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Abstract: The outbreak of the novel COVID-19, declared a global pandemic by WHO, is the most
serious public health threat seen in terms of respiratory viruses since the 1918 H1N1 influenza
pandemic. It is surprising that the total number of COVID-19 confirmed cases and the number
of deaths has varied greatly across countries. Such great variations are caused by age population,
health conditions, travel, economy, and environmental factors. Here, we investigated which national
factors (life expectancy, aging index, human development index, percentage of malnourished people
in the population, extreme poverty, economic ability, health policy, population, age distributions,
etc.) influenced the spread of COVID-19 through systematic statistical analysis. First, we employed
segmented growth curve models (GCMs) to model the cumulative confirmed cases for 134 countries
from 1 January to 31 August 2020 (logistic and Gompertz). Thus, each country’s COVID-19 spread
pattern was summarized into three growth-curve model parameters. Secondly, we investigated
the relationship of selected 31 national factors (from KOSIS and Our World in Data) to these GCM
parameters. Our analysis showed that with time, the parameters were influenced by different factors;
for example, the parameter related to the maximum number of predicted cumulative confirmed
cases was greatly influenced by the total population size, as expected. The other parameter related to
the rate of spread of COVID-19 was influenced by aging index, cardiovascular death rate, extreme
poverty, median age, percentage of population aged 65 or 70 and older, and so forth. We hope that
with their consideration of a country’s resources and population dynamics that our results will help
in making informed decisions with the most impact against similar infectious diseases.

Keywords: COVID-19; SARS-CoV-2; growth curve models; pandemic

1. Introduction

The novel coronavirus disease 2019 (COVID-19), a highly transferable viral disease,
is a respiratory illness caused by novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), which has person-to-person contact as the main route of transmission and
causes flu-like symptoms and in severe cases death [1,2]. The spread of COVID-19 became
a global threat, and the World Health Organization (WHO) declared it a global pandemic
on March 11, 2020 [3]. The public health threat it represents is the most severe that has
been seen in respiratory viruses since the 1918 H1N1 influenza pandemic [4], with a total
of 104,904,529 confirmed cases and 2,278,471 deaths worldwide, as of 4 February 2021 [5].
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Many factors can influence the epidemiological characteristics and contribute to the in-
creased mortality rate of COVID-19 [6–10]. Therefore, understanding the potential affecting
factors involved in the outspread of COVID-19 will be of great significance in containing
the spread of the epidemic and was the focus of many studies [6]. Several theories are
suggesting the impact of environmental factors such as temperature and humidity, along
with international travel and lack of proper social consciousness for isolation as causes
of the global spread of COVID-19 [1]. A few investigations have also considered social
aspects potentially associated with the spread of COVID-19, such as population density,
metropolitan population, intra-provincial traffic, and national lockdown, indicating that
the social distancing measures have been successful in reducing new cases [7–10].

Furthermore, several studies have investigated the impact of weather on the COVID-
19 transmission, with special attention being paid to temperature and humidity, indicating
that temperature is inversely related to COVID-19 incidence [11]. Moreover, each 1 ◦C
increase in temperature was found to be associated with decreases in daily new cases at
different extents. Significant studies on the impacts of climatic predictors on COVID-19
transmission were also conducted in China, the United States, and Europe [12,13].

A look at history tells us that pandemics and epidemics have consistently and signifi-
cantly affected human lives, and that governments have continually tried to find ways of
slowing down the spread of these diseases; for example, quarantines were employed dur-
ing the Ebola outbreak in West Africa [14,15]. The objective of this study was to determine
the relationship between potential national factors such as life expectancy, average annual
temperature, aging index, human development index, percentage of malnourished people
in the population, extreme poverty, economic ability, health policy, population, and age
distributions on the spread of COVID-19.

Here, we first applied segmented growth-curve models (logistic and Gompertz mod-
els) to the cumulative confirmed cases of 213 countries. Next, we applied the segmentation
algorithm to divide the cumulative curve of COVID-19 cases into several segments of
time series cases corresponding to a specific segment, which can then be modeled by the
conventional growth curve models into a sigmoid curve. As the spread of COVID-19 has
been prolonged, several countries experienced more than one wave (a wave implies a rising
number of sick individuals, a defined peak, and then a decline [16] of the pandemic so
that the cumulative confirmed cases could not be analyzed by conventional growth curve
models, since cumulative cases cannot adopt the sigmoid curve. Thus, the study period of
each country was divided into several segments—time periods corresponding to a specific
wave using the segmentation algorithm (Figure S1) that systematically partitions COVID-19
cumulative confirmed cases for each country into several segments of times series cases
corresponding to a specific wave, which can then be modeled by the conventional growth
curve models into a sigmoid curve (for example, Figure 1).

