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Abstract: The Yangtze River Basin (YRB) is an important area for China’s economic development
and environmental governance. The aim of this paper is to analyze the total factor productivity
across 97 cities in the YRB from 2005 to 2016. Based on the input and output indicators from 2005
to 2016, this paper selects the SE-SBM model to measure the environmental regulation efficiency
(ERE) of 97 cities in the YRB and then uses the DEA–Malmquist index to measure the total factor
productivity of the region. Results suggest that the overall ERE in the YRB is weakly ineffective,
while ERE in the central and eastern coastal areas is relatively high. ERE matches the economic
foundation and development of the city. YRB environmental regulation efficiency was in descending
order in the middle stream, upstream, and downstream. The efficiency of regional environmental
regulation shows an N-type development trend, with obvious characteristics of phased development.
Moreover, the total factor productivity of the YRB has shown a downward trend. The scale efficiency
index and the technical efficiency index have positively boosted the total factor productivity, while
the technological progress index has dragged down the total factor productivity of the area. The
contribution to the total factor productivity index is in order of scale efficiency, technological progress
index, and technological efficiency index in the downstream. The overall inputs and outputs of the
YRB have great development potential. The inputs have not been fully utilized, the outputs have not
been maximized, and the regional differentiation is significantly observable.

Keywords: Yangtze River Basin; environmental regulation efficiency; SE-SBM model; DEA–Malmquist
index

1. Introduction

The Yangtze River Basin (YRB) contains a vast array of developed industries in
densely populated cities and rich mineral, water, and agricultural resources; nearly half of
the country’s heavy chemical, power, and steel companies are distributed along the river,
and as such, environmental protection is an important facet of further development. As
a result, the “Master Plan for the Protection, Development and Utilization of the Yangtze
River Coastline” issued in September 2016 comprehensively analyzed the main problems
in the development and utilization of both sides of the Yangtze River. China’s 14th Five-
Year Plan in 2020 emphasizes the environmental issues and will strive to coordinate and
integrate resources and promote the green development of both sides of the Yangtze River.
Considering these realities, the aim of this paper is to study total factor productivity across
97 cities in the YRB from 2005 to 2016.

In recent years, China has issued a series of environmental protection policy docu-
ments, and many scholars have begun to pay attention to the efficiency of environmental
regulations. Yu and Wang [1] argued that China is committed to strengthening the con-
struction of environmental laws and regulations to optimize the structure of the industrial
economy and achieve high-quality economic development. Recent research has shown
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that the overall level of China’s regional environmental efficiency is relatively low, with
large regional differences but gradually showing signs of improvement [2]. Environmental
regulation efficiency (ERE) in China shows a clear “polarized effect”, matches the level of
economic development [3], and is often studied using data envelopment analysis (DEA)
models. A three-stage DEA model and the super DEA–Malmquist method were widely
used to measure pollution treatment efficiency in China [4]. Wang et al. [5] used network
DEA to study the ERE of China’s five major urban agglomerations from 2000 to 2014 and
found wave-like growth where low environmental regulatory efficiency was a primary rea-
son for increasing industrial efficiency. Amongst the studied agglomerations, the Yangtze
River Delta (YRD) and the Beijing–Tianjin–Hebei regions had the highest overall industrial
efficiency. The authors also noted that if the ecological environment is to be improved, im-
proving the efficiency and technical level of industrial pollution control is crucial. Based on
the two-stage, network-based super-efficient data envelopment analysis (DEA) approach,
the efficiency of China’s industrial environmental regulation improved from 2004 to 2015,
though room for further improvement exists [6]. Tang and Bethel [7] used the super effi-
ciency DEA and Malmquist index to study environmental remediation in the YREB from
the perspective of input–output optimization from 2003 to 2013 and found that efficiency
was not only low but was deteriorating. These results confirm earlier observations of Chen
and Jia [8] that also found a downward trend of environmental efficiency. That study also
identified that the level of management and scale optimization was the main factor that
inhibited total factor productivity growth. Industrial governance efficiency is better than
production efficiency; heavy industry and high energy-consuming industries are the main
reasons for the overall low efficiency. The ERE of China’s steel industry has been very
low in the past ten years, and the efficiency of all-factor environmental governance has
shown a downward trend from 2005 to 2014, mainly due to the technological progress
change index [9]. High-tech industries not only have high overall efficiency but can also
achieve a win–win situation between their performance and national contribution. The
agglomeration of high-tech industries can improve the regional ecological environment,
and it can more effectively improve the environmental regulation efficiency in economically
developed areas [10]. Pan et al. [11] in an earlier study identified that there is no significant
difference between improving efficiency through environmental regulations and market
incentives in the short term, and market incentives can more effectively improve environ-
mental regulation efficiency in the long run. The abundance of resources can also affect
the level of ERE. The economically developed areas are conducive to ERE improvement
due to resource agglomeration, while the economically backward areas are likely to be
ineffective due to lack of resources. The efficiency of central cities is relatively high, and
the ecological efficiency of urban agglomerations has significant differences [12]. Peng
et al. [13] identified that from 2012 to 2016, the overall level of environmental governance
of the YRD greatly improved, but from a dynamic perspective, pollution generated during
urbanization degrades urban environmental governance performance. Song and Wang [14]
and Peng et al. [15] found that due to technological progress, significant gaps between
the efficiencies of urban governance in developing countries has declined sharply in the
past ten years. China’s energy utilization and environmental efficiency are low, pollution
emissions need to be greatly improved, and environmental supervision costs are high.
Advanced technologies should be used to improve ERE [16]. In terms of the selection of
input and output factors, inputs are mainly divided into two categories, one is pollution
control input, the other is total labor and capital inputs; output is mainly good output and
bad output. The good output is mainly economic growth and ecological improvement. Bad
output is usually measured by wastewater, exhaust gas, and solid waste. The innovation of
this article is in the selection of output variables; in the context of global climate governance,
forestry and temperature are included. In the method, the SE-SBM method is adopted,
which not only analyzes the super-efficiency value, but also analyzes the efficiency of
each input and output in detail in conjunction with the slack value. In terms of research
objects, we did not stay at the provincial level but went to the prefecture–city level. Data
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of 120 cities were collected. Due to the completeness of the data analysis, 23 cities were
proposed, and data of 97 cities were finally left. The rest of the paper is structured as
follows. Sections 2 and 3 describe the methodology and dataset employed. Section 4
presents the main results, and Section 5 summarizes the main findings of this study and
concludes.

2. Methodology
2.1. Study Area

The Yangtze River Basin (YRB) refers to the vast area through which the mainstream
and tributaries of the Yangtze River flows through three economic areas of eastern, central,
and western China. The mainstream of the Yangtze River flows through 11 provinces,
autonomous regions, and municipalities that are directly controlled by the Central Govern-
ment and includes Qinghai, Tibet, Yunnan, Sichuan, Chongqing, Hubei, Hunan, Jiangxi,
Anhui, Jiangsu, and Shanghai. In addition to the provinces mentioned above, there are the
Guizhou, Zhejiang, Shaanxi, Gansu, and Guangxi provinces into which the Yangtze River’s
first-level tributaries flow. The YRB also includes Henan, Fujian, and Guangdong, which
the mainstream of the Yangtze River and the first-level tributaries do not flow through, but
some areas belong to the YRB, which has a total of 17 provinces, autonomous regions, and
two municipalities directly under the Central Government. The basin covers an area of
1.8 million km2 and accounts for approximately 20% of China’s total land area. The Yangtze
River is a hub of economic development, accounting for almost 50% of the country’s total
economic output, covering three major economic regional urban agglomerations in China,
including the Chengdu–Chongqing, Yangtze River middle reaches, and the Yangtze River
Delta (YRD) urban agglomerations. Considering the availability of data, this paper finally
selected 97 cities as the research objects (Figure 1).

