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Abstract: This study aimed to analyze population flow using global positioning system (GPS) location
data and evaluate influenza infection pathways by determining the relationship between population
flow and the number of drugs sold at pharmacies. Neural collective graphical models (NCGMs; Iwata
and Shimizu 2019) were applied for 25 cell areas, each measuring 10× 10 km2, in Osaka, Kyoto, Nara,
and Hyogo prefectures to estimate population flow. An NCGM uses a neural network to incorporate
the spatiotemporal dependency issue and reduce the estimated parameters. The prescription peaks
between several cells with high population flow showed a high correlation with a delay of one to
two days or with a seven-day time-lag. It was observed that not much population flows from one
cell to the outside area on weekdays. This observation may have been due to geographical features
and undeveloped transportation networks. The number of prescriptions for anti-influenza drugs in
that cell remained low during the observation period. The present results indicate that influenza did
not spread to areas with undeveloped traffic networks, and the peak number of drug prescriptions
arrived with a time lag of several days in areas with a high amount of area-to-area movement due to
commuting.

Keywords: influenza; human/epidemiology; disease outbreaks; machine learning; neural networks;
computer; geographic information systems

1. Introduction

Global excess mortality due to seasonal influenza-associated respiratory illnesses has
been estimated to be 4–8.8 per 100,000 individuals and is a major issue in public health [1].
Designing efficient containment strategies for highly contagious diseases like influenza has
become a subject of considerable interest [2,3]. Previous reports have focused on national
epidemics among countries [2,4,5], but few reports have investigated the relationship
between population flow and epidemics on a regional level. People move in small areas by
various means, including walking, driving, or riding. Observing the subtle movements
of large numbers of individuals has historically been limited by the availability of data.
Therefore, it has remained difficult to observe population flow and epidemics in detail in
local areas.

We have long been interested in information from mobile phones and early moni-
toring of influenza infections and developed and tested self-reported influenza infection
monitoring applications from mobile phones [6]. Mobile phones can provide us with useful
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information for epidemiology. With the recent spread of mobile phones and the accumula-
tion of location information, one can now trace the fine movements of many individuals.
Hence, infectious disease epidemic tracking and forecasting have been attempted using
data based on mobile phone Global Positioning System (GPS) location information [7–11].
Research goals related to population flow and infectious disease transmission, such as
tracking overall trends, identifying unknown individuals who may have been infected,
and verifying models and concepts, differ. Varying effectiveness has been shown, but on
the other hand, standard methods have not been established, and it is still necessary to use
various data, try many methods, and accumulate knowledge.

The prescription status of anti-influenza drugs is known to reflect the presence of an
influenza pandemic [12,13]. We obtained the prescription status of anti-influenza drugs
from a dispensing pharmacy in the Kansai region of Japan, and the location data on
the movement and location of people in the Kansai region from a telecommunications
carrier, KDDI Co. (Tokyo, Japan) that already has a track record in using population
flow [14,15]. Disease mapping studies that monitor the spread of infectious diseases based
on population flow have been conducted on a daily timescale for intercity locations [11,16],
whereas mobile location data can be examined for specific areas and brief timeframes,
thereby facilitating the observation of fluctuations on an hourly scale. Observing from a
detailed perspective by increasing the information granularity may provide us with new
insights. The present study aimed to estimate from a more detailed perspective influenza
spread by observing the relationship between population flow during peak commuting
times and prescribing anti-influenza prescriptions in the neighborhood using a specific
method [17].

2. Materials and Methods
2.1. Analysis Data
2.1.1. Number of Anti-Influenza Drug Prescriptions at Pharmacies

The first set of analysis data was the daily number of anti-influenza drug prescriptions
filled between 1 January 2013 and 31 March 2019 at 86 pharmacies (managed by I & H
Corporation, Hyogo, Japan) located in the four Kansai prefectures of Osaka, Kyoto, Nara,
and Hyogo. The data collected for analysis in this study were the number of prescriptions
filled during the study period for the following anti-influenza drugs: oseltamivir phos-
phate, zanamivir hydrate, laninamivir octanoate hydrate, and baloxavir marboxil. These
data were not collected specifically for analysis in the present study, and all data were
retrospectively retrieved from an institutional database (I & H Corporation). The lag in
prescription distributions during this time can be estimated by comparing each region,
but each pharmacy has different business hours, so the effect of closed days on estimating
influenza infection pathways needed to be considered.