The segmented growth curve models (GCMs) summarize the spread of COVID-19
into sets of three parameters α, β, and γ, where α is the maximum number of predicted
cumulative confirmed cases, β is the time when we start to see a rise in the number of
confirmed cases, and γ is the rate of spread of COVID-19. Thus, each country’s COVID-19
spread pattern was summarized into three GCM parameters. Then, a regression model
was employed to investigate the relationship between 31 selected national factors from
Our World in Data [17] and Korean Statistical Information Services (KOSIS) [18] such as
life expectancy, average annual temperature, aging index, human development index,
percentage of malnourished people in the population, and extreme poverty (Table S1),
and the spread of COVID-19, using the above parameters estimated from the segmented
growth curve models. The significant relationship provides evidence that these variables
may influence the spread of the novel SARS-CoV-2 virus across the globe.
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Figure 1. Cumulative confirmed cases divided into two segments using the segmentation algorithm. Japan is the typical
country with two waves (red: first segment and green: second segment). (A) Epidemic segmented growth curve of
COVID-19 fitted by the logistic model. Estimated parameters were (α1, β1, γ1, α2, β2, γ2) = (16549.7588, 7.8244, 0.1231,
58877.8030, 6.7353, and 0.0859, respectively). (B) Epidemic segmented growth curve of COVID-19 fitted by the Gompertz
model. Estimated parameters were (α1, β1, γ1, α2, β2, γ2) = (17,531.5024, 89.4251, 0.0760, 98,622.3568, 15.6933, and 0.0325,
respectively).

2. Materials and Methods
2.1. ECDC COVID-19 Data

The COVID-19 data of daily confirmed cases and deaths can easily be downloaded
from the European Centre for Disease Prevention and Control (ECDC) website [19–21].
ECDC is an EU agency aimed at strengthening Europe’s defenses against infectious diseases.
Negative confirmed cases were corrected to 0, regarding it as abnormal data. Since data of
cases on an international conveyance in Japan were included in a country list, we removed
it. The data consisting of 213 countries from 1 January 2020 to 31 August 2020 were used in
downstream analysis.

Data smoothing was used to remove noise from a dataset, allowing important patterns
to stand out. Thereafter, daily confirmed case data were smoothed by simple moving
average (1) to reduce the effect of outliers and (2) to remove the weekly periodicity observed
in the data. There were several outliers that showed greater or smaller abnormalities, which
made it difficult to fit the statistical model. In addition, weekly periodicity was observed in
the daily confirmed case data for many countries. Although we tried to present numerically
through autocorrelation function, the trend had randomness, giving a limit to the analysis.
Therefore, considering the period of 7 days, we set the window size to 7, and simple
moving average (SMA) was used before model fitting as shown below

SMA =
pM + pM−1 + . . . + pM−(n−1)

n
=

1
n

n−1

∑
i=0

pM−i,

where p is the number of confirmed cases.

2.2. National Factors

Time-independent national factor (Table S1) datasets are publicly available datasets
that are easily obtained from the Our World in Data website [22] and the Korean Statistical
Information Services (KOSIS) [18]. The Our World in Data website provides data about
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research and data to make progress against the world’s largest problems such as poverty,
disease, hunger, climate change, war, and existential risks. It mainly focuses on the large
problems that continue to confront us for centuries or much longer, as well as the long-
lasting forceful changes that gradually reshape our world. From this website, we obtained
15 time-independent social and economic factors assumed to be related to COVID-19
in the literature, such as population, population density, median age, being aged 65 or
over, being aged 70 or over, GDP per capita, extreme poverty, cardiovascular death rate,
diabetes prevalence, female smoker, male smoker, handwashing facilities, hospital beds
per thousand people, life expectancy, and human development index [23–29].

The Korean Statistical Information Service (KOSIS) [18] website contains the national
statistical database, which offers a full range of major domestic, international, and North
Korean statistics produced by over 120 statistical agencies covering more than 500 subject
matters as well as the latest data on international finance and economy from international
organizations (i.e., IMF, World Bank, OECD). From the 26 variables, 13 were selected, which
we assumed to be related to the spread of COVID-19. These variables were measured for
several years. Therefore, we selected the year with the minimum number of missing values
between 2016 and 2019, re-scaled by division with standard errors of the variables.