2.2. The SE-SBM Model

The data envelopment analysis (DEA) method is a non-parametric technical efficiency
analysis method based on the comparison between the evaluated objects. Using DEA
for efficiency evaluation can obtain a lot of management information with economic
connotation and background [17]. DEA measures and evaluates the input and output
efficiency of each decision-making unit (DMU) through functional calculation tools and
compares the efficiency of a specific unit with the efficiency of similar units that provide
the same service. To solve the possible slack problem of input and output and the problem
that multiple DMU efficiency values are the same, this paper uses the super-efficiency non-
oriented slacks-based model (SE-SBM) with the variable returns to scale (VRS) assumptions
to measure the efficiency of environmental regulation [18]. Compared with the traditional
SBM model, the environmental regulation efficiency (ERE) calculated by the SE-SBM model
is not limited to 1, which can effectively improve the comparability of the calculation
results; at the same time, it can avoid the radial and angular differences. The deviation and
influence of the results can better reflect the essence of efficiency evaluation [19]. If the ERE
is greater than or equal to 1, it is effective. The larger the score, the higher the efficiency. If
the ERE is greater than or equal to 0.5 and less than 1, then it is weakly inefficient, and if the
ERE is less than 0.5, then it is strongly inefficient [3]. In the direction of ERE measurement,
there are usually input-oriented models and output-oriented models. This article is more
about the output efficiency, so we chose the latter to facilitate the calculation of TFP [20,21].
The output-oriented SE-SBM method can be formulated as:

minρse = 1/
(

1− 1
q ∑q

r=1 S+
r /Ork

)
(1)

s.t. ∑n
j=1,j 6=k Iijλj ≤ Iik (2)

∑n
j=1,j 6=k Orjλj + S+

r ≤ Ork (3)
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where n is the number of decision-making units in the input–output system, I,O represent
the vectors of input and output, respectively, m, q represent the number of variables, and λ

is the weight vector. j = 1,2 . . . n, i = 1,2 . . . m, r = 1,2 . . . q. The K decision-making unit, ρ,
is the efficiency value. ∑n

j=1 λjOij and ∑n
j=1 λjOrj are virtual DMUs, namely benchmark

data, (Ik, Ok) are the evaluated DMUs, and S represents the slack value. The DEA model is
composed of multi-segment linear functions. If a single DMU projection falls within the
parallel section, the problem of slack variables will occur. The measurement in the radial
model does not consider the slack variables. The advantage of the SE-SBM non-radial
model is that it can judge the impact of each input and output on the overall efficiency
based on the slack value. In general, the slack value can be obtained by adding slack
variables to the constraints of the model [18]. If the values of the slack variable are 0, it
means that the input has been fully utilized and the output has been maximized. If the
slack value is not 0, this indicates that there is still great potential for development in input
and output. The excessive proportion of redundant values in the slack variable indicates
that the input or output efficiency of this element is low.
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Figure 1. The Yangtze River Basin study area.

2.3. DEA–Malmquist Index

Originally proposed by Malmquist in 1953, this Malmquist index (MI) was originally
suitable for measuring changes in production efficiency. Färe et al. [22] used the index
in combination with the DEA method of non-parametric models to better measure the
production efficiency of multi-input–output and panel data. The Malmquist index can
be decomposed into the technical progress index and technical efficiency change index.
If scale efficiency is variable, then the technical efficiency change index can be further
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decomposed into pure technical and scale efficiencies [23]. The traditional DEA model
is to measure the static relative efficiency of different decision-making units in the same
period, that is, the overall technical efficiency change, while the Malmquist index model is
an analysis of the dynamic efficiency of the data of each decision-making unit in different
periods. We use DEA-Solver_pro13.1 software (SAITECH, Tokyo, Japan) to calculate the
MI, which is the geometric mean instead of arithmetic averages. The formula for the MI
index is as follows:

M
(

It+1, Ot+1, It, Ot
)
=

Dt(It+1, Ot+1)
Dt(It, Ot)

×

√[
Dt(It+1, Ot+1)

Dt+1(It+1, Ot+1)
× Dt(It, Ot)

Dt+1(It, Ot)

]
(4)

where I and O represent input and output, respectively, t represents time, and D represents
distance function. If MI is greater than 1, the productivity will show an upward trend from
t to t + 1. Conversely, MI less than 1 indicates that productivity tends to decrease. If it is
equal to 1, it means the productivity remains unchanged from t to t + 1 [24].

The environmental TFP index (MI) can be decomposed into the technical efficiency
index (EFFch) and the technological progress index (TPch). If the scale efficiency is vari-
able, the technical efficiency index (EFFch) can be further decomposed into pure technical
efficiency (PEch) and scale efficiency (SEch). The relationship is as follows:

TFPch = EFFch × TPch = Catch-up × Frontier-shift (Innovation) (5)

EFFch = PEch × SEch (6)

EFFch is calculated based on the output-oriented CCR model and includes the effect
of scale efficiency. Its essence is maxθ, which means maximize the efficiency value, and
this function is subject to the following relationship:

∑n
j=1 λjOij + S−i = Iij; ∑n

j=1 λjOrj + S+
r = θOrk; λ ≥ 0, S− ≥ 0, S+ ≥ 0

PEch is calculated based on the VRS output-oriented BCC model. Because the in-
fluence of scale is excluded, it is also called “pure technical efficiency”. Unlike CCR,
its benchmark is at the forefront of pure technical efficiency. BCC added constraints
∑n

j=1 λj = 1 on the basis of CCR. Its essence is the ratio of the productivity of the evaluated
DMU to the productivity of the reference benchmark. If the value is greater than 1, it will
have a positive effect on TFP, if it is less than 1, it may drag down the TFP. EFFch mainly
reflects whether production input elements are effectively used or whether resources are
reasonably allocated. TPch mainly reflects innovation and technological progress. PEch is
mainly affected by system differences and management levels. SEch is mainly influenced
by the structure and scale of resource allocation.

3. Statistical Datasets

Considering the applicability and availability of data, this paper finally selected
97 prefecture-level cities in the Yangtze River Basin from 2005 to 2016, where all input
and output data samples were acquired from the China Regional, Economic, Forestry,
Industrial Economic statistical yearbooks. Additional data were derived from climate
bulletins of each city and province. Interpolation was used to eliminate gaps where an
index with a value of 0 is artificially assigned a very small positive value to facilitate model
calculation. Drawing on the selection of indicators in the existing literature [25,26], this
paper selects labor input, physical capital input, and human capital input. The outputs
conclude economic growth, ecological environment, pollution, and climate (Table 1) to
promote transformational development and improve the ecological environment.
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Table 1. Environmental regulation efficiency evaluation indices.

Vector Serial Number Index Measurement Unit Data Source

Inputs
A1 Labor Total employment 10, 000 persons CCSY
A2 Physical capital Fixed asset investment 100 million yuan CCSY

A3 Human capital
Student enrollment by regular

institutions of higher
education

person CCSY

Desirable
outputs

B1
Economy Ecology

Real GDP 100 million yuan CNKI, SY
B2 Output of forestry 100 million yuan CCSY
B3 Artificial afforestation area hectare CFSY

Undesirable
outputs

C1
Pollution

Industrial wastewater
discharge 10,000 t/y CRESY, CCSY

C2 Consumption of chemical
fertilizers (net) 10,000 t/y CNKI, SY

C3 Climate Annual average temperature ◦C SY, CB

Explanatory notes: all measurements (e.g., GDP, employment, output) are at prefecture–city scale. CNKI: China National Knowledge
Infrastructure; CCSY: China City Statistical Yearbook; CRESY: China Regional Economic Statistics Yearbook; CFSY: China Forestry Statistical
Yearbook; SY: statistical yearbooks of each city and province; CB: climate bulletins of each city and province.