For example, using a hypothetical dataset as shown in Table 1, one can predict that
there are a large number of individuals infected by influenza during the period that the
pharmacy is closed from the prescription numbers. The number of prescriptions filled on
Sunday is zero because the pharmacy is closed on that day, so if analyses are conducted on
these data, the results would indicate that there are no individuals infected with influenza
in this region on Sundays. However, it is more important to interpret this as individuals
who wanted to go to a pharmacy on Sunday could not, and they thus chose to go to a
hospital on Monday, thereby increasing the number of prescriptions on Monday. Therefore,
a Kalman smoother was used on the anti-influenza drug prescription number data prior to
analysis to smooth out the data.
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Table 1. The number of prescriptions for each day of the week (for cases where Sunday is a closed
day).

Day of the Week The Number of Prescriptions

Friday 4
Saturday 3
Sunday 0
Monday 20
Tuesday 6

Wednesday 9
Thursday 7

A Kalman smoother was used for fixed-space smoothing problems, which estimates a
state vector xt based on all observation data zt = {z0, z1 . . . , zt} in the interval [0, t].

The discrete time model of the number of anti-influenza drug prescriptions was
defined as follows:

xt = Ftxt−1 + wt
wt ∼ Gaussian(0, Q)

(1)

zt = Htxt + vt
vt ∼ Gaussian(0, R)

(2)

Here, x is the state vector, the number of anti-influenza drug prescriptions to be estimated,
and zt is the observed value. wt is the process noise with a mean value of 0 and a covariance
of Q, and vt is the observed noise with a mean value of 0 and a covariance of R. xt is
generated by the above-mentioned state equation and the below-described conditional
equation.

xt = [st, st−1, st−2, dt, dt−1, dt−2, dt−3, dt−4, dt−5]
t (3)

Ft =



2 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 −1 −1 −1 −1 −1 −1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


(4)

Ht = [1, 0, 1, 0, 0, 0, 0, 0] (5)

Row 1 of Matrix (4) is st = st−1 + (st−1 − st−2) = st−1 + (∆st−1), and thus is a
smoothed value, whereas row 2 is an identity function.

Additionally, dt expresses the corrected components by the day of the week, and
row 3 of Matrix (4) indicates that the sum of all these corrected components equals zero.
Row 4 onwards are identity functions, and vector Ht indicates that the observed value is
the product of the corrected components and the smoothed components.

Plots of the data before and after smoothing with the Kalman smoother are shown in
Figure A1.

2.1.2. KDDI Location Data

The location data provided by KDDI were used for population flow estimation. GPS
location data of all smartphones are collected 24 h a day, 365 days a year, and these data
were extrapolated to match actual populations as closely as possible by combining them
with sex/age-related information provided when users sign a mobile data contract and
with public population statistics. A cell number was assigned to GPS data, and “stay” was
determined when the logged data were present for more than 15 min in the same mesh.
Otherwise, it was judged as “move”.
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The analyzed region comprised the 25 cell areas each measuring 10× 10 km2 in Osaka,
Kyoto, Nara, and Hyogo prefectures shown in Figures 1 and 2, in the month-long period
from 1–31 December 2018.
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2.1.3. Population Flow Analysis Using Proposed Method Based on Neural Collective
Graphical Models

Neural collective graphical models (NCGMs) [17] constitute a fast and accurate method
for estimating population flow [18], whereas collective graphical models (CGMs) [19] do not
consider spatiotemporal dependencies. When estimating population flow Z, if the number
of time points is defined as T, the number of areas as L, and the number of areas to which
people can flow from a given cell as M, then the estimated parameter number is (T − 1)LM,
whereas the observed population statistics data are only TL, smaller than the estimated
parameter number. It was with this last fact in mind that Iwata and Shimizu [17] proposed
an NCGM, which uses a neural network to incorporate the spatiotemporal dependency
issue and reduce the estimated parameters. The probability of a flow from a cell l to another
cell l′ at a time point t, defined as θtll′ , is expressed as shown in Equation (6):

