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Abstract: Soil conservation measures are widely used to control soil erosion and sediment loss;
however, their proper usage relies on a deep understanding of the responses of runoff and sediment
loss to land management and rainfall characteristics. In the present study, a long-term (2014–2020)
monitored dataset derived from ten runoff plots in the upstream catchment of the Miyun Reservoir
in Beijing, China, was used to study runoff and sediment loss responses to land use management and
rainfall characteristics. The study results show that plots with no soil conservation measures had the
highest runoff depth of 75 mm and suffered the highest sediment loss, at a rate of 3200 t km−2 yr−1.
The terraced and vegetated plots generated lower runoff depths, with soil loss rates less than
213.0 t km−2 yr−1. With the exception of the contour tillage plots on steep slopes, the vegetation
and engineering measures can efficiently reduce runoff and sediment loss, with both runoff and
sediment reduction efficiencies higher than 76%. Statistical analyses indicate that, on the plots of
bare soil and cultivation without soil conservation measures, runoff and sediment loss were mainly
affected by the maximum 30 min rainfall intensity. However, on the plots with soil conservation
measures, they were mainly determined by rainfall amount and duration. The sediment loss rate can
be well fitted with the runoff depth using a power function. Based on the analyses, water-saving soil
conservation measures are recommended for the study area. In addition, the size of terraces should
be reconsidered on gentle slopes, and the coverage of forest, shrubs, and grass on slopes should be
reduced, thus allowing for more surface runoff generation to ensure drinking water safety. In general,
for the study area, soil conservation measures are required on the bare soil and cultivated slopes.

Keywords: runoff plot; soil conservation measure; runoff; soil loss; Northern China

1. Introduction

Soil erosion by water is a well-recognized eco-environmental problem. Erosion by
water comprises the processes of runoff generation, soil detachment or entrainment, trans-
portation of soil particles, and sediment deposition [1]. During these processes, hydrologi-
cal, physiochemical, and biological factors are often attributed to soil erosion, resulting in
on- and off-site environmental problems. The depletion of nutrients, soil organic material,
and top soil causes land degradation and influences crop productivity. The progression
of water erosion significantly affects the level of land degradation. In addition, water
erosion can also cause downstream water pollution, reservoir sedimentation, river and
harbor silting, and ecological and recreational impacts of sediment management [2–5],
threatening the biodiversity, water resource use, and the natural ecosystem. To reduce soil
loss and its negative impacts, soil conservation measures are widely used globally [6,7].
To be able to make appropriate use of land and water resources, it is vitally important
to deeply understand the effects of different soil conservation measures on runoff and
soil loss. Multiple methods are used to study soil erosion, including runoff and sediment
measurements from runoff plots [8], rainfall simulation [9], radionuclide tracers [10], soil
erosion models, and remote sensing techniques [11]. Among these approaches, the runoff
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plot is the most common and traditional method used to study erosion by water. Numerous
soil erosion models, such as the Universal Soil Loss Equation (USLE) and the Water Erosion
Prediction Project (WEPP), were established depending on runoff plots because model
parameters are required to be calibrated using the measured runoff and sediment from
runoff plots [12]. Furthermore, using the measured runoff and sediment from runoff plots,
the effects of slope characteristics, soil conditions, rainfall characteristics, and land use and
soil conservation measures on runoff, sediments, or nutrients have been widely studied,
and numerous meaningful results have been derived [13,14]. However, in some places, the
runoff and sediment, and their relationships, or their responses to rainfall and different
soil conservation measures, are not yet well understood due to the lack of runoff plots.
Furthermore, deep insights into runoff generation and soil erosion characteristics have yet
to be obtained because systematic research has not been conducted.

Soil conservation measures are widely used globally to prevent soil loss and achieve
sustainable development goals (SDGs), and numerous significant study findings have been
published. For example, Zhao et al. [13] summarized the runoff plot data on the Chinese
Loess Plateau, and found that, due to the implemented soil conservation measures, soil and
water losses were reduced greatly, but not down to the background levels. Wolka et al. [14]
reviewed the effect of soil conservation measures on runoff, soil loss, and crop yields
in Sub-Saharan Africa, and found that the impact of soil conservation measures on crop
yields varied with rainfall and slope gradient. Maetens et al. [6] also evaluated the effects
of soil conservation measures in reducing runoff and soil losses from runoff plots in
Europe and the Mediterranean region. Xiong et al. [15] also reviewed the effects of soil
conservation measures on soil loss control at a global scale. Collectively, these results
improve our understanding of the effects of soil conservation measures on soil erosion and
water loss. However, most of these studies focus on the local runoff and soil loss control,
and less consideration has been given to their effect on downstream water resource use.
Moreover, the effects of the implementation of soil conservation measures on SDGs have
been neglected at the basin scale.