4. Results
4.1. Yangtze River Basin Environmental Regulation Efficiency

The environmental regulation efficiency (ERE) in YRB during 2005–2016 is 0.6239,
which is weak and invalid. The areas with higher environmental regulation efficiency are
mainly concentrated in the central and eastern coastal areas of the basin (see Figure 2a
for details). From the perspective of cities, 23 of the 97 cities have an environmental
regulation efficiency greater than 1, which are Changde, Zhangjiajie, Xinyu, Yingtan,
Ganzhou, Suzhou, Shanghai, Quzhou, Xuancheng, etc. The highest rate in Chongqing
is 1.44, indicating that environmental regulations are very effective. There are 31 cities
with ERE between 0.5 and 1, including Hengyang, Shaoyang, Yueyang, Yiyang, Chenzhou,
Yongzhou, Huaihua, Nanchang, Pingxiang, Jiujiang, etc., indicating that the environmental
regulation efficiency in these cities is weakly ineffective. There are 43 cities with ERE lower
than 0.5, which includes Changsha, Zhuzhou, Xiangtan, Jingdezhen, Changzhou, Nantong,
Yangzhou, Taizhou, Jiaxing, Huzhou, Wuhu, Huzhou, and other cities. The environmental
regulations of these cities are strongly ineffective (see Appendix A for details). Compared
to 2005, ERE in 49 cities has improved, and ERE in the remaining 48 cities has declined.
The main reason lies in the high efficiency of environmental regulations in yellow areas
(Figure 2b). However, cities with lower environmental regulation efficiency have more
room for improvement, which is consistent with the theory of economic convergence [27].

From 2005 to 2016, we can see that Chongqing, Yingtan, Zhangjiajie, and Bazhong
rank the top four among the cities in terms of environmental regulation efficiency, all of
the four cities are located in the middle and upper reaches of YRB (Figure 3). The average
efficiency of urban environmental regulation in the upstream of YRB is 0.58, the middle
stream is 0.77, and the downstream is 0.52.
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Figure 4 shows that the middle steam cities have the highest environmental regulation
efficiency, followed by the upstream cities, and the efficiency of the downstream cities is the
lowest. These three regions present an N-type waveband development trend. From 2005 to
2006, the three regions all showed an upward trend, and the period 2007 to 2012 showed
a downward trend. Subsequently, the efficiency of environmental regulations showed a
clear upward trend. This is mainly due to the relevant environmental governance policies
issued by the state. However, the overall ERE is basically in a state of inefficiency or even
ineffectiveness.
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4.2. DEA–Malmquist Index

From 2005 to 2016, the overall productivity of YRB showed a downward trend based
on geometric average, and TFP was 0.93. However, the arithmetic average result was 1.06,
which showed an upward trend. The arithmetic average method made the Malmquist
index result biased (Appendix A.1). Among these cities, 28 cities have shown increasing
productivity, such as Changsha, Zhuzhou, Chenzhou, Xinyu, Shangrao, etc., which are
mainly located in the lower reaches of YRB and part of the middle reaches. The total
factor productivity of the remaining cities showed a downward trend in varying degrees
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during this period (Figure 5a). During this period, 50 cities have achieved an increase
in the total factor growth rate, while the remaining cities have experienced a decline in
productivity. Figure 5b shows the change in the total factor growth rate of each city in 2005
and 2016. A value greater than 0 indicates that productivity has improved, the darker the
color, the greater the progress. Values less than 0 mean that the productivity has fallen back
compared with 2005.
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From 2005 to 2016, the productivity index of YRB showed a wave-like trend. From
2005 to 2007, 2009 to 2010, and 2013 to 2014, the productivity value increased. Displayed in
Figure 6, it can be observed that the productivity of the downstream is generally higher
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than that of the upstream and midstream, and the fluctuation of the midstream is the
smallest. From 2007 to 2009, 2011 to 2013, and from 2015 to 2016, however, the value of
productivity declined. This is related to the relaxation of environmental protection after the
2008 Olympic Games [28]. The Olympic Games had a positive impact on the environmental
efficiency of the Beijing area but had a negative impact on the surrounding areas. The
hosting of the Beijing Olympics has greatly increased investment in infrastructure, but it
has also increased carbon dioxide emissions and reduced environmental efficiency [28].
From 2001 to 2007, the overall utilization rate of China’s industrial capacity continued to
rise but tended to decline from 2008. After 2008, the utilization rate of the steel industry
dropped from 80 to 71% in 2014 and 66.99% in 2015. In 2014, steel production capacity
declined to 1.14 billion tons in 2016. China’s economy officially entered a new stage of
consumption upgrading. Life has shifted from a subsistence life to a well-off level. Data
from the China Labor Statistics Yearbook show that the average working hours of urban
employees dropped from 46.6 to 46.1 h per week from 2014 to 2016, and the proportion
of employed persons in the total population dropped from 56.5 to 56.1%. The decline in
labor input and industrial production capacity ultimately led to a decline in TFP from
2015 to 2016. Besides, Hunan is a key province of non-ferrous metals [29]. In 2014, heavy
metals in the Xiangjiang River Basin (part of YRB) where Hunan is located have seriously
exceeded the standard, and industrial pollution discharge has become an important source
of environmental pollution [30].
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4.3. TFP Decomposition

The overall TFP value of YRB is 0.93, which is specifically decomposed into a EFFch
of 1.00, a PEch of 0.93. The technical progress index of further decomposed into PEch of
0.94 and Sech of 1.07. The input of production factors in the entire region can basically be
effectively used, and the resource allocation structure is relatively reasonable, but there
are still insufficient innovations, serious regional differentiation, and uneven management
levels. YRB lacks specificity in response to local conditions. Meanwhile, the YRB has a large
gap in institutional guarantees, technological innovation, and management control and
has not yet formed an efficient management pattern (see Appendix A.2 for more details).

The environmental TFP indices of the upper and middle reaches of the Yangtze River
were 0.89 and 0.90, respectively, which means that total factor productivity did not rise from
2005 to 2016 but showed a downward trend. The EFFch of upstream and middle stream
has shown an upward trend, both approximately unity. SEch has also been improved, but
the PEch and SEch are both less than 1, indicating the technological innovation, institutional
system, and management level of both areas of YRB need to be improved. The downstream,
which mainly includes the YRD, has achieved the factor productivity of 1.07, showing a
clear upward trend. Decomposing the TFP, EFFch, TPch, and SEch are 1.01, 1.06, and 1.08,
respectively. It shows that the overall technical efficiency of the lower reaches of the Yangtze
River is relatively high, the resource allocation is relatively reasonable, and the city’s ability
to coordinate development is relatively strong. Among them, the scale efficiency index
contributes the most to total factor productivity. However, as shown in Figure 7, pure
technical efficiency is less than 1, indicating that there are certain disparities in urban
development, and there is much room for improvement of environmental regulation
management.
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4.4. Slack Analysis Based on SE-SBM Model

Looking at the Yangtze River Basin as a whole, from 2005 to 2016, the efficiency of in-
puts and outputs was not high, and regional differentiation was large. There is much room
for improvement in the input and output efficiency of environmental regulations in YRB.
In terms of inputs, 19 cities made full use of labor input, including Pingxiang, Ganzhou,
Wuxi, Changzhou, Suzhou, Zhenjiang, Shanghai, Nanping, Longyan, Maanshan, Tongling,
Huangshan, Deyang, Ziyang, Nanyang, Zhumadian, Chongqing, etc. There are 25 cities in
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which capital is fully utilized, including Yueyang, Xinyu, Suzhou, Shanghai, Hangzhou,
Quzhou, Chongqing, etc. There are 14 cities with the most efficient human capital input,
including Changde, Xinyu, Ganzhou, Wuxi, Suzhou, Shanghai, Quzhou, etc. Overall, the
seven cities where the inputs are most effectively used are Suzhou, Shanghai, Nanping,
Longyan, Nanyang, Zhumadian, and Chongqing. In terms of outputs, 27 cities have
the highest economic output efficiency, mainly including Zhuzhou, Xiangtan, Yueyang,
Zhangjiajie, Nanjing, Nantong, Yangzhou, Zhenjiang, Huzhou, Nanping, Wuhu, Wuhan,
etc. In terms of ecological indicators, there are 11 cities with high efficiency in artificial af-
forestation area and forestry output value, including Changde, Zhangjiajie, Xinyu, Yingtan,
Suzhou, Shanghai, Quzhou, Longyan, Suizhou, Guangyuan, and Zhumadian. There are
14 cities with high efficiency in the treatment of industrial wastewater discharge, including
Zhangjiajie, Shanghai, Fuzhou, Suizhou, etc., and 23 cities with higher efficiency in the
treatment of agricultural land pollution, including Shaoyang, Zhangjiajie, Yiyang, Suzhou,
Nantong, Taizhou, and other cities. In terms of climate governance, the overall efficiency is
low, except for Enshi and Zhumadian (Figure 8).
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Figure 8. City distribution map with effective input and output.