θtll′ = f (t, xl , xl′ ; ϕ) (6)

Here, f(•) is the neural network, xl is the coordinate of the source cell, xl′ is the
coordinate of the destination cell, and ϕ is a neural network parameter. This model
outputs similar values for probabilities of transitions to areas at similar times and in similar
directions. Figure 3 is a model for when there are 4 areas, labeled A, B, C, and D.
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Each cell has information regarding the population and relative coordinates at a given
time t. Using the flow from area A to area B as an example, the transition probability
θtAB at time t was calculated in a nonlinear function constructed by the neural network
(Equation (6)), with inputs of time t, source cell coordinates xA, destination cell coordinates
xB, and neural network parameter ϕ.

The neural network input is expressed as the following vector:

utll′ = [τ̃(t), x̃l , x̃l′ − x̃l ], (7)

where τ(t) is the hour at time t, x̃ is x normalized between values from −0.5 to 0.5, and
utll′ ∈ R5 since the cell coordinates are two-dimensional. Next, this input vector was used
in a three-layer feedforward neural network that applies the following activation functions
to calculate the transition probabilities.

htll′ = tanh
(
W1utll′ + b1

)
(8)
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θtll′ = so f tmax
(
w2htll′ + b2

)
(9)

Here, htll′ ∈ RH is the middle layer, where the number of units is H; and
W1 ∈ RH∗5, w2 ∈ RH , b1 ∈ RH , and b2 ∈ R are the estimated neural network parameters,
or in other words, ϕ = {W1, w2, b1, b2}.

P(ztl |θtl , ytl) =
ytl!

∏l′∈Nl
ztll′

∏
l′∈Nl

θ
ztll′
tll′

(10)

ytl = ∑
l′∈Nl

ztll′ (11)

yt+1,l = ∑
l′∈nl

ztl′ l (12)

The values of population flow Z and neural network parameter ϕ were estimated
using maximum likelihood methods from Equations (10)–(12). The log-likelihood function
L(Z, ϕ) is expressed as follows by taking the logarithm of both sides of Equation (10). Here,
ztll′ and ytl are parameters for the population flow from a given cell l to another cell l’ at a
given time t, and the number of individuals in a given cell l, respectively.

L(Z, ϕ) =
T−1
∑

t=1

L
∑

l=1
∑

l′∈Nl

log p(ztl |θtl , ytl)

∝
T−1
∑

t=1

L
∑

l=1
∑

l′∈Nl

− log ztll′ ! + ztll′ log f (t, xl , xl′ ; ϕ)

≈
T−1
∑

t=1

L
∑

l=1
∑

l′∈Nl

ztll′(1− log ztll′ + log f (t, xl , xl′ ; ϕ))

≡ L′(Z, ϕ)

(13)

Stirling’s approximation of log n! ≈ n log n− n was used for the expression transfor-
mation from row 2 to 3 in Equation (13). Here, the objective function G(z,ϕ) to be optimized
is expressed in the following equation when the constraint expressing the population
conservation law was added as penalty terms in Equation (13).

G(Z, ϕ) = L′(Z, ϕ)− λ1
T−1
∑

t=1

L
∑

l=1
||ytl − ∑

l′∈Nt

ztll′ | |2

−λ2
T−1
∑

t=1

L
∑

l=1
||yt+1,l − ∑

l′∈Nt

ztl′ l | |2
(14)

The optimizations of θ and ϕ were determined with the gradient descent method after
the transition probability θ was determined with a neural network. λ1 > 0 and λ2 > 0 are
hyperparameters that control penalty terms. A summary of this estimation algorithm is
shown in Appendix B as “Algorithm A1”.

3. Results
3.1. Estimation of Population Flow during Commuting Times

Murayama et al. [20] showed the effectiveness of using commuter data in epidemic
prediction models and noted that models using commuter data, thought to be a factor in
population flow, would have better results than models that use adjacent data between
prefectures as spatial information. Furthermore, according to the 2016 Survey on Time Use
and Leisure Activities [21] announced by the Statistics Bureau of the Japanese Ministry
of Internal Affairs and Communications, the timeframe during which the percentage of
moving persons (including commuters) peaks during weekdays is 8–9 am. Therefore,
this research estimated population flows in the subject region in December 2018 during
8–9 a.m.