Climate change will likely affect water erosion due to various factors, including
vegetation growth, soil moisture, and the amount and intensity of precipitation [1]. In recent
years, the soil loss rate has increased, as a result of climate and environmental changes
and anthropogenic activities [1,16]. However, the impacts of soil conservation measures
on runoff and soil loss due to climate change have received less attention, although some
research has been undertaken globally. Therefore, systematic analysis of runoff and soil
loss characteristics, and their interaction, under different rainfall properties, provides an
understanding of soil erosion characteristics under climate change.

The Miyun Reservoir has a water capacity of around 4 billion m3 and a catchment
area of 14,924 km2. This reservoir is one of the most important drinking water sources in
Beijing [17–20], providing approximately 70% of the drinking water for millions of people
in Beijing City [21]. Wang et al. [22] and Zhang et al. [23] found that the water pollution
of the Miyun Reservoir was caused by serious soil erosion in its upstream catchment,
and accounted for about 60% of incoming nitrogen sources. Since the 1980s, the Beijing
government has greatly promoted large-scale soil conservation measures to control soil
loss and reduce water pollution. Since 2000, a significant effort has been undertaken in
constructing soil conservation measures, such as terracing, fish-scale pits (i.e., pits with a
certain water storage capacity that are staggered on slopes and look like fish scales with
a semicircular or crescent shape), level benching, and the use of contour tillage, in the
upstream catchment of the Miyun Reservoir [19,20]. These measures greatly influenced the
downstream water resource. For example, Li [24] demonstrated that the runoff discharge
was reduced by the implemented soil conservation measures. Liu et al., [25] constructed
the Chinese Soil Loss Equation (CSLE) to model the runoff and sediment loss from runoff
plots in the upstream catchment of the Miyun Reservoir. Qiu et al. [19] evaluated the
impacts of different best management practices on runoff, soil loss, and nutrient loss using
the SWAT model.
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Zhang et al, [26] and Tang et al. [27] evaluated land use management impacts on
nonpoint source pollution in the upstream catchment of the Miyun Reservoir. The effect of
land use management practices on river discharge was studied by Qiu et al. [19,20], who
found that climate variability and land use management practices have significant effects
on runoff, sediment yield, and nutrient loss. Tang et al. [27] found that land use change
decreased TN and TP losses by 39.1% and 23.7%, respectively. Future climate change
impacts on streamflow and nitrogen exports were predicted by Yan et al. [28]. Similar study
results were also reported in the literature [29–32]. However, most of these studies were
conducted at the catchment scale, and few studies have focused on the plot scale [33,34].
This has resulted in knowledge gaps regarding the effects of different soil conservation
measures on runoff and soil loss, in addition to their responses to rainfall characteristics at
different spatial scales.

Therefore, using ten runoff plots with different vegetation and engineering measures
in the Miyun Reservoir catchment, the objectives of the present study were to (i) explore
the characteristics of the runoff and soil loss rate (SLR) on slopes; (ii) understand the
effect of different soil conservation measures on the runoff and SLR; and (iii) identify the
relationships of the runoff and sediment, and their responses to rainfall characteristics.
Finally, some implications and suggestions are provided to improve land use and water
resource management in the study area.

2. Materials and Methods
2.1. Study Area

The runoff plots were located in the Shixia catchment (E117◦4′30′′ and 40◦34′40′′ N)
upstream of the Miyun Reservoir, which is about 40 km northwest of Beijing (Figure 1). The
catchment covers an area of 33 km2. The study region has a temperate territorial monsoon
climate, with annual precipitation ranging from 331 to 615 mm, based on climate data from
2007 to 2020, 70% of which falls from June to August. The catchment elevation ranges from
130 to 390 m a.s.l. The main lithology is gneiss, scattered with granite and limestone. The
runoff plots have an eluvial cinnamon soil with soil depths around 30 cm.

The main vegetation types are Robinia pseudoacacia, Pinus tabulaeformis, and Chest-
nut forest plantation, and the main crops are corn and wheat. The sandy loam soil contains
particles with the following size distibution: around 60.9% larger than 0.05 mm in diameter,
18.22% with a diameter of 0.05–0.005 mm, 9.22% with a diameter of 0.005–0.001 mm, and
14.88% with a diamter of less than 0.001 mm [22].