From the perspective of time development, in 2005, the labor input of 49 cities was
maximized, the material capital input of 64 cities was effective, and the education input of
45 cities was fully utilized. In 2016, these three indicators were 60, 53, and 44, respectively.
In 2005, there were 27 cities with effective overall input of factors. In 2016, the number rose
to 31. In 2005, 65 cities maximized economic output and 63 in 2016, a slight decrease. In
terms of ecological construction, 48 cities had the most efficient output of planted forests
and 51 cities in 2016. In 2005, the forestry output value was the most effective, and there
were 61 cities, but 63 cities in 2016. In 2005, there were 48 cities with the most effective
industrial wastewater treatment and 52 cities in 2016; in terms of agricultural land pollution
treatment, there were 58 cities in 2005 and 66 cities in 2016. As for climate governance,
42 cities were the most effective in 2005 and 38 cities in 2016. The difference gap between
cities is obvious.

5. Conclusions and Recommendations

The overall efficiency of environmental regulations in the YRB is weakly ineffective,
while the efficiency of environmental regulations in the central and eastern coastal areas
is relatively high. From 2005 to 2016, half of the urban areas improved environmental
regulation efficiency, while the other half showed a downward trend. The efficiency of
environmental regulation matches the initial economic conditions and development. Over
the period of 2005 to 2016, environmental regulation efficiency in the middle stream of
the Yangtze River, the upstream of the Yangtze River, and the downstream of the Yangtze
River were ranked in descending order. The regional environmental regulations efficiency
shows an N-shaped trend with obvious characteristics of phased development. The first
high point appeared in 2007, and the second low point appeared in March 2012. The total
factor productivity of YRB showed an overall downward trend from 2005 to 2016, but
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28 cities showed an upward trend, and these cities were mainly located in the middle and
downstream of the Yangtze River. During this period, the productivity showed a double
M-shaped trend, among which the TFP value peaked at 2007, 2011, and 2015, respectively.
The scale efficiency index and the technical efficiency index have positively promoted total
factor productivity, while the technological progress index has dragged down the total
factor productivity of the Yangtze River Basin. The contribution to the downstream total
factor productivity index is in order of scale efficiency, technological progress index, and
technological efficiency index. From 2005 to 2016, the overall input and output efficiency
of the YRB had great development potential. The inputs have not been fully utilized, and
the outputs have not been maximized. The input–output efficiency varies greatly among
cities. In 2016, 31 cities’ inputs were fully utilized; only 18 cities maximized their output,
and 17 cities achieved better results in pollution control and climate control. Compared
with 2005, the number of cities that fully utilized labor input factors increased in 2016,
but the cities that fully utilized education factors remained almost unchanged, while the
number of cities that fully utilized physical capital decreased. In 2016, the number of cities
that maximized economic output decreased slightly. Ecological construction and pollution
control were effective, but climate control in the whole area was still ineffective.

Based on the above conclusions, the following suggestions can be made. Firstly,
investments in material and human capital for pollution control should be increased
to improve high-quality economic development and promote green development. The
expected outputs can be enhanced, and undesired output must be well controlled. The
problem of “chemical encirclement of the river” should be solved as soon as possible to
reduce the total amount and intensity of pollution. Secondly, environmental regulation
policies should be tailored to local conditions. Based on the differences in environmental
resource carrying capacity and economic conditions among these cities, the government
should establish a top-level design and management mechanism for environmental policies.
The ability of regional coordinated development and management mechanisms’ systemic
control needs to be strengthened. Thirdly, enterprises should insist on scientific and
technological innovation and make full use of big data, geographic information system,
and high-tech environmental protection technology in pollution control and environmental
management and also establish an early warning mechanism to improve the refined
management efficiency.
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Appendix A. ERE of 97 cities in YRB from 2005 to 2016

Table A1. ERE of 97 cities in YRB from 2005 to 2016.