2.3. Analysis of the Spread of COVID-19 Using GCMs

Under this analysis, the growth curve models (GCMs) logistic model and Gompertz
model were employed to model the transmission of COVID-19 using the cumulative
confirmed cases for each country. These growth models are commonly used to explore risk
factors and predict the probability of occurrence of a certain disease, investigate factors
that control and affect growth, and extinction laws of the population [30]. The models take
the following forms:

2.4. Logistic Model

Qt =
α

1 + eβ−γ(t−t0)
(1)

where Qt is the cumulative confirmed cases, α is the maximum number of predicted
cumulative confirmed cases, β is the time when we start to see a rise in the number of
confirmed cases, γ is the increase rate of number of confirmed cases, t is the number of
days since the first case occurrence, and t0 is the time when the first case occurred.

2.5. Gompertz Model

Qt = αe−βe−γ(t−t0) (2)

where Qt is the cumulative confirmed cases, α is the maximum number of predicted
cumulative confirmed cases, β is the time when we start to see a rise in the number of
confirmed cases, γ is the increase rate of number of confirmed cases, t is the number of
days since the first case, and t0 is the time when the first case occurred.

2.6. Segmentation Algorithm

As the COVID-19 situation continues, fitting a growth curve model on daily confirmed
cases over a long period of time has become impossible as it no longer takes on an s-curve
(i.e. sigmoid function). To fit the above growth curve models, there is a need to divide the
study period of countries experiencing more than one wave [31] (a wave implies a rising
number of sick individuals, a defined peak, and then a decline) of the pandemic into several
segments (the time during which cumulative confirmed cases follow the s-curve). Thus,
we applied the segmentation algorithm, which can systematically divide study periods
into several segments (or waves) for each country (Figure 1).

Segmentation is a method of finding peaks and breakpoints, where a peak is the
timestamp at which daily new confirmed case is highest in a segment, and breakpoint is
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the timestamp that splits the consecutive two segments in a time series dataset. To better
see trends, we smoothed out the irregular roughness of the graph of daily confirmed cases.
However, daily new confirmed cases have high randomness arising from (1) the fact that
daily new confirmed cases have a periodicity of seven days (due to differences in daily
new confirmed cases between weekends and weekdays) and (2) measure errors of one day.
Therefore, we applied the Nadaraya–Watson kernel regression estimator (NWE) [32–34]
with Gaussian kernel to smoothen the daily new confirmed cases as demonstrated in
Figure 2 using South Korea’s daily confirmed cases as an example. For the convenience of
notation, let Yt be the t-th daily new confirmed cases from data, and f̂ (t) be the estimated
t-th daily new confirmed cases using above NWE since 1 January 2020.

Peak detection (Algorithm 1; Figure S1) utilizes the first and second derivative test to
find local maxima on convex function. f̂ (t) has convexity when t is around peak due to the
nature of epidemic dynamics. Considering daily new confirmed cases being discrete time
series data, we found the location where the first difference is zero and second difference is
negative (since f (t) is not differentiable, we used difference operator instead of derivative):

∆ f̂ (t) = 0, ∆2 f̂ (t) < 0 (3)

where ∆ f̂ (t) = f̂ (t + 1)− f̂ (t) and ∆2 f̂ (t) = ∆ f̂ (t + 1)− ∆ f̂ (t).
For discontinuity and small variances of f̂ (t), we used following condition:

∆ f̂ (t)∆ f̂ (t + 1) ≤ 0 , ∆2 f̂ (t) < −c·argmaxt∈ T

∣∣∣∆2 f̂ (t)
∣∣∣ (4)

where c ∈ (0, 1) is sensitivity level and T is the set of time indices from 1 January 2020
to 31 August 2020. In addition, 3 additional conditions ((a) exclusion of small peaks,
(b) resolution criteria, and (c) exclusion of peaks that are vibrations on increasing trend)
were used in peak detection to enhance robustness. After all the peaks were found,
breakpoints (Algorithm 2; Figure S1) were selected either as timestamps that have the
smallest daily new confirmed cases between two consecutive peaks or the timestamp
where the cumulative confirmed case of the last segment saturates (that is, the last stage
of the s-curve of last segment). Figure S2 visualizes the segmentation process. Blue line
represents the peak, and dotted sky-blue line represents breakpoint. In the first plot, the
black solid line represents f̂ (t) and the black dotted line represents Yt. The second plot
represents cumulative confirmed cases of Yt(black dotted line), f̂ (t)(black solid line). The
third and fourth plots are graphs of ∆ f̂ (t), ∆2 f̂ (t). In the fourth plot, the green dotted line
represents sensitivity level. If ∆2 f̂ (t) is above the upper green dotted line, f̂ (t) is concave.
On the other hand, if ∆2 f̂ (t) is below the lower green dotted line, f̂ (t) is convex. Within
the third and fourth plots, Equation (4) can be validated. The segmentation algorithm was
successfully applied to 134 countries from the 213 countries in the ECDC dataset, which
met maxt ∈ T

(
f̂ (t)

)
≥ 50. If maxt ∈ T

(
f̂ (t)

)
is too small, segmentation algorithm would

be difficult to apply due to small variances in ∆2 f̂ (t).
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Figure 2. Daily new confirmed cases before (A) and after smoothing using Nadaraya–Watson kernel regression (B).