2.2. Data Collection

In the study area, ten runoff plots were used. Each plot had an area of 50 m2 and
a length of 10 m. The boundary of each plot was constructed of bricks and cement, and
extended 30 cm above the ground and 40 cm into the soil to prevent runoff from leaving
or entering the plots. The slopes of the plots ranged from 3.5◦ to 27◦. The conservation
measures implemented on the plots included contour tillage, terracing, and level benching,
and vegetation measures such as grass, shrubs, and forest. Corn was planted on the
cultivated plots. Detailed information is given in Table 1.

From 2014 to 2020, runoff and sediment discharges from the plots were collected with
a nine hole diversion bucket and a tank at the end of each runoff plot. After each rainfall
event, the runoff amount was measured. Evenly mixed water and sediment samples
were also collected with 1000 mL flasks, and transported to a laboratory where sediment
concentrations were determined based on the ratio of dry sediment mass and the runoff-
sediment volume (i.e., gravimetric method) (kg m−3). Runoff depth (H; mm) of each
rainfall event was calculated using rainfall amount and plot area. SLR (t km−2 event−1)
was also calculated using runoff amount, sediment concentration, and plot area.

H = 1000× TR
A

(1)
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SLR = 1000× TR× SC
A

(2)

where TR represents total runoff amount (m3), SC represents sediment concentration, and
A is runoff plot area (m2). Annual H and annual SLR were obtained by summing their
respective event values for each plot.
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Figure 1. Study area and the spatial distribution of the runoff plots. The red numbers represent
runoff plots.

Rainfall information was recorded by a rain gauge and a rain barrel near the plots. In
the present study, an erosive rainfall was defined as one that induced erosion on any of
the plots. Flows may be present on some plots but absent on other plots due to different
soil infiltration capacities of the plots, as proposed by Zhu and Zhu [35]. For each erosive
rainfall event, five rainfall eigenvalues, namely, rainfall duration (RD), rainfall amount
(P), mean rainfall intensity (Im), and maximum intensities at 30 min (I30) and 60 min (I60)
were obtained.
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Table 1. Basic characteristics of the 10 runoff plots in the present study.

Plot # Land Use Gradient
(◦)

Soil Depth
(cm) Vegetation

Vegetation
Coverage

(%)
Measure

1 Cultivated 3.5 60 Corn Terrace (width:
4 m)

2 Cultivated 14.4 20 Corn Contour tillage
3 Cultivated 16.5 30 Corn -
4 Bare land 16.5 30 - - -

5 Forest 16.5 30 Chestnut (Castanea sativa Mill.) 50% Level bench
(width: 3 m)

6 Forest 17.1 15 Acacia (Robinia pseudoacacia) and
Arborvitae (Platycladus orientails L.) 80% Fish-scale pit

(Radius: 0.5 m)

7 Shrub 18.6 15 Wattle (Vitex negundo var.
heterophylla) 50% -

8 Grassland 19.0 15 Alfalfa (Medicago sativa) 80% -
9 Grassland 19.0 15 Alfalfa (Medicago sativa) <30% -

10
Forest,

Shrub, and
Grass

27.0 20
Acacia (Robinia pseudoacacia), Wattle

(Vitex negundo var. heterophylla),
and weeds

>95% -

Note: vegetation coverage was visually estimated. The coverage of corn is not given because it changed rapidly during its growing period.

2.3. Data Treatment and Statistical Analysis

Annual runoff and soil loss control efficiencies of the plots were calculated based on
the values of annual H and SLR on bare plot #4.

CE = 100× X0 − Xi
X0

(3)

where CE represents annual H or annual soil loss control efficiency, X0 represents annual H
or annual SLR on plot #4, and Xi represents the corresponding H or SLR values on other
plots (i = 1, 2, 3, 5, 6, . . . , 10).

In the study area, Liu [25] derived a formula to calculate rainfall erosivity using event
P and the corresponding I30:

R = 0.2463 × P × I30 (4)

where R (mm ×mm h−1) is rainfall erosivity, and P and I30 are rainfall amount (mm) and
maximum 30 min rainfall intensity (mm h−1), respectively.

To study the impact of rainfall properties on runoff generation and soil loss, Pear-
son correlation and multiple regression analyses were used to evaluate the relationships
between H, SLR, and the five rainfall properties (i.e., RD, P, Im, I30, and I60). Fisher’s
protected least significant difference test was also used to compare the means of Hs and
SLRs. Treatments were considered significantly if p-value < 0.05. All the statistical analyses
were conducted using SPSS version 14.0 for Windows.