City 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Average

Changsha 0.11 0.13 0.15 0.07 0.14 0.19 0.17 0.18 0.34 1.01 1.01 1.01 0.38

Zhuzhou 0.20 0.24 0.41 0.26 0.35 0.45 0.41 0.39 0.36 0.41 0.36 0.46 0.36

Xiangtan 0.19 0.16 0.15 0.05 0.12 0.11 0.17 0.19 0.18 0.23 0.25 0.23 0.17

Hengyang 0.52 1.04 1.02 1.01 1.01 0.76 0.44 0.48 0.51 0.56 0.58 1.00 0.74

Shaoyang 0.77 1.00 0.60 0.28 0.47 0.53 0.59 0.57 0.50 0.58 0.49 0.63 0.59

Yueyang 0.70 0.78 0.82 0.57 0.49 0.52 0.64 0.64 0.64 0.72 0.79 1.00 0.69

Changde 1.15 1.05 1.07 1.06 1.07 1.05 1.05 1.03 1.03 1.05 1.05 1.04 1.06

Zhangjiajie 1.27 1.25 1.20 1.30 1.24 1.27 1.33 1.39 1.49 1.45 1.44 1.50 1.34

Yiyang 1.01 0.77 0.72 0.38 0.58 0.70 0.74 0.63 0.27 0.66 1.01 1.00 0.71

Chenzhou 0.60 0.73 1.00 1.01 0.57 1.01 1.00 1.07 1.01 1.05 1.02 1.02 0.92

Yongzhou 0.68 0.63 1.00 0.47 0.58 1.06 1.03 1.05 1.00 1.05 1.04 1.08 0.89

Huaihua 1.07 1.02 1.05 1.03 0.75 0.72 1.01 1.02 0.69 1.01 0.77 1.00 0.93

Loudi 1.02 1.06 1.02 1.02 0.37 0.39 0.50 0.29 0.26 0.26 0.27 0.33 0.57

Xiangxi 1.11 1.13 1.01 0.26 0.44 0.52 1.10 1.05 1.03 1.01 0.66 1.01 0.86

Nanchang 1.03 1.03 1.04 1.02 1.04 1.04 1.05 1.05 1.06 1.05 1.05 0.12 0.96

Jingdezhen 0.23 0.34 0.49 0.36 0.34 0.26 0.40 0.40 0.42 0.59 1.01 0.35 0.43

Pingxiang 1.07 1.04 1.04 1.01 1.05 1.05 1.04 1.05 1.05 1.06 1.04 0.46 1.00

Jiujiang 0.43 0.44 1.03 0.50 0.67 0.55 0.62 0.59 1.02 1.03 1.03 0.55 0.71

Xinyu 1.05 1.07 1.07 1.00 1.07 1.16 1.18 1.13 1.12 1.13 1.14 1.01 1.09

Yingtan 1.22 1.78 1.35 1.34 1.37 1.28 1.37 1.41 1.48 1.40 1.28 1.17 1.37

Ganzhou 1.01 1.07 1.05 1.09 1.06 1.06 1.04 1.07 1.07 1.09 1.07 1.03 1.06

Ji’an 0.73 1.09 1.02 1.00 1.05 1.02 1.03 1.12 1.08 1.11 1.14 0.78 1.01

Yichun 0.68 1.02 1.12 1.06 1.06 1.07 1.05 1.05 1.05 1.03 1.04 0.74 1.00

Fuzhou 0.70 1.00 1.02 1.00 1.00 0.64 1.00 0.83 0.71 0.68 0.66 0.55 0.82

Shangrao 0.51 1.01 1.05 1.00 1.05 1.05 1.02 1.01 0.86 1.01 1.01 0.72 0.94

Nanjing 0.23 0.24 0.23 0.20 0.18 0.12 0.10 0.13 0.12 0.16 0.16 0.15 0.17

Wuxi 1.05 1.09 1.06 1.03 1.03 1.01 0.57 1.01 1.04 1.05 1.04 1.04 1.00

Changzhou 0.21 0.19 1.01 1.01 1.06 1.08 0.08 0.16 0.10 0.11 1.01 1.00 0.58

Suzhou 1.12 1.09 1.10 1.08 1.08 1.11 1.17 1.18 1.14 1.14 1.13 1.11 1.12

Nantong 0.26 0.32 0.39 0.31 0.29 0.28 0.22 0.26 0.25 0.30 0.53 0.26 0.31

Yangzhou 0.40 0.41 0.31 0.15 0.28 0.41 0.31 0.30 0.23 0.18 0.18 0.19 0.28

Zhenjiang 0.24 0.22 0.26 0.12 0.23 0.22 0.20 0.23 0.35 0.28 0.23 0.25 0.23

Taizhou 0.59 1.00 0.48 1.10 0.31 0.24 0.22 0.26 0.19 0.17 0.16 0.16 0.41

Shanghai 1.11 1.10 1.10 1.10 1.09 1.09 1.08 1.08 1.07 1.07 1.07 1.07 1.09

Hangzhou 1.11 1.11 1.11 1.10 1.11 1.07 0.29 0.26 0.25 0.20 0.22 0.26 0.67

Jiaxing 1.03 1.03 1.02 0.17 0.10 0.05 0.05 0.06 0.05 0.07 0.09 1.01 0.39

Huzhou 0.28 0.22 0.11 0.02 0.10 0.34 0.23 0.33 0.31 0.29 0.15 0.25 0.22

Quzhou 1.03 1.04 1.05 1.01 1.03 1.02 1.01 1.03 1.03 1.01 1.02 1.13 1.03

Sanming 1.19 1.14 1.13 1.12 1.18 1.18 1.14 1.12 1.17 1.13 1.11 1.14 1.15
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Table A1. Cont.

City 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Average

Nanping 1.05 1.06 1.05 1.06 1.06 1.04 1.05 1.03 1.01 1.01 1.01 1.02 1.04

Longyan 1.05 1.03 1.01 1.02 1.03 1.02 1.01 1.01 1.01 1.01 1.01 1.02 1.02

Guilin 0.42 0.49 0.50 0.56 1.00 0.58 0.41 1.36 0.41 1.11 0.48 0.49 0.65

Hefei 0.11 0.02 0.02 0.04 0.02 0.03 0.02 0.12 0.23 0.26 0.25 0.29 0.12

Wuhu 0.02 0.02 0.19 0.02 0.11 0.05 0.03 0.09 0.27 0.30 0.33 0.32 0.15

Ma’an’shan 0.06 0.11 0.06 0.02 0.07 0.06 0.07 0.14 0.08 0.09 0.11 0.14 0.09

Tongling 0.15 0.04 0.18 0.03 0.10 0.14 0.02 0.05 0.13 0.14 0.14 0.29 0.12

Anqing 0.23 0.28 0.59 0.36 0.55 0.51 0.44 0.52 0.58 0.59 0.56 0.61 0.49

Huangshan 0.69 0.19 0.43 0.36 0.46 0.54 0.45 0.28 0.33 0.34 0.40 0.56 0.42

Chizhou 1.06 1.05 1.05 1.03 1.05 1.07 1.07 1.09 0.69 0.73 0.61 0.71 0.93

Xuancheng 1.18 1.46 1.20 1.18 1.16 1.12 1.18 0.61 1.04 1.21 1.14 1.14 1.13

Wuhan 0.14 0.11 0.11 0.09 0.09 0.10 0.11 0.13 0.16 0.21 0.25 0.25 0.14

Huangshi 0.25 0.17 0.24 0.16 0.19 0.13 0.07 0.08 0.08 0.09 0.15 0.26 0.15

Shiyan 0.34 0.43 0.48 0.39 0.37 0.27 0.27 0.22 0.23 0.22 0.21 0.30 0.31

Yichang 0.34 0.26 0.40 0.36 0.28 0.29 0.36 0.36 0.39 0.39 0.40 0.35 0.35

Xiangyang 1.08 1.05 1.06 1.05 1.00 0.79 0.55 0.47 0.47 1.00 1.01 1.00 0.88

Ezhou 1.00 1.00 0.29 0.23 0.25 0.26 0.12 0.20 0.18 0.20 0.20 0.20 0.35

Jingmen 1.01 0.62 1.00 1.02 0.62 0.64 0.36 0.37 0.39 0.46 1.01 1.01 0.71

Xiaogan 0.60 0.45 0.49 0.40 0.37 0.35 0.23 0.30 0.24 0.26 0.24 0.31 0.35

Jingzhou 1.00 0.56 1.00 0.51 0.40 0.30 0.40 0.29 0.28 0.34 0.36 1.12 0.55

Huanggang 1.04 0.54 0.49 0.57 0.55 0.53 0.46 1.01 0.32 0.32 0.32 0.42 0.55

Xianning 0.55 0.44 1.04 0.35 0.48 0.41 0.35 0.32 0.32 0.34 0.41 0.43 0.45

Suizhou 1.10 1.06 1.08 1.06 1.09 1.06 1.03 1.04 1.07 1.11 1.24 1.27 1.10

Enshi 1.09 1.01 1.03 1.06 1.07 1.09 1.10 1.11 1.13 1.09 1.09 1.14 1.09

Kunming 0.18 0.08 0.06 0.05 0.14 0.12 0.13 0.14 0.19 0.18 0.18 0.21 0.14

Qujing 0.39 1.01 1.16 1.16 1.10 1.04 1.05 1.09 1.05 1.02 1.02 0.84 0.99

Zhaotong 0.48 1.03 0.57 0.33 1.11 1.12 1.09 0.56 1.16 1.23 1.13 1.12 0.91

Chengdu 0.19 0.18 0.21 0.05 0.06 0.04 0.12 0.01 0.07 0.07 0.13 0.25 0.11

Zigong 1.05 1.03 1.04 1.00 0.56 0.65 1.00 0.35 1.00 0.58 1.01 0.74 0.83

Luzhou 0.52 0.56 0.50 0.50 0.46 0.41 0.27 0.30 0.17 0.17 0.32 0.35 0.38

Deyang 1.01 1.02 1.02 0.55 0.03 0.04 0.01 0.03 0.04 0.10 0.31 0.36 0.38

Mianyang 0.47 0.41 0.05 0.21 0.22 0.33 0.30 0.27 0.24 0.20 0.47 0.41 0.30

Guangyuan 1.06 0.67 0.61 0.79 0.20 0.65 0.42 1.02 0.21 0.16 0.31 0.60 0.56

Suining 0.51 0.47 0.50 0.30 0.43 0.38 0.11 0.29 0.13 0.10 0.42 0.41 0.34

Neijiang 0.39 0.43 0.33 0.22 0.48 0.38 0.51 0.30 0.16 0.07 0.26 0.55 0.34

Leshan 0.45 0.39 0.50 0.50 0.39 0.43 0.28 0.33 0.26 0.27 0.46 0.58 0.40

Nanchong 0.42 0.39 0.28 0.33 0.18 0.22 0.34 0.33 0.28 0.21 0.29 0.41 0.31

Meishan 1.16 1.08 1.03 1.09 1.01 1.00 0.37 0.22 0.15 0.19 0.51 0.54 0.70

Yibin 0.43 0.43 0.61 0.60 0.75 0.69 0.49 0.44 0.46 0.51 1.02 1.08 0.63

Guangan 1.05 1.13 1.03 1.04 1.05 1.05 1.08 1.06 1.07 1.03 1.02 1.02 1.05
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Table A1. Cont.