2.7. Segmented Growth Curve Models

Segmented growth curve models (segmented logistic model and segmented Gom-
pertz model) fit the above-mentioned growth curve models ((1) and (2)) for each segment
independently. These new models did not preserve continuity at breakpoints, but this did
not matter since the objective of our analysis was to condense daily new confirmed cases
into several parameters (α, β, γ) of the growth curves and not to accurately predict daily
new confirmed cases. Equations (5) and (6) below are the segmented logistic and Gompertz
models, respectively.

Q(t) =
n

∑
i=1

(
αi

1 + eβi−γit
+ qi)ISegi

(t) (5)

Q(t) =
n

∑
i=1

(αie−βie−γi t
+ qi)ISegi

(t) (6)

where, qi(i ≥ 2) is the number of cumulative cases at (i− 1)th breakpoint, and ISegi (t) is
indicator function where Segi is the set of indices of ith segment and q1 = 0.

In this analysis, we only considered first and second segments, since most countries
have 1 or 2 segments (1 segment: 62, 2 segments: 65, 3 segments: 7). The number of
countries with three segments was very small, making the comparison analysis insignificant
to use in the regression analysis. For countries with more than 2 segments, the analysis
period was, therefore, cut off at the second breakpoint. For countries with 2 segments,
segmented growth curve model then would produce two sets of parameters, one set from
each segment.

After the segmentation algorithm was applied to 134 countries, these countries were
fitted to segmented logistic and Gompertz models. To filter out poorly fitted countries,
we excluded countries whose MSSE (mean squared scaled error) was higher than 0.4, as
defined below:

MSSE =
1
N

N

∑
t=1

(
Yt − Ŷt

Y

)2

(7)

where Yt is the daily new confirmed cases, Ŷt is the predicted value for Yt by segmented
logistic and Gompertz models, and Y is the mean of Yt for t = 1, . . . , N.

MSSE is a more suitable measure compared with MSE (mean squared error) or MAPE
(mean absolute percentage error) because the MSE does not consider scales of population
among each country, while MAPE overestimates its error when the number of daily new
confirmed cases, and Yt is small. Among the 134 countries, 124 countries were fitted
for the segmented logistic model and 119 countries for the segmented Gompertz model.
Among the fitted countries, 5 countries were excluded due to failure of meeting the MSSE
criteria of 0.4 for segmented logistic and segmented Gompertz models. Therefore, a total
of 119 countries were used in the segmented logistic model, and 114 countries for the
segmented Gompertz model (Figure 3).
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Figure 3. Differences in the number of countries across segmentation, growth curve models, and MSSE criteria. For the
segmented logistic model, 124 countries were fitted, and for the segmented Gompertz model, 119 countries were fitted. To
check (validate) the goodness of fit of the above 2 models, we employed MSSE (mean squared scaled error) criteria. For each
of the two models, 5 countries showed high MSSE, and therefore those 5 countries were excluded in the subsequent analysis
(Aruba, Equatorial Guinea, Krygyzstan, Rwanda, and Thailand for the segmented logistic model, and China, Equatorial
Guinea, Kyrgyzstan, Rwanda, and Zambia for the segmented Gompertz model).

In addition, correlation analysis for segmented logistic and Gompertz models with the
log-scaled of parameters was performed to determine the similarity between parameters of
the two models (see Figures S3–S6).

2.8. Regression Model

The above segmented growth curve models summarize the spread of the pandemic
into three parameters (α1, β1, γ1) for countries with one segment, and into six parameters
(α1, β1, γ1, α2, β2, γ2) for countries with two segments. Each of the parameters from the
two segmented GCMs was regressed against the national factors shown in Figure 1 as
follows:

yik
j = θik

0 + θik
1 xj + ε (8)

where yik
j is one of the segmented GCM parameters (α, β, γ) for model i = 1 (logistic),

2 (Gompertz), segment k = 1, 2 and country j. θ0 and θ1 are regression coefficients, and xj
is the national factor of country j. F-statistic was performed to test the significance of θ1
for each national factor to find out which variables had a significant relationship with y, a
measure of the spread dynamics of COVID-19 for a country.