3. Results and Discussion
3.1. Rainfall Characteristics

For the 66 erosive rainfall events in 2014–2020, RD ranged from 20 to 1940 min, with
an average of 411 min and a standard error (Std. E) of 51.44 mm (Table 2). Erosive rainfall
amounts ranged from 4.8 to 108 mm with an average of 31.5 mm. The values of Im ranged
from 1.03 to 54.0 mm h−1, with an average of 104.5 mm h−1. In comparison, the values of I30
and I60 were much higher. The largest I30 reached 64.20 mm h−1. In comparison, the largest
I60 was 61.70 mm h−1 with a standard error of 1.46 mm h−1. Rainfall erosivity R ranged
from 7.09 mm×mm h−1 to 1491 mm×mm h−1, with an average of 234.83 mm ×mm h−1.
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Table 2. Statistical characteristics of the five rainfall eigenvalues and rainfall erosivity for the 66 erosive rainfall events in
2014–2020.

RD
(h)

p
(mm)

Im
(mm h−1)

I30
(mm h−1)

I60
(mm h−1)

R
(mm ×mm h−1)

2014

Mean 180.63 31.83 12.83 21.00 24.96 229.20
Std. E 61.85 8.89 2.24 4.99 6.75 112.20
Min. 50.00 11.80 4.77 8.50 8.50 32.33
Max. 580.00 86.50 23.05 43.80 61.70 933.16

2015

Mean 271.00 25.41 10.44 25.78 17.51 180.58
Std. E 94.22 8.13 3.60 4.38 3.59 64.88
Min. 21.00 4.80 1.56 6.00 3.60 7.09
Max. 1060.00 102.80 44.00 54.00 44.00 749.46

2016

Mean 425.00 33.16 12.51 26.15 20.37 212.74
Std. E 168.56 8.55 3.63 3.37 2.74 53.31
Min. 20.00 10.30 1.03 9.20 4.60 24.02
Max. 1615.00 82.50 30.90 42.00 30.90 493.70

2017

Mean 426.71 35.61 7.42 31.31 20.60 292.74
Std. E 150.07 8.78 1.47 5.09 2.43 82.09
Min. 57.00 10.20 3.15 18.60 9.60 46.73
Max. 1020.00 76.70 13.58 54.00 28.90 642.30

2018

Mean 694.00 39.52 4.33 22.93 16.13 308.64
Std. E 175.24 10.12 0.82 4.48 3.20 132.18
Min. 160.00 10.00 1.30 6.00 4.50 14.78
Max. 1940.00 108.10 9.50 56.00 42.00 1491.00

2019

Mean 365.27 29.46 12.05 32.19 22.30 260.26
Std. E 87.93 4.19 4.68 6.03 4.53 68.34
Min. 22.00 12.10 1.08 12.00 9.10 42.92
Max. 979.00 46.80 54.00 64.20 54.00 740.02

2020

Mean 470.78 26.58 7.16 22.91 16.46 161.92
Std. E 137.56 5.53 2.77 2.54 2.42 40.68
Min. 32.00 8.40 2.46 12.80 8.30 34.34
Max. 1082.00 55.50 27.94 37.60 29.80 363.61

All

Mean 411.02 31.51 9.50 26.04 19.55 234.83
Std. E 51.44 2.94 1.22 1.75 1.46 31.97
Min. 20.00 4.80 1.03 6.00 3.60 7.09
Max. 1940.00 108.10 54.00 64.20 61.70 1491.00

Notes: Std. E = standard error, CV = coefficient of variation, p = rainfall amount, Im = mean rainfall intensity, I30 = maximum 30 min rainfall
intensity, I60 = maximum 60 min rainfall intensity, and R = rainfall erosivity.

Each of these five eigenvalues varied greatly from year to year during the study
period. The mean values of RD were 180.63 min in 2014, 271.03 min in 2015, 425.00 min
in 2016, 426.71 min in 2017, 694.00 min in 2018, 365.27 min in 2019, and 47.78 min in 2020.
The annual values of I30 were 21.00 mm h−1 in 2014, 25.78 mm h−1 in 2015, 26.15 mm
h−1 in 2016, 31.31 mm h−1 in 2017, 22.92 mm h−1 in 2018, 32.19 mm h−1 in 2019, and
22.91 mm h−1 in 2020. Mean event P fluctuated around a depth of 30 mm from 2014 to
2020, with a higher coefficient of variation. The mean values of event rainfall erosivity also
varied greatly, with larger values in the years 2017–2019, and lower values in other years.