Methods proposed by Iwata and Shimizu (2019) and discussed in Section 2 were
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applied for all 25 cells to estimate population flow. The cells to which populations can
move were designated as only the adjacent cells (including the original cell), and the
initial values of population flow were weighted using the percentage of moving people
during 8–9 a.m. in Table 2 (1)–(3). The circumscribing cells in addition to the 25 cells in
the subject region were used when optimizing for population flow to improve estimation
accuracy (Figure 4). Specific estimation results are shown later on, but the results of these
procedures are shown in Figure 5, with red arrows indicating pathways with an average of
over 50,000 moving persons on weekdays and blue arrows indicating pathways with an
average of over 50,000 moving persons on weekends (black lines, excluding the grid lines,
are railroad networks).

Table 2. Percentage of moving persons by morning hour.

Timeframe Percentage of Total (%)

(1) Weekdays

5:00–6:00 1.475

6:00–7:00 6.275

7:00–8:00 15.828

8:00–9:00 15.870

9:00–10:00 9.858

10:00–11:00 10.268

(2) Saturday

5:00–6:00 1.780

6:00–7:00 4.250

7:00–8:00 10.995

8:00–9:00 12.585

9:00–10:00 14.570

10:00–11:00 14.348

(3) Sunday

5:00–6:00 1.343

6:00–7:00 2.843

7:00–8:00 5.638

8:00–9:00 11.118

9:00–10:00 15.648

10:00–11:00 16.113
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Population flow estimation results confirmed that there was high population flow in
the east-west directions in cells 11, 12, and 13 along the Kobe coast and in the northern
direction in cells 21, 23, and 24 from northeast Osaka towards Kyoto. A similarity between
these pathways with high population flow is their traffic network development (primarily
railroads). Furthermore, a characteristic point of population flow during the weekends is
that it is directed towards Osaka. This is thought to be due to the fact that downtown areas
and entertainment districts are concentrated within Osaka and that there are many people
from outside the city who come for recreational purposes. Furthermore, there is relatively
little population flow during 8–9 a.m. in cells 18 and 19. As can be seen in Figure 5, there
are few railroads through cells 18 and 19, and this is thought to indicate how the extent of
traffic network development plays a role in population flows during commuting times.

3.2. Relationships between the Estimates of Population Flow and the Number of Anti-Influenza
Drug Prescriptions in Pharmacies

To investigate the relationship between the number of anti-influenza drug prescrip-
tions in pharmacies and population flows, examples of population flow between two
cells through which individuals can move and the number of drug prescriptions from
pharmacies in each cell are shown as graphs, focusing on areas with a large number of
drug prescriptions (Figures 6–13).
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Figure 10. Population flow from cell 13 to cell 14 and the number of drug prescriptions in each cell. The y-axis on the
right shows the population flow. Line graphs: number of smoothed prescriptions in cell. Gray bars: population flow on
weekdays. Green bars: population flow on holidays.
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Figure 11. Population flow from cell 13 to cell 18 and the number of drug prescriptions in each cell. The y-axis on the
right shows the population flow. Line graphs: number of smoothed prescriptions in cell. Gray bars: population flow on
weekdays. Green bars: population flow on holidays.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 14 of 34 
 

 

 
Figure 11. Population flow from cell 13 to cell 18 and the number of drug prescriptions in each cell. 
The y-axis on the right shows the population flow. Line graphs: number of smoothed prescriptions 
in cell. Gray bars: population flow on weekdays. Green bars: population flow on holidays. 

 
Figure 12. Population flow from cell 13 to cell 19 and the number of drug prescriptions in each cell. 
The y-axis on the right shows the population flow. Line graphs: number of smoothed prescriptions 
in cell. Gray bars: population flow on weekdays. Green bars: population flow on holidays. 