3. Results
3.1. Growth Curve Models Predicted the Spread of COVID-19 across Countries

In this analysis, we adapted and applied two GCMs: logistic and Gompertz models.
Since the countries experienced more than one wave of the pandemic as of 31 August
2020, segmented GCMs were used to fit each wave independently, with each wave cor-
responding to a segment. Therefore, these models summarized the spread patterns of
COVID-19 cumulative confirmed cases of 134 countries, i.e., three parameters (α1, β1, γ1)
for countries with one wave (and therefore, one segment), and six parameters (α1, β1, γ1;
α2, β2, γ2) for countries with two waves (two segments). Here, the differences between
parameters estimated from logistic and Gompertz models among the countries are dis-
cussed (Tables S2 and S3). Figure 4 shows the differences between the parameter values
estimated from GCMs among the countries. The x-axis represents the parameter related
to the number of maximum predicted cumulative confirmed cases (α), while the y-axis
represents the parameter related to the rate of spread of COVID-19 (γ).

Parameter estimation showed that the Philippines, India, and Brazil had the highest
numbers of maximum predicted cumulative confirmed cases in the first segment of the
pandemic using the logistic model (Figure 4A), while India and Zambia were shown to
have the highest numbers using the Gompertz model (Figure 4B). In the second segment
of the pandemic, the USA had the highest number of maximum cumulative confirmed
cases using both GCMs (Figure 4C,D). Therefore, by 31 August 2020, the USA was the
country with the greatest number of cumulative confirmed cases in the world. All the other
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remaining countries did not have notably large differences in their numbers of maximum
predicted cumulative confirmed cases in both GCMs.

Figure 4. Cont.
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Figure 4. Differences in values of maximum predicted cumulative cases (α) and rate of spread of
COVID-19 observed (γ) among countries. (A,C) The variation of α vs. γ using the logistic model for
the first and second segments, respectively. (B,D) The variation of α vs. γ using the Gompertz model
for the first and second segments, respectively.

However, we observed somewhat large differences in the rate of spread of COVID-19
values among the countries. In the first segment of the pandemic, Djibouti, Malawi, and
New Zealand had the highest rate of spread, while Sweden had the lowest rate of spread
(γ) of COVID-19 among their populations (Figure 4A,B), according to both models. In the
second segment, the Democratic Republic of Congo, Montenegro, and Cote d’Ivoire (Ivory
Coast) had the highest rate of spread, while Iceland, Finland, the UK, Nepal, Australia, and
Japan had the lowest rate of spread of COVID-19 in their populations, according to both
models (Figure 4C,D).

Moreover, we observed that countries with the greatest numbers of predicted maxi-
mum cumulative confirmed cases had the smallest rate of spread and vice versa, in both
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models and segments (see Figure S7 of log10α vs. γ). The correlation analysis (Pearson’s
correlation) to determine the relationship between the parameters across the two models
and segments (Figures S3–S6) confirmed that the parameters had similar interpretation
across models and segments, but a noticeable negative correlation (−0.5 and −0.55 for
logistic, −0.66 and 0.7 for Gompertz) between α and γ parameters (Figures S5 and S6) was
observed. This may explain the relationship observed between the numbers of maximum
predicted cumulative confirmed cases and the rate of spread of COVID-19.

Furthermore, since the first day of the analysis period was set to the date when the
number of cumulative confirmed cases exceeded 50 for each country, the population scale
among countries was not considered. Thus, the time when we started to see a rise in the
number of confirmed cases (β) did not produce consistent results between segments and
models as the other parameters did, although its interpretation was the same between
the models. Therefore, its results and any analysis concerning it were not a focus in our
study, and its results were relegated to the Supplementary Materials for those interested.
In addition, β showed minimal correlation (−0.089 for logistic and 0.15 for Gompertz)
between the two segments and with other parameters (e.g., −0.069 and 0.19 for logistic,
0.077 and 0.10 for Gompertz) in the same model, but it showed a strong positive correlation
between the models (0.88 and 0.95).

3.2. The Relationship between National Factors and the Spread of COVID-19

Regression model was employed to investigate the relationship of selected national
factors (Table S1) reasonably assumed to be related to COVID-19 and the spread of COVID-
19 using the number of maximum predicted cumulative confirmed cases, α, and the rate
of spread of the pandemic, γ, estimated from the segmented GCMs. The 31 national
factors included developmental (called World Development Indicators by World Bank [35])
and non-developmental variables related to population, age distribution, health, and
environment (Table S4).

The objective of our analysis was to determine whether these factors influence the
spread of COVID-19. From the segments in each growth curve model, our focus was on
whether (1) the differences in the size of the estimated coefficients and (2) the estimated
coefficients were statistically significant between two models and two segments. We used
a 5% significance level in this analysis. Statistically significant results provided evidence
for the possibility of these factors influencing the spread of COVID-19.

