+µd)−k2β2λ

(α+µ+µd)β1λ
· w2,

w4 = − k2
α+µ+µd

· w2, w5 = µ(k1+k2+µ)(α+µ+µd)−k2β2λ
(α+µ+µd)β1λµ

· rw2.

The left eigenvalue is given by
→
v = (0, v2, v3, v4, 0), where

v3 =
β1λ

(r + µ)µ
· v2, v4 =

µ(k1 + k2 + µ)(r + µ)− k1β1λ

µk2(r + µ)
· v2

Let fk be the kth equation of System (5), and according to the bifurcation method,

a =
5
∑

k,i,j=1
vkwiwj

∂2 fk
∂xi∂xj

(0, 0), and b =
5
∑

k,i=1
vkwi

∂2 fk
∂xi∂φ (0, 0).

The associated non-zero second-order partial derivatives around (E0, 0) are:
∂2 f2

∂x1∂x3
= ∂2 f2

∂x3∂x1
= β1, ∂2 f2

∂x1∂x4
= ∂2 f2

∂x4∂x1
= β2, ∂2 f2

∂x3∂φ = λ
µ .

The rest of the second-order partial derivatives were all calculated to be 0 and are
hence omitted. Take v2 = w2 = 1, and it is easy to obtain that:

a = v2

5

∑
i,j=1

wiwj
∂2 f2

∂xi∂xj
(0, 0) = 2(w1w3φ + w1w4β2).

It is obvious that w1 < 0, w4 > 0, and given the condition of R0 = 1, it is not hard to
prove w3 > 0. Hence, we have a < 0 proved. On the other hand, we have:

b = v2

5

∑
i

wi
∂2 f2

∂xi∂φ
(0, 0) =

w3λ

µ
> 0.

In conclusion, since a < 0 and b > 0, according to the theory of backward bifurcation,
the model system experiences forward bifurcation, and the drug-persistent equilibrium is
locally asymptotically stable for R0 > 1 but close to one [40].

To prove the global stability of the drug-persistent equilibrium E∗, we now construct
a Volterra-type Lyapunov function following the method described in [77]:

V =
µR0(r + µ)

λ
V1 + β1V2 +

β2(r + µ) + αβ1

α + µ + µd
V3,

among which:
V1 = S− S∗ − S∗ ln S

S∗ + I1 − I∗1 − I∗1 ln I1
I∗1

V2 = I2 − I∗2 − I∗2 ln I2
I∗2

, V3 = I3 − I∗3 − I∗3 ln I3
I∗3

.
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The time-derivative of V1 is given by:

dV1
dt =

(
1− S∗

S

)
dS
dt +

(
1− I∗1

I1

)
dI1
dt

=
(

1− S∗
S

)
(λ− β1SI2 − β2SI3 − µS) +

(
1− I∗1

I1

)
[β1SI2 + β2SI3 − (k1 + k2 + µ)I1].

Based on System (3) at the drug-persistent equilibrium E∗, we obtain λ = β1S∗ I∗2 +

β2S∗ I∗3 + µS∗ and k1 + k2 + µ =
β1S∗ I∗2 +β2S∗ I∗3

I∗1
, and the equation above turns into:

dV1
dt =

(
1− S∗

S

)[
β1S∗ I∗2

(
1− SI2

S∗ I∗2

)
+ β2S∗ I∗3

(
1− SI3

S∗ I∗3

)
+ µ(S∗ − S)

]
+
(

1− I∗1
I1

)[
β1S∗ I∗2

(
SI2

S∗ I∗2
− I1

I∗1

)
+ β2S∗ I∗3

(
SI3

S∗ I∗3
− I1

I∗1

)]
∵ Θ1 =

(
1− S∗

S

)
(S∗ − S) ≤ 0

∴ dV1
dt ≤ β1S∗ I∗2

(
2− S∗

S + I2
I∗2
− I1

I∗1
− I∗1 SI2

I1S∗ I∗2

)
+ β2S∗ I∗3

(
2− S∗

S + I3
I∗3
− I1

I∗1
− I∗1 SI3

I1S∗ I∗3

)
.