Figure 12. Population flow from cell 13 to cell 19 and the number of drug prescriptions in each cell. The y-axis on the
right shows the population flow. Line graphs: number of smoothed prescriptions in cell. Gray bars: population flow on
weekdays. Green bars: population flow on holidays.
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Figure 13. Population flow from cell 13 to cell 20 and the number of drug prescriptions in each cell. The y-axis on the
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Furthermore, the cross-correlation functions of the number of drug prescriptions
between two cells are shown as needed. The correlation between the number of drug
prescriptions between geographically distant pharmacies can be expressed using the cross-
correlation function to indicate the region-based temporal lag in the estimation of increases
and decreases in the number of drug prescriptions. A shift has either a positive or a
negative direction, and this acts as the horizontal axis of the cross-correlation function. The
shift extent (number of days) is expressed as t.

Population flow and the number of drug prescriptions in cell 13 (Nishinomiya city,
Hyogo Prefecture) and its surrounding areas are discussed first (Figure 6).

3.3. Population Flow from Cell 13 to Its Surroundings and the Number of Drug Prescriptions in
Their Cells

Population flow from cell 13 was primarily on the weekdays towards cells 12 and 18
in Figures 7–13. Line graphs describe the number of smoothed prescriptions in each cell.
Gray bars show people who moved on weekdays, and green bars show people who moved
on holidays in Figures 7–13.

Cell 12 had the highest population flow from cell 13, which tended to be high during
weekdays. When considering the distributions of the numbers of drug prescriptions of
cells 12 and 13, population flows decreased immediately after the day 25–26 peak in cell
13, but considering the incubation period of the virus, we can see that the peak in cell 12
was 1–2 days later, on day 27 in Figure 7. This corresponds to the time lag of 1–2 of the
cross-correlation functions of the numbers of drug prescriptions between cells 12 and 13
shown in Figure 14.
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Figure 14. Cross-correlation function of the numbers of drug prescriptions between cells 12 and 13.

Population flows from cell 13 to cell 14 were high during the weekend, but the
peak number of drug prescriptions in cell 14 came 2 days after the peak in cell 13. This
corresponds to the time lag of −2 in the cross-correlation function of the numbers of drug
prescriptions between cells 13 and 14 in Figure 15.
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There was no increased number of drug prescriptions in cells 6, 19, 20, and 7, which
had low population flows.
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3.4. Population Flows from Cell 6 and Its Surroundings and the Number of Drug Prescriptions in
Their Cells

In this section, population flow and the number of drug prescriptions in cell 6 (south-
eastern Kobe city, Hyogo Prefecture) and its surrounding areas are discussed (Figure A2).

Population flows from cell 6 were highest in the direction of cell 5 in Figures A3–A6.
However, the numbers of drug prescriptions in both cells were low. The scale of each graph
shown in Figures 7–13, Figures A3–A6, and Figures A7–A11 and Figures A13–A20 shown
later, depends on the individual graph. It is clear that there is still no major spread of
influenza. However, although small, there is no major difference between the numbers of
drug prescriptions in cell 5 and cell 6 at the peak time. Therefore, the possibility of infection
spread from cell 5 to cell 6 is considered to be high. The cross-correlation functions in the
numbers of drug prescriptions between the two cells are shown in Figure 16.
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From the cross-correlation function in Figure 16, it is clear that cross-correlations were
high at t = −7. In other words, infections spread along the pathway from cell 5 to cell 6,
and a week-long lag was present for infection. Furthermore, population flow into cell 5
decreased once a peak of the number of drug prescriptions was reached in cell 6, so the
spread of influenza was thought to affect fluctuations in population flow.

Furthermore, there was not much population flow from cell 6 to cells 11, 12, and
13, and the numbers of drug prescriptions were significantly lower in cells 11, 12, and 13
than in cell 6. It can thus be seen that influenza infection in cells 11, 12, and 13 had a low
correlation with influenza infection in cell 6.

3.5. Population Flows from Cell 19 and Its Surroundings and the Numbers of Drug Prescriptions
in Their Cells

In this section, population flow and the number of drug prescriptions in cell 19
(Nishinomiya city, Hyogo Prefecture) and its surrounding areas are discussed (Figure A12).