City 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Average

Dazhou 0.52 0.44 0.36 0.39 0.34 0.46 0.42 0.07 0.20 0.19 0.40 0.45 0.35

Yaan 0.57 0.25 0.40 1.02 0.25 0.40 0.38 0.14 0.09 0.14 0.56 1.02 0.43

Bazhong 1.06 1.18 1.07 1.02 1.00 1.00 1.00 1.00 2.68 1.90 1.55 1.32 1.31

Ziyang 1.00 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.18 1.13 1.10 1.15 1.05

Nanyang 1.20 1.28 1.09 1.10 1.11 1.05 1.06 1.10 1.07 1.11 1.08 1.04 1.11

Zhumadian 1.10 1.13 1.09 1.09 1.11 1.10 1.10 1.11 1.12 1.08 1.07 1.10 1.10

Baoji 0.33 0.41 0.37 0.30 0.41 0.31 0.25 0.34 0.28 0.32 0.37 0.44 0.34

Hanzhong 0.51 0.60 1.02 0.52 0.53 0.56 0.47 0.38 0.35 0.35 0.28 0.30 0.49

Ankang 0.32 1.05 1.07 0.22 0.29 0.15 1.03 1.09 0.35 1.03 1.00 1.05 0.72

Shangluo 1.05 1.04 0.55 0.46 0.51 0.45 0.47 0.41 0.43 0.44 0.46 0.43 0.56

Guiyang 0.03 0.03 0.03 0.04 0.02 0.02 0.02 0.01 0.02 0.02 0.03 0.03 0.03

Liupanshui 0.25 0.27 0.19 0.19 0.31 0.29 0.30 0.32 0.46 0.84 1.00 0.66 0.42

Zunyi 1.09 1.00 0.40 0.28 0.31 0.35 0.35 0.29 0.53 1.00 1.02 0.77 0.62

Anshun 0.38 0.23 0.23 1.06 1.19 1.13 0.59 0.36 1.09 1.12 1.24 0.44 0.75

Chongqing 1.47 1.36 1.44 1.18 1.39 1.44 1.41 1.43 1.47 1.51 1.59 1.61 1.44

Shaoguan 0.43 0.32 0.38 0.35 0.18 1.04 0.60 0.69 0.72 0.63 0.80 1.08 0.60

Qingyuan 1.01 1.02 1.03 1.04 1.04 1.02 1.08 1.17 1.13 1.16 1.23 1.33 1.11

Heyuan 1.03 1.01 1.01 1.01 1.04 1.08 1.08 1.12 1.10 1.14 1.06 1.04 1.06

Average 0.70 0.72 0.72 0.65 0.63 0.64 0.61 0.61 0.61 0.65 0.70 0.70 0.62

Note: The data in italics and bold are positive numbers greater than 1. It retains two decimal places, so it is rounded to the nearest 1.00.

Appendix A.1. Spatial Evolution of Total Factor Productivity of 97 Cities in Yangtze River Basin

Table A2. Spatial evolution of total factor productivity of 97 cities in Yangtze River Basin.

Malmquist 2005–
2006

2006–
2007

2007–
2008

2008–
2009

2009–
2010

2010–
2011

2011–
2012

2012–
2013

2013–
2014

2014–
2015

2015–
2016

Arithmetic
Mean GEOMEAN

Changsha 0.93 1.44 0.65 2.05 1.40 1.00 1.03 1.10 2.97 1.00 1.59 1.38 1.27

Zhuzhou 1.18 2.03 0.51 1.07 1.13 1.13 0.85 0.91 0.96 0.87 1.01 1.06 1.01

Xiangtan 0.77 1.03 0.58 1.48 0.74 1.78 0.88 0.98 1.02 1.04 0.77 1.01 0.96

Hengyang 1.76 0.95 0.72 0.69 0.66 0.73 0.98 0.92 0.99 1.01 1.30 0.97 0.93

Shaoyang 1.07 0.57 0.44 1.28 1.01 1.24 0.80 0.85 1.00 0.83 0.82 0.90 0.86

Yueyang 0.88 1.21 0.68 0.73 0.85 1.65 0.88 0.80 0.93 1.08 0.98 0.97 0.94

Changde 0.87 0.99 0.94 0.96 0.94 1.00 0.96 0.97 1.01 1.01 0.97 0.96 0.96

Zhangjiajie 0.95 0.88 1.00 0.87 0.95 1.03 0.99 1.00 0.95 0.99 0.90 0.95 0.95

Yiyang 0.67 0.80 0.49 0.83 0.82 1.12 0.70 0.37 1.94 1.47 0.90 0.92 0.83

Chenzhou 1.08 1.36 1.00 0.55 1.64 1.41 1.01 0.97 1.07 0.98 0.96 1.09 1.06

Yongzhou 0.66 1.23 0.49 0.97 1.66 1.20 0.78 0.94 1.02 0.97 0.98 0.99 0.95

Huaihua 0.76 0.77 0.94 0.58 0.75 1.49 0.78 0.66 1.21 0.83 0.88 0.88 0.85

Loudi 0.72 0.58 0.49 0.30 0.53 1.51 0.41 0.81 0.87 0.93 1.05 0.75 0.68
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Table A2. Cont.