For the number of maximum predicted cumulative confirmed cases (α), several na-
tional factors turned out to be significant, such as population, annual precipitation, pharma-
ceutical sales, and imports to GDP ratio (Figure 5A,C). However, population was the only
variable that was outstandingly significant in both segments (1, 2) and models (logistic,
Gompertz). The rate of spread of COVID-19 (γ) was significantly related to 19 national
factors. For example, age-related variables such as aging index, share of population aged
65 and older, share of population aged 70 and older, median age and life expectancy, health-
related variables such as life cardiovascular death rate, share of female and male smokers
in the population and percentage of malnourished people in the population, hospital beds
per thousand, extreme poverty and human development index, cultural variables such
as international travelers from a country and number of foreign visitors to a country, and
environmental factors such as average annual temperature (Figure 5B,D).
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Figure 5. Cont.
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Figure 5. p-values of coefficients of national factors with α and γ. Population, annual precipitation,
pharmaceutical sales, and imports to GDP ratio were statistically significant with α, the number of
maximum predicted confirmed cases (A,C). Age-related factors, population, percentage of malnour-
ished population, life expectancy, temperature, etc. were significantly related with γ, rate of spread
of COVID-19 (B,D) (see Figure S8 for the relationship of national factors with β).

In addition, a relationship between the size of coefficient values (of the relationship
between national factor and GCM parameter) and significance of national factors was
observed, whereby significant variables generally had larger coefficient values than non-
significant variables (Figure 6, Figures S9 and S10). Our results provide evidence of the
influence of these significant national factors such as population, aging index, median
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age, cardiovascular death rate, extreme poverty, annual precipitation, number of foreign
visitors and international travelers, on the spread of COVID-19 across the globe. More-
over, we rarely observed a change in signs of the coefficients of the significant variables
between models.

Figure 6. Cont.
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Figure 6. Coefficients of the relationship between national factors and γ. θ1 is the coefficient of the
relationship between a national factor and a GCM parameter. Significant national factors (orange)
had large coefficients compared with non-significant factors (blue) in both Gompertz (A,C) and
logistic models (B,D).
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The number of maximum predicted cumulative confirmed cases is significantly influ-
enced by only population in both the two GCMs and segments of each model (Figure 7B).
The countries with the highest value of maximum predicted cumulative confirmed cases
(India, the USA, Brazil, the Philippines, and Zambia) had the highest population sizes in the
world as of 31 August 2020 [36]. In addition, the USA, India, and Brazil have been, in that
order, the countries hardest hit by the COVID-19 pandemic worldwide [37,38], showing a
relationship between population sizes and the number of confirmed cases. i.e., the spread
of COVID-19. High population may bring about congestion of people and higher rate of
person-to-person contacts among the people in public places. However, other population
dynamic factors may bring about this observation.

Figure 7. Significant national factors with number of maximum predicted cumulative confirmed cases (α) and rate of spread
of COVID-19 (γ). Median age, being aged 65 or older, being aged 70 or older, aging index, cardiovascular death rate, life
expectancy, and national competitiveness were the only national factors that were found to be significant across the two
models and segments (A). Population was significant across the two models and segments (B) (see Figure S11 for significant
national factors with β).

The rate of spread of COVID-19 is influenced by 16 significant variables in the Gom-
pertz model, and 10 significant variables in the logistic model (Figure 7A). Age-related
variables. i.e., aging index, median age, percentage of the population aged 65 or 70 and
older, and life expectancy are significant in both models and segments. Aging is linked
mainly with deteriorating immune system [39] and other common conditions such as
hearing loss, cataracts and refractive errors, back and neck pain and osteoarthritis, chronic
obstructive pulmonary disease, diabetes, depression, and dementia, wherein several of
these conditions can be experienced at the same time [40,41]. The risk for severe illness
with COVID-19 increases with age, with older adults being at a greater risk of requiring
hospitalization and dying of COVID-19 when diagnosed in comparison with younger
people. This is due to already deteriorating immune system, pre-existing conditions, and
underlying medical problems (cardiovascular disease, diabetes, chronic respiratory disease,
and cancer) that also makes them prone to newer infections [22,42–44]. This includes other
variables such as cardiovascular death rate [45] and the percentage of female and male
smokers in the population.