Let F = 2− S∗
S + I2

I∗2
− I1

I∗1
− I∗1 SI2

I1S∗ I∗2
, G = 2− S∗

S + I3
I∗3
− I1

I∗1
− I∗1 SI3

I1S∗ I∗3
, and define D(x) =

− x
x∗ + ln x

x∗ , Φ(a) = 1− a + ln a as in [78]. It is easy to prove Φ(a) = 1− a + ln a ≤ 0 for
∀a > 0, and the equality can be reached only when a = 1. Thus, the expressions above can
be rewritten as:

F = Φ
(

S∗
S

)
− ln

(
S∗
S

)
+ Φ

(
I∗1 SI2
I1S∗ I∗2

)
− ln

(
I∗1 SI2
I1S∗ I∗2

)
+ I2

I∗2
− I1

I∗1
≤ I2

I∗2
− I1

I∗1
− ln

(
I∗1 I2
I1 I∗2

)
= D(I1)− D(I2),

G = Φ
(

S∗
S

)
− ln

(
S∗
S

)
+ Φ

(
I∗1 SI3
I1S∗ I∗3

)
− ln

(
I∗1 SI3
I1S∗ I∗3

)
+ I3

I∗3
− I1

I∗1
≤ I3

I∗3
− I1

I∗1
− ln

(
I∗1 I3
I1 I∗3

)
= D(I1)− D(I3).

Hence, it can be deduced that:

dV1

dt
≤ β1S∗ I∗2 [D(I1)− D(I2)] + β2S∗ I∗3 [D(I1)− D(I3)].

Similarly, the time-derivative of V2 is given by:

dV2

dt
=

(
1− I∗2

I2

)
dI2

dt
=

(
1− I∗2

I2

)
[k1 I1 + αI3 − (r + µ)I2].

Based on System (3) at the drug-persistent equilibrium E∗, we obtain r + µ =
k1 I∗1 +αI∗3

I∗2
,

and the equation above turns into:

dV2
dt =

(
1− I∗2

I2

)[
k1 I∗1

(
I1
I∗1
− I2

I∗2

)
+ αI∗3

(
I3
I∗3
− I2

I∗2

)]
= k1 I∗1

(
I1
I∗1
− I2

I∗2
− I1 I∗2

I∗1 I2
+ 1
)
+ αI∗3

(
I3
I∗3
− I2

I∗2
− I∗2 I3

I2 I∗3
+ 1
)

= k1 I∗1
[

I1
I∗1
− I2

I∗2
+ Φ

(
I1 I∗2
I∗1 I2

)
− ln

(
I1 I∗2
I∗1 I2

)]
+ αI∗3

[
I3
I∗3
− I2

I∗2
+ Φ

(
I∗2 I3
I2 I∗3

)
− ln

(
I∗2 I3
I2 I∗3

)]
≤ k1 I∗1

(
I1
I∗1
− I2

I∗2
− ln I1

I∗1
+ ln I2

I∗2

)
+ αI∗3

(
I3
I∗3
− I2

I∗2
− ln I3

I∗3
+ ln I2

I∗2

)
.

Hence, it is easily obtained that dV2
dt ≤ k1 I∗1 [D(I2)− D(I1)] + αI∗3 [D(I2)− D(I3)]. By

similar algebraic manipulations, we can also obtain that:

dV3

dt
≤ k2 I∗1

(
I1

I∗1
− I3

I∗3
− ln

I1

I∗1
+ ln

I3

I∗3

)
= k2 I∗1 [D(I3)− D(I1)].
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As a consequence, the time-derivative of the Lyapunov function becomes:

dV
dt = µR0(r+µ)

λ · dV1
dt + β1 · dV2

dt + β2(r+µ)+αβ1
α+µ+µd

· dV3
dt ,

≤ µR0(r+µ)
λ

{
β1S∗ I∗2 [D(I1)− D(I2)] + β2S∗ I∗3 [D(I1)− D(I3)]

}
+β1

{
k1 I∗1 [D(I2)− D(I1)] + αI∗3 [D(I2)− D(I3)]

}
+

k2 I∗1 [β2(r+µ)+αβ1]
α+µ+µd

[D(I3)− D(I1)].≡ 0

Hence, the right-hand side of the inequality is identically vanishing, and dV
dt ≤ 0

holds whenever R0 > 1. The equalities above can be satisfied only when S = S∗,
I1 = I∗1 , I2 = I∗2 and I3 = I∗3 , which corresponds to the drug-persistent equilibrium
E∗ =

(
S∗, I∗1 , I∗2 , I∗3 , R∗

)
. By LaSalle’s invariance principle, the largest invariant set in

Γ =
{
(S, I1, I2, I3, R) ∈ R5

+; 0 ≤ S + I1 + I2 + I3 + R ≤ λ
µ

}
is reduced to the singleton E∗

in this case. Hence, the drug-persistent equilibrium is globally asymptotically stable, thus
completing the proof. �
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