Malmquist 2005–
2006

2006–
2007

2007–
2008

2008–
2009

2009–
2010

2010–
2011

2011–
2012

2012–
2013

2013–
2014

2014–
2015

2015–
2016

Arithmetic
Mean GEOMEAN

Xiangxi 1.00 0.55 0.25 1.04 0.60 2.12 0.82 0.72 0.75 0.63 0.82 0.85 0.75

Nanchang 0.42 1.00 1.00 0.99 0.99 1.01 0.81 0.99 0.63 1.00 0.11 0.81 0.71

Jingdezhen 1.22 1.10 0.49 0.74 0.65 2.49 0.49 0.66 0.76 0.88 0.28 0.89 0.76

Pingxiang 0.97 1.00 1.01 1.03 0.98 1.01 1.01 0.98 1.01 0.81 0.39 0.93 0.90

Jiujiang 0.61 1.58 0.90 0.78 1.07 1.53 0.71 1.32 1.01 0.99 0.47 1.00 0.94

Xinyu 1.04 1.02 0.98 1.37 1.06 1.01 0.96 0.95 1.02 0.99 0.88 1.03 1.02

Yingtan 1.21 0.83 0.97 0.94 0.78 1.02 0.95 0.96 0.91 0.73 0.86 0.92 0.92

Ganzhou 0.99 0.96 1.02 0.92 0.97 0.98 0.98 1.00 0.98 0.98 0.74 0.96 0.95

Ji’an 1.20 0.91 0.95 1.03 0.98 1.02 1.05 0.98 1.00 1.02 0.53 0.97 0.95

Yichun 1.06 1.05 0.97 0.94 0.99 0.98 0.98 0.99 0.97 1.00 0.59 0.96 0.95

Fuzhou 1.33 1.05 0.79 1.00 0.58 1.25 0.68 0.72 0.70 0.74 0.54 0.85 0.82

Shangrao 1.51 1.18 1.01 1.00 0.98 1.11 0.99 0.93 1.09 0.99 0.59 1.03 1.01

Nanjing 1.04 1.14 1.05 0.95 0.79 0.95 1.28 0.89 1.24 1.16 0.88 1.03 1.02

Wuxi 1.04 0.98 0.99 1.01 1.00 1.45 2.47 1.00 1.01 1.00 1.48 1.22 1.17

Changzhou 1.32 3.19 2.20 1.36 1.02 0.13 5.41 0.23 3.44 9.22 2.79 2.75 1.61

Suzhou 0.99 1.00 0.99 1.01 1.02 1.05 1.01 0.92 0.99 1.00 0.98 1.00 1.00

Nantong 1.38 1.35 1.24 1.24 0.99 1.54 2.44 0.58 1.24 2.55 0.74 1.39 1.28

Yangzhou 1.13 0.99 1.05 1.79 1.27 1.32 1.77 0.40 0.71 1.13 0.89 1.13 1.05

Zhenjiang 1.01 1.33 0.84 1.67 0.89 1.27 1.06 0.88 0.82 1.73 2.41 1.27 1.19

Taizhou 1.19 0.61 2.73 0.31 0.88 1.99 1.57 0.35 0.85 0.93 0.96 1.12 0.93

Shanghai 1.21 1.12 1.00 1.25 1.00 1.01 1.87 0.99 1.00 1.63 0.99 1.19 1.16

Hangzhou 0.99 1.00 0.99 1.02 0.96 0.31 0.62 0.76 0.64 1.13 0.42 0.80 0.75

Jiaxing 0.99 0.99 0.33 2.96 0.68 1.59 1.09 0.85 1.05 1.25 0.93 1.16 1.02

Huzhou 0.62 1.75 0.59 3.29 1.94 1.29 0.83 0.92 0.83 0.58 1.05 1.24 1.07

Quzhou 1.03 1.01 1.00 1.00 0.98 1.80 1.27 0.99 0.85 1.01 1.03 1.09 1.06

Sanming 0.94 0.96 1.00 1.01 1.01 1.03 0.96 1.06 0.94 0.96 0.98 0.99 0.98

Nanping 0.99 0.96 1.00 0.98 0.97 1.05 0.93 1.00 0.99 0.98 0.99 0.98 0.98

Longyan 0.96 0.96 1.01 1.00 0.98 1.02 0.98 1.00 1.01 1.12 1.01 1.00 1.00

Guilin 1.63 1.50 1.06 1.86 0.53 0.57 3.34 0.30 2.61 0.41 1.35 1.38 1.07

Hefei 0.19 1.32 4.58 0.47 1.13 0.87 3.67 1.77 1.06 0.96 0.99 1.55 1.12

Wuhu 1.12 9.30 0.26 3.88 0.39 0.66 2.18 2.91 1.02 1.05 0.85 2.15 1.28

Ma’an’shan 2.32 0.65 0.86 3.60 0.89 1.61 2.52 0.25 1.03 1.00 1.07 1.44 1.15

Tongling 0.35 2.61 0.28 2.04 1.18 0.16 2.24 2.47 0.92 0.88 1.62 1.34 0.97

Anqing 0.88 2.41 0.79 1.37 0.86 1.11 1.16 1.00 0.88 0.90 0.84 1.11 1.05

Huangshan 0.65 4.64 0.97 0.98 0.88 0.59 0.63 0.79 0.98 1.08 0.93 1.19 0.97

Chizhou 0.99 1.00 0.98 1.01 1.02 1.00 1.03 0.60 0.99 1.08 0.83 0.96 0.95

Xuancheng 0.96 0.96 1.00 0.98 0.96 1.02 0.42 1.84 1.15 0.93 0.93 1.01 0.97

Wuhan 0.63 1.14 1.12 1.09 1.44 1.32 1.13 1.10 1.37 2.51 2.00 1.35 1.27

Huangshi 0.50 1.05 0.59 0.74 0.47 0.71 0.95 1.02 0.97 1.37 1.48 0.90 0.84

Shiyan 0.92 0.85 0.53 0.63 0.53 1.06 0.65 0.96 0.88 0.91 0.84 0.80 0.78
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Table A2. Cont.

Malmquist 2005–
2006

2006–
2007

2007–
2008

2008–
2009

2009–
2010

2010–
2011

2011–
2012

2012–
2013

2013–
2014

2014–
2015

2015–
2016

Arithmetic
Mean GEOMEAN

Yichang 0.80 1.43 1.06 0.73 0.88 1.53 0.99 0.95 0.94 1.01 0.54 0.99 0.95

Xiangyang 0.71 0.99 0.96 0.81 0.67 0.81 0.87 0.87 1.59 1.15 1.12 0.96 0.93

Ezhou 0.55 0.21 0.35 0.39 0.44 0.39 0.93 1.08 0.97 0.94 0.74 0.64 0.57

Jingmen 0.48 0.89 0.72 0.44 0.64 0.63 0.87 0.90 0.84 2.09 1.01 0.86 0.79

Xiaogan 0.50 0.90 0.58 0.50 0.72 0.91 0.87 0.84 0.93 0.90 1.01 0.79 0.77

Jingzhou 0.40 0.78 0.42 0.48 0.43 1.44 0.44 0.86 1.00 0.80 2.43 0.86 0.72

Huanggang 0.46 0.65 0.83 0.71 0.82 0.89 1.49 0.32 0.84 0.98 0.80 0.80 0.74

Xianning 0.63 1.57 0.37 0.99 0.70 0.91 0.78 0.89 0.95 1.13 0.74 0.88 0.83

Suizhou 0.85 1.00 0.98 0.97 0.94 0.86 0.99 1.02 1.03 1.08 0.96 0.97 0.97

Enshi 0.62 0.98 1.04 0.98 0.99 1.00 1.00 0.99 0.94 1.01 1.02 0.96 0.95

Kunming 0.40 1.04 1.90 2.54 0.85 1.32 1.07 1.39 0.80 1.02 0.98 1.21 1.09

Qujing 1.78 1.59 1.32 0.82 0.75 1.02 0.77 0.97 0.72 1.01 0.86 1.05 1.01

Zhaotong 0.78 1.25 1.14 1.85 0.96 0.95 0.38 1.48 0.99 0.92 0.71 1.04 0.97

Chengdu 0.72 1.39 0.50 0.99 0.77 3.59 0.10 4.77 0.82 2.19 1.49 1.58 1.05

Zigong 0.75 0.72 0.61 0.45 0.70 1.76 0.82 1.06 0.53 2.02 1.03 0.95 0.85

Luzhou 0.77 0.59 0.70 0.58 0.71 0.74 0.87 0.58 0.88 1.96 0.86 0.84 0.79

Deyang
Ci 1.00 0.97 0.52 0.03 1.47 9.95 0.06 0.25 1.69 3.91 0.91 1.89 0.71

Mianyang 0.68 1.20 0.41 0.60 1.31 1.19 0.72 0.82 0.72 2.42 0.68 0.98 0.87

Guangyuan 0.55 1.00 1.16 0.21 2.98 0.37 1.10 0.17 0.33 1.62 0.64 0.92 0.66

Suining 0.60 1.06 0.76 1.21 0.82 0.23 1.90 0.45 0.64 4.41 0.68 1.16 0.86

Neijiang 0.55 0.38 0.39 0.82 0.50 1.68 0.56 0.26 0.31 4.67 1.80 1.08 0.71

Leshan 0.78 1.13 1.03 0.48 0.94 0.71 0.90 0.81 0.92 1.75 1.08 0.96 0.92

Nanchong 0.72 0.64 0.62 0.41 1.12 1.65 0.83 0.78 0.66 1.39 0.96 0.89 0.83

Meishan 0.87 0.98 1.27 0.92 0.88 0.51 0.57 0.63 1.01 2.60 0.68 0.99 0.89

Yibin 0.84 1.18 0.93 0.86 0.72 0.88 0.73 0.99 1.00 1.93 0.78 0.99 0.95

Guangan 0.98 0.95 1.04 1.01 0.98 1.02 0.95 0.96 0.96 0.99 1.00 0.99 0.99

Dazhou 0.57 0.82 1.49 0.69 1.20 1.00 0.16 2.53 0.85 2.01 0.70 1.10 0.89

Yaan 0.55 1.49 2.67 0.22 1.10 0.96 0.34 0.63 4.25 1.83 0.85 1.35 0.97

Bazhong 1.00 0.90 0.95 0.94 1.00 1.00 1.00 1.67 0.43 0.71 0.63 0.93 0.88

Ziyang 1.01 0.98 1.00 1.00 1.00 1.00 1.00 1.10 0.86 0.86 1.00 0.98 0.98

Nanyang 1.03 0.88 1.09 1.00 0.92 1.03 1.01 0.96 1.01 0.97 0.95 0.99 0.98

Zhumadian 0.97 0.96 0.99 1.01 0.97 1.01 1.00 0.99 0.80 0.99 1.03 0.97 0.97

Baoji 1.13 0.91 0.93 1.13 0.70 1.01 1.29 0.86 1.04 1.07 1.01 1.01 1.00

Hanzhong 0.69 0.93 0.47 0.57 0.74 0.88 0.68 0.78 0.92 0.80 0.69 0.74 0.73

Ankang 1.09 1.05 0.50 2.03 0.25 2.30 1.02 0.36 1.98 1.55 1.02 1.20 0.98

Shangluo 0.55 0.94 0.92 0.68 0.56 1.03 0.53 0.95 0.92 0.95 0.63 0.79 0.76

Guiyang 0.94 1.14 1.74 0.60 0.83 1.33 0.73 1.27 1.48 1.27 0.95 1.12 1.07

Liupanshui 0.42 0.86 0.97 1.07 0.43 1.13 0.91 2.07 1.64 1.09 0.62 1.02 0.92

Zunyi 0.53 1.00 0.81 0.81 0.89 1.06 0.76 1.78 1.26 1.11 0.56 0.96 0.91
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Table A2. Cont.