One in five (20%) adults in the world smoke tobacco [46], being one of the world’s
largest health problems. Active smoking and a history of smoking (cigarettes, waterpipes,
bidis, cigars, heated tobacco products) may lead an individual to being vulnerable to
contracting COVID-19, having been linked to increased severity of COVID-19 illness due
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to the health complications, wrecking mainly the immune system, especially on the lungs
(epithelial cells), which is a primary site of target of SARS-CoV-2 [47–49]. Moreover, the act
of smoking involves contact of fingers (and possibly contaminated cigarettes) with the lips,
which increases the possibility of transmission of viruses from hand to mouth. Smoking
waterpipes, also known as shisha or hookah, often involves the sharing of mouth pieces
and hoses, which could facilitate the transmission of the COVID-19 virus in communal
and social settings [48]. It is reported that Montenegro has 46% smoking prevalence, being
a country with the second highest rate of spread of COVID-19 in the second segment of
analysis [46], while OECD member countries were found to have a prevalence of 23.50% as
of 2016. African countries have some of the lowest levels of smoking in the world [46].

Extreme poverty impairs rapid response of the government to newer pandemics or
even other disasters, leaving its people highly susceptible to the infections. It influences a
government’s preparedness to deal with disasters (new pandemics included) and interferes
with health system response such as drugs, protective gear, information campaign, and
the inability of poor health systems to handle newer pandemics. Malnutrition increases
one’s susceptibility to and severity of infections and is thus a major component of ill-
ness and death from disease. The risk of death is directly correlated with the degree of
malnutrition [50–52]. Malnutrition is consequently the most important risk factor for the
burden of disease in developing countries. Malnutrition continues to be a major pub-
lic health problem throughout the developing world, particularly in southern Asia and
sub-Saharan Africa [53,54].

Number of international travelers and foreign visitors increases the chance of spread-
ing and catching the SARS-CoV-2 virus among the population [55], mainly due to impor-
tation and exportation of cases, leading to many domestic travel restrictions and flight
suspensions between countries [39,56]. Accelerated by human migration, exported COVID-
19 cases have been reported in various regions of the world, including Europe, Asia, North
America, and Oceania [57]. National competitiveness that covers areas such as economic
performance, government efficiency, corporate efficiency, and infrastructure, influencing
the rate of spread of COVID-19, may involve all the above-mentioned areas, for example,
government efficiency in the response to disaster may determine the overall outcome of the
situation. South Korea’s response to COVID-19, especially in the early stages of the pan-
demic, has been widely praised and encouraged to be emulated around the globe, showing
the importance of national competitiveness in response to COVID-19 [58,59]. Although
climate factors may have influenced the rate of spread of COVID-19, they may have had
a smaller effect size compared to the other significant factors. As a result, climate factors
did not turn out to be consistently significant across models and segments (only 1 model,
1 segment). A recent review has addressed the role of climate change in the emergence and
re-emergence of infectious diseases worldwide, indicating that temperature is an important
environmental condition determining the success of infectious agents [60,61].

4. Discussion

In this study, we investigated the relationship of 31 national factors from KOSIS and
Our World in Data on the spread of COVID-19 in 134 countries. First, we modeled the spread
of COVID-19 using segmented logistic and Gompertz models, and then we investigated
the influence of national factors on the spread of COVID-19. We observed that some factors
were significant in both GCMs or the two segments for each model, while others were
significant in only one model or segment, which implies a change in segments. We believe
that although the curves from GCMs can describe similar behavior in some phases of
growth, with one of the most important differences being that the Gompertz process is
asymmetric, whereas the logistic curve is a symmetric process, explaining the differences
observed in the results of the two models. Therefore, using a given growth curve model
can have a substantial impact on forecasting [36]. By building two models and analyzing
the results (Figure 7), we concluded that our findings provide reasonable proof that the
significant variables influence the spread of COVID-19.
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We observed that the number of maximum predicted cumulative confirmed cases
was significantly influenced by only one factor, while the rate of spread of COVID-19 was
influenced by seven factors, in both the two GCMs and segments of each model (Figure 5).
This made the rate of spread of the pandemic the most influenced aspect of the spread of
COVID-19 among countries among the two parameters. Moreover, we found out that the
number of maximum predicted cumulative confirmed cases (α) did not vary much across
countries (although we observed a few outliers, e.g., the USA, India, Brazil, the Philippines,
and Zambia), while the rate of spread of COVID-19 (γ) varied greatly across countries.
We observed that α was only mainly influenced by population (Figure 7B), while γ was
significantly influenced by many variables (Figure 7A). This may explain the differences
observed in the rate of spread of COVID-19 among countries in comparison with the
number of maximum predicted cumulative confirmed cases. It was seen that different
variables influenced the spread of COVID-19 at different segments of the pandemic.