The low population flows to external areas on the weekdays from cell 19 were at-
tributed to undeveloped traffic networks (Figures A7–A11). For this reason, the number
of drug prescriptions in cell 19 was also small, and it can be determined from the cross-
correlation functions that there was virtually no external spread of infection (Figure 17).
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3.6. Population Flows from Cell 8 and Its Surroundings and the Number of Drug Prescriptions in
Their Cells

In this section, population flow and the number of drug prescriptions in cell 8 (Osaka
city, Osaka Prefecture) and its surrounding areas are discussed (Figure A21). Population
flow from cell 8 was highest towards cell 3, followed by cell 14 (Figures A13–A20). How-
ever, when comparing (3) and (6), it seemed that the distribution of the number of drug
prescriptions in cell 8 had a higher correlation with cell 14 than cell 3. This was because
the number of drug prescriptions was higher in cell 14 than in cell 3, and the pharmacy
locations in cell 8 were closer to cell 14. For this reason, it can be seen in Figure 18 that there
was virtually no lag in the correlation of the numbers of drug prescriptions between cells 8
and 14. Meanwhile, Figure 19 shows that there was a time lag of −7 for the correlation of
the numbers of drug prescriptions between cells 3 and 8.

4. Discussion
4.1. Principal Results and Interpretation
4.1.1. Observing the Population Flow from Cell 13 to Its Surroundings and the Number of
Prescriptions in Those Cells

The prescription peaks in cells 12 and 14, which had high population flows with cell
13, showed a high correlation with a delay of 1–2 days. The time from infection to onset, the
incubation period, is 1–4 days (average 2 days) in seasonal influenza [22,23]. The delayed
peak suggests the spread of influenza from cell 13 to the surrounding areas.
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4.1.2. Observing the Population Flow from Cell 6 to Its Surroundings and the Number of
Prescriptions in Those Cells

Two observations in this region are noteworthy. One of the features around cell 6 is
the low number of prescriptions for anti-influenza drugs. We suspect that the influenza
infection may not have spread to cell 6 due to the low population flow from cells 12 and 13
with high prescriptions. Another feature is the observation of transmission of infection by
a small number of influenza patients. In cells 5 and 6, where high population flows were
suspected, there was a high cross-correlation value of prescription numbers with a 7-day
time-lag. We believe this phenomenon indicates the spread of influenza infection from cell
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6 to cell 5. The observed 7-day time lag is longer than the time lag observed around cell 13
above. There may be a difference in the speed of spread between when there is and is not
an influenza outbreak.

4.1.3. Observing the Population Flow from Cell 19 to Its Surroundings and the Number of
Prescriptions in Those Cells

It was observed that not much population flows from cell 19 to the surrounding
areas on weekdays. This observation may have been due to geographical features and
the undeveloped transportation networks. The number of prescriptions for anti-influenza
drugs in cell 19 remained low during the observation period. The small population inflow
from the surrounding areas may have been a deterrent to the influenza epidemic.

4.1.4. Observing the Population Flow from Cell 8 to Its Surroundings and the Number of
Prescriptions in Those Cells

The number of prescriptions for anti-influenza drugs at closely located pharmacies
showed a high correlation with no time difference. On the other hand, the correlation of
the number of prescriptions at distant pharmacies showed a time difference, even in a cell
with high population flows. The number of anti-influenza drug prescriptions around cell
8 appeared to be affected by distance and the number of pharmacies. A more detailed
estimate of population flows in the cell may be useful for explaining the time difference
shown.

4.2. Principal Findings

Relationships between population flows and prescriptions for anti-influenza drugs
were evaluated in multiple areas. We visualized the relationship between population
flow and influenza infection epidemics on a single graph with the passage of time, and
mathematically evaluated the relationship of the number of anti-influenza prescriptions
between neighboring areas using the time lag by the cross-correlation function. The two
types of information helped to estimate the direction and volume of population flow
and the direction and rate of spread of influenza infection. Observations of influenza
pandemics based on the population flow, between 10 km square areas, from 8:00 to 9:00,
taking into account the day of the week, provide interesting implications. Our results
support the notion that transportation networks such as trains play an important role in
the spread of the influenza pandemic. This is because the time when the population flow
was observed is the commuting time, and railroads are laid as a transportation network in
areas with abundant flow of people. It was found that influenza did not spread to areas
with undeveloped traffic networks, and the peak number of drug prescriptions arrived
with a time lag of several days in areas where there was a high amount of area-to-area
movement due to commuting. Our results may also provide additional suggestions. If
there are few influenza patients, the rate of transmission may be slow even between areas
with high population flow. Even between neighboring 10 km square areas, the spread of
influenza infection is affected by distance and may take some time to spread.