Malmquist 2005–
2006

2006–
2007

2007–
2008

2008–
2009

2009–
2010

2010–
2011

2011–
2012

2012–
2013

2013–
2014

2014–
2015

2015–
2016

Arithmetic
Mean GEOMEAN

Anshun 0.34 0.45 2.91 0.98 0.62 0.56 0.41 2.80 1.00 1.10 0.19 1.03 0.74

Chongqing 0.90 1.07 0.86 1.16 1.06 0.96 1.01 1.04 1.00 1.04 0.95 1.01 1.00

Shaoguan 0.44 1.15 0.62 0.43 2.38 0.61 0.96 0.84 0.75 1.24 0.92 0.94 0.83

Qingyuan 1.01 1.02 1.02 2.67 0.98 1.07 1.02 0.93 0.98 1.05 1.02 1.16 1.10

Heyuan 0.93 0.99 1.00 1.01 0.99 1.02 1.02 0.98 0.99 0.95 0.71 0.96 0.96

Average 0.88 1.19 0.96 1.07 0.94 1.21 1.07 1.01 1.07 1.35 0.95 1.06 0.93

Max 2.32 9.30 4.58 3.88 2.98 9.95 5.41 4.77 4.25 9.22 2.79 2.75

Min 0.19 0.21 0.25 0.03 0.25 0.13 0.06 0.17 0.31 0.41 0.11 0.64

SD 0.34 1.00 0.60 0.67 0.38 1.02 0.73 0.62 0.55 1.07 0.41 0.28

Note: The data in italics and bold are positive numbers greater than 1. It retains two decimal places, so it is rounded to the nearest 1.00.

Appendix A.2. Total Factor Productivity Decomposition of 97 Cities in Yangtze River Basin

Table A3. Total factor productivity decomposition of 97 cities in Yangtze River Basin.

City EFFch TPch Pech SEch TFPch

Changsha 1.22 1.04 0.95 1.28 1.27

Zhuzhou 1.08 0.93 0.90 1.19 1.01

Xiangtan 1.02 0.95 0.88 1.15 0.96

Hengyang 1.06 0.88 0.97 1.09 0.93

Shaoyang 0.98 0.88 0.92 1.07 0.86

Yueyang 1.03 0.91 0.96 1.08 0.94

Changde 0.99 0.97 1.00 0.99 0.96

Zhangjiajie 1.01 0.94 1.00 1.01 0.95

Yiyang 1.00 0.83 0.97 1.03 0.83

Chenzhou 1.05 1.01 0.99 1.06 1.06

Yongzhou 1.04 0.91 0.99 1.06 0.95

Huaihua 0.99 0.85 0.99 1.01 0.85

Loudi 0.90 0.75 0.92 0.98 0.68

Xiangxi 0.99 0.76 0.98 1.01 0.75

Nanchang 0.82 0.86 0.99 0.83 0.71

Jingdezhen 1.04 0.73 0.97 1.07 0.76

Pingxiang 0.93 0.97 1.00 0.93 0.90

Jiujiang 1.02 0.92 0.97 1.05 0.94

Xinyu 1.00 1.02 1.00 1.00 1.02

Yingtan 1.00 0.92 1.00 1.00 0.92

Ganzhou 1.00 0.95 1.00 1.00 0.95

Ji’an 1.01 0.95 1.00 1.01 0.95

Yichun 1.01 0.94 0.99 1.02 0.95
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Table A3. Cont.

City EFFch TPch Pech SEch TFPch

Fuzhou 0.98 0.84 0.98 1.00 0.82

Shangrao 1.03 0.98 0.98 1.05 1.01

Nanjing 0.96 1.07 0.88 1.09 1.02

Wuxi 1.00 1.17 1.00 1.00 1.17

Changzhou 1.16 1.39 0.97 1.20 1.61

Suzhou 1.00 1.00 1.00 1.00 1.00

Nantong 1.00 1.28 0.93 1.07 1.28

Yangzhou 0.94 1.13 0.88 1.07 1.05

Zhenjiang 1.00 1.19 0.89 1.13 1.19

Taizhou 0.89 1.05 0.91 0.98 0.93

Shanghai 1.00 1.16 1.00 1.00 1.16

Hangzhou 0.88 0.86 0.97 0.90 0.75

Jiaxing 1.00 1.02 0.94 1.06 1.02

Huzhou 0.99 1.08 0.90 1.10 1.07

Quzhou 1.01 1.06 1.00 1.01 1.06

Sanming 1.00 0.99 1.00 1.00 0.98

Nanping 1.00 0.99 1.00 1.00 0.98

Longyan 1.00 1.01 1.00 1.00 1.00

Guilin 1.01 1.05 0.99 1.02 1.07

Hefei 1.09 1.03 0.85 1.29 1.12

Wuhu 1.26 1.02 0.86 1.46 1.28

Ma’an’shan 1.08 1.07 0.90 1.19 1.15

Tongling 1.06 0.92 0.90 1.18 0.97

Anqing 1.09 0.96 0.92 1.18 1.05

Huangshan 0.98 0.99 0.95 1.03 0.97

Chizhou 0.96 0.98 0.98 0.99 0.95

Xuancheng 1.00 0.97 0.99 1.00 0.97

Wuhan 1.05 1.21 0.91 1.16 1.27

Huangshi 1.00 0.84 0.87 1.15 0.84

Shiyan 0.99 0.79 0.77 1.29 0.78

Yichang 1.00 0.95 0.87 1.15 0.95

Xiangyang 0.99 0.94 0.98 1.01 0.93

Ezhou 0.86 0.65 0.94 0.92 0.57

Jingmen 1.00 0.79 0.96 1.04 0.79

Xiaogan 0.94 0.81 0.88 1.07 0.77

Jingzhou 1.01 0.72 0.97 1.05 0.72

Huanggang 0.92 0.81 0.95 0.97 0.74

Xianning 0.98 0.85 0.93 1.05 0.83

Suizhou 1.01 0.96 1.00 1.01 0.97

Enshi 1.00 0.95 1.00 1.00 0.95

Kunming 1.02 1.08 0.80 1.27 1.09
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Table A3. Cont.

City EFFch TPch Pech SEch TFPch

Qujing 1.07 0.94 0.99 1.09 1.01

Zhaotong 1.08 0.90 0.96 1.13 0.97

Chengdu 1.03 1.02 0.85 1.21 1.05

Zigong 0.97 0.88 1.00 0.97 0.85

Luzhou 0.96 0.82 0.89 1.08 0.79

Deyang Ci 0.91 0.78 0.94 0.97 0.71

Mianyang 0.99 0.88 0.87 1.13 0.87

Guangyuan 0.95 0.69 0.94 1.01 0.66

Suining 0.98 0.87 0.92 1.06 0.86

Neijiang 1.03 0.68 0.93 1.11 0.71

Leshan 1.02 0.89 0.89 1.15 0.92

Nanchong 1.00 0.83 0.92 1.08 0.83

Meishan 0.93 0.96 0.98 0.95 0.89

Yibin 1.09 0.87 0.94 1.15 0.95

Guangan 1.00 0.99 1.00 1.00 0.99

Dazhou 0.99 0.91 0.92 1.08 0.89

Yaan 1.05 0.92 0.93 1.13 0.97

Bazhong 1.02 0.87 1.00 1.02 0.88

Ziyang 1.01 0.97 1.00 1.01 0.98

Nanyang 0.99 1.00 1.00 0.99 0.98

Zhumadian 1.00 0.97 1.00 1.00 0.97

Baoji 1.03 0.97 0.79 1.29 1.00

Hanzhong 0.95 0.77 0.84 1.13 0.73

Ankang 1.11 0.88 0.96 1.16 0.98

Shangluo 0.92 0.83 0.77 1.20 0.76

Guiyang 1.01 1.06 0.70 1.44 1.07

Liupanshui 1.09 0.84 0.82 1.34 0.92

Zunyi 0.97 0.94 0.92 1.06 0.91

Anshun 1.01 0.73 0.90 1.13 0.74

Chongqing 1.01 0.99 1.00 1.01 1.00

Shaoguan 1.09 0.77 0.98 1.11 0.83

Qingyuan 1.03 1.08 1.00 1.03 1.10

Heyuan 1.00 0.96 1.00 1.00 0.96

Average 1.00 0.93 0.94 1.07 0.93

Note: The data in italics and bold are positive numbers greater than 1. It retains two decimal places, so it is rounded to the nearest 1.00.
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