We saw the influence of population size on the spread of COVID-19. Among the
hardest hit countries by the COVID-19 pandemic in the world, the USA, India, and Brazil
are also among the countries with the largest populations in the world. Some countries
with the highest number of maximum predicted cumulative confirmed cases (Zambia,
India, Brazil, and the Philippines) and the highest rate of spread of COVID-19 (Democratic
Republic of Congo and Malawi) have a large percentage of their population living in
extreme poverty [62,63] and in a malnourished state [64,65], as well as having the youngest
populations (especially African countries) in the world [66]. Moreover, in the first segment,
Iceland, South Korea, China, New Zealand, and Australia, which had a high rate of spread
of COVID-19, are characterized as having older populations, longer life expectancy, higher
GDP per capita, higher cardiovascular death rate, large percentage of population that
smoke daily [67], better health systems, and little to no malnutrition [66,68–71]. Clearly,
we observed the influence of these variables on the spread of COVID-19 [35]. However,
most of these countries, in addition to Japan, the UK, Italy, Germany, and the United Arabs
Emirates (despite having the characteristics listed above), also had the lowest rate of spread
of COVID-19 in the second segment of the pandemic (Figure 4). This could have been due
to the influence of government-implemented policies such as “lockdowns” in response to
the spread of COVID-19.

However, there are some limitations in our analysis. For example, a key limitation
of this analysis is that although we modeled the spread of COVID-19 for 134 countries,
the GCMs still produced some missing parameter values (10 countries in the logistic
model, 14 countries in the Gompertz model) between the segments and models for some
countries mainly due to failure of convergence (Tables S2 and S3), which may have affected
comparison and therefore the interpretation of the results. Moreover, we could only fit the
model up to August 31, 2020 because beyond that, more than two segments would have to
be modeled as currently many countries are experiencing their third wave or beginning
their fourth wave of the pandemic, which was challenging to the segmentation algorithm.
In the future, we hope to improve on this algorithm and then be able to study the other
waves of the pandemic and solve the problem of failure of convergence in the models.
While the relationship between several national factors and COVID-19 via regression
has been studied at the univariate level, multivariate analysis/regression has not been
performed to adjust for the influence of one factor on the association between another
factor and COVID-19. We hope to perform this type of analysis too by including some sort
of variable/feature selection, and then study the relationship between the selected feature
set of national factors and COVID-19 at multivariate level.

Moreover, COVID-19, which is a contact-transmissible infectious disease and is said to
spread through the population via direct contact between individuals [2,72,73] as the main
route of transmission, elicited a wide range of control measures from each country, aimed at
reducing the amount of mixing in the population [74,75]. These government-implemented
policies have already been shown to mitigate and suppress the pandemic [76,77]. It was
determined that highly effective contact tracing and case isolation is enough to control a



Int. J. Environ. Res. Public Health 2021, 18, 7592 18 of 22

new outbreak of COVID-19 within three months in most scenarios [78]. However, it was
very important to include these policies or to model their effects in our analysis, since these
policies may have influenced the results observed from the segmented GCMs. However,
our analysis could not, since our approach cannot handle time-dependent variables such
as the containment policies. Therefore, we could not control for this bias in our analysis, as
some may argue on this topic. In the future, we hope to consider the impact of government-
implemented policies on the spread of COVID-19 in our analysis using other models.

In addition, the role of host genetics interaction and COVID-19 progression has
gained a large amount of interest as one of the factors being proposed to influence the
spread of COVID-19 [79]. For example, the difference in terms of incidence of COVID-19
observed between the northern and southern regions of Italy was attributed to genetics as
being one of the factors causing this inhomogeneous distribution of cases [24]. However,
we analyzed a country’s COVID-19 pandemic situation instead of specific COVID-19-
confirmed individuals. This made it difficult to include genetic information in the current
models. However, provided that ethnic or ancestral difference data of each of the countries
analyzed is available, we can indirectly analyze effects of genetics using the ethnical
differences of a given country as another covariate in the GCMs. We hope to model the
role of genetics in relation to the spread of COVID-19 in a future study.

Furthermore, we also hope to repeat this analysis using number of cumulative COVID-
19 death cases. The number of death cases are just as important as confirmed cases in the
understanding of influential factors and epidemiological characteristics of COVID-19, as
we believe that COVID-19 death cases will provide more insight as they may be more
related to age distributions and health-related variables.

5. Conclusions

Much is still unknown about the clinical and epidemiological characteristics of COVID-
19, such as individual risk factors for contracting the virus and infections from asymptotic
cases. However, from the above discussions, our findings show the relationship between
age distributions, life expectancy, malnutrition, extreme poverty, cardiovascular death rate,
smoking, and population size and the spread of COVID-19. We hope these studies will
provide important information for policymakers and governments in making informed
scientific decisions while considering a country’s economy, population dynamics, climate,
and health system, which would likely have the most impact in future prevention works
against similar infectious diseases.
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