4.3. Limitations

The results of the present study should be considered in light of several limitations.
First, only about 1% of the pharmacies in the Kansai region could be observed. Each of the
observed pharmacies varied in scale, and they were unevenly distributed within the cells.
Inhomogeneous information from a limited number of pharmacies will adversely affect
predictions. Therefore, it is necessary to increase the number of pharmacies to allow more
accurate predictions to be made.

Second, anti-influenza drug prescriptions were used as a surrogate measure of in-
fluenza infections. Although the prescription status of anti-influenza drugs is considered
to indicate the epidemic status of influenza [8,9], not all influenza patients can be traced,
because some influenza patients are not prescribed anti-influenza drugs. Therefore, elec-
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tronic medical record information should be analyzed for more accurate influenza epidemic
tracking.

Third, means of transportation were not investigated. People move by various means
such as cars, trains, buses, and walking. The impact of different modes of transportation on
influenza infection is still unclear [5]. We believe it is necessary to clarify the relationships
between the different forms of transport and the spread of influenza transmission.

Finally, while mobile phone location tracking technology has been suggested to be
helpful for preventing the spread of communicable diseases, its efficacy remains contro-
versial [24]. The questions of “who,” “how,” and “what” GPS data are to be used remain
unanswered. We used anonymous aggregated location data to predict the population flow.
Although the location data covered a large sample of the Japanese population, the selec-
tion can be biased because the data were provided by one company. Predicting real-time
population flow was also not possible due to the time needed to provision.

4.4. Comparison with Prior Work

Many previous reports have attempted to explain the spread of influenza infection
mathematically and track influenza epidemics based on internet social network service
information [25–29]. To predict influenza-endemic areas, data from internet social network
services were commonly used in the previous studies. In the present study, the population
flow information that is not directly related to influenza was analyzed, and it was compared
to the influenza pandemic. There have recently been cases of using GPS to track several
infectious diseases [9–11,30,31]. In these previous reports, authors made various attempts,
such as using information from GPS to track the mobility of individual cases and assess
trends in epidemics in the region. Information obtained from GPS can provide a new
tool for combatting viral infectious diseases such as influenza, COVID-19, and HIV. The
unique feature of the present study was to predict the population flow during commuting
time and mathematically evaluate the number of anti-influenza prescriptions between
relatively small neighboring areas with a cross-correlation function. An examination of the
flow of people focused on a limited time period in a particular neighborhood showed that
commuter trains may play an important role in the spread of influenza infection. The time
lag given by the cross-correlation function of anti-influenza prescriptions in neighboring
areas may provide information about the direction of spread of influenza infection. We
believe that such information is important for the prevention and prediction of influenza
pandemics in neighboring areas.

5. Conclusions

Population flows during commuting times were estimated based on location data,
and a region-specific analysis of infection pathways was conducted by examining in detail
the relationship between the estimated population flow and the number of influenza drug
prescriptions. It was found that influenza did not spread to areas with undeveloped traffic
networks, and the peak number of drug prescriptions arrived with a time lag of several
days in areas with a high amount of area-to-area movement due to commuting. Estimated
population flow based on region-specific GPS location data may have an important role
in predicting the spread of influenza infection. However, this method still has room for
improvement, including real-time prediction and the use of unbiased information sources.
In order to overcome the limitations of this study, we would like to obtain a wide range
of information and improve the algorithm and thereby contribute to the prediction and
prevention of epidemics of infectious diseases such as influenza.
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Figure A21. Population flow from cell 8 and its adjacent cells.
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Appendix B

Summary of Algorithm A1.

Algorithm A1. Estimation procedure for the proposed NCGM.

Require: Spatio-temporal population data Y
location information {xt}L

t=1
neighbor information {Nl}L

l=1
hyperparameter λ

Ensure: Population flow Z
estimated neural network parameters ϕ;
Repeat
Calculate transition probability θtl by neural network f
for t = 1 to T − 1, l = 1 to L;
Calculate the objective function G and its gradient
with respect to Z and ϕ;
Update Z and ϕ using gradient;
until End condition is satisfied
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