3.2. Runoff Depth and Soil Loss Rate of the Runoff Plots

The minimum rainfall amount required to generate runoff (i.e., the threshold rainfall
amount 4.8 mm), the number of rainfall-runoff events, H, and SLR varied significantly
among the plots (Table 3). From 2014 to 2020, the total number of rainfall-runoff events
per year varied from zero to 62. The bare and cultivated plots had higher H and SLR than
those plots with soil conservation measures. Annual values of H decreased from 75.3 mm
on plot #4 to zero on plot #10, and annual values of SLR decreased from 3205 t km−2 yr−1
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on plot #3 to zero on plot #10. At the event scale, both H and SLR had similar patterns to
those at the annual scale. Only small amounts of runoff and soil loss occurred on the plots
with soil conservation measures, with the exception of plot #2. These SLR values were
significantly lower than the tolerable threshold of 200 t km−2 yr−1 in the study area [36]
and the global mean tolerable value, which ranges from 0.1 to 1 mm yr−1 [37].

Table 3. Characteristics of runoff depth (H) and soil loss rate (SLR) on the 10 runoff plots at annual and event scales in
2014–2020.

Plot # Land Use
Threshold Rainfall

Amount (mm)
Outflow
Number

Annual Scale (Mean + Std.) Event Scale (Mean + Std.)

H SLR H SLR

1 Cultivated 28.7 8 3.4 (4.1b) 3.5 (3.5b) 2.9 (1.3b) 3.0 (2.4b)
2 Cultivated 8.4 59 69.2 (19.2a) 2541.7 (893.3a) 8.2 (5.6a) 301.6 (445.3a)
3 Cultivated 4.8 62 72.8 (22.2a) 3205.2 (1116.1a) 8.2 (6.1a) 361.9 (461.9a)
4 Bare land 4.8 60 75.3 (31.5a) 2732.5 (2047.1a) 8.8 (5.9a) 318.8 (476.2a)
5 Forest 21.8 14 8.1 (10.4b) 147.9 (234.0b) 4.0 (4.5b) 73.9 (93.7b)
6 Forest 55.0 5 4.4 (7.0b) 16.3 (40.5b) 6.2 (6.2ab) 22.8 (47.2b)
7 Shrub 15.1 14 7.6 (8.2b) 9.3 (11.4b) 3.8 (2.6b) 4.7 (6.8b)
8 Grassland 15.1 10 5.0 (6.2b) 5.6 (11.0b) 3.5 (1.4b) 3.9 (5.6b)
9 Grassland 15.1 20 18.0 (11.6b) 213.2 (272.3b) 6.3 (4.3ab) 74.6 (142.0b)

10 Forest, shrub,
and grass 0.0 0 0.0 (0.0c) 0.0 (0.0c) 0.0 (0.0c) 0.0 (0.0b)

Note: Average values following the numbers with the same letter in the same column are not significantly different at p-value = 0.05 as
determined by Fisher’ protected least significant difference test. Std. = standard deviation.

At an event scale, temporal changes of soil erosion and runoff are shown in Figure 2.
In respect of runoff depth, the highest runoff depths were 18.08 mm on plot #2, 29.65 mm
on plot #3, and 18.25 mm on plot #4. Lower runoff depth occurred on plots #7–#9, with the
largest being 8.75, 5.21, and 14.92 mm. The runoff depth on plots #1, #5, and #6 were the
lowest. When runoff events occurred on plots #1, #5, and #6, runoff events also occurred on
other plots (Figure 2). During 2014–2020, runoff depths on plots #2–#4 decreased slightly
from 2014 to 2020, whereas there were no changing trends for the runoff depths on other
plots. Regarding the soil loss rates on the plots, the temporal trend did not occur for all the
plots. The change amplitude was larger than that of runoff plot for each plot. For example,
the soil loss rate on plot #3 changed from 0.47 to 2278 t km−2 yr−1 as the runoff depth
changed from around 0 to 29.65 mm.

3.3. Impact of Soil Conservation Measures

In the study area, vegetation measures, such as planting forest (i.e., plot #6), shrubs
(i.e., plot #7), and grass (i.e., plots #8 and #9), in addition to their combinations (i.e., plot
#10), significantly reduced H and SLR (p-value < 0.01). In comparison to plot #4 of bare
soil, annual H reduction efficiencies ranged from 3.32% to 100%, and annual SLR reduction
efficiencies ranged from −17.30% to 100% (Figure 3). The H and SLR reduction efficiencies
of plots #2 and #3 were much lower, even with a negative value for plot #3. This is
because the higher stone content in the topsoil of the plot #4 increased surface roughness
(Figure 4) and resulted in a lower SLR than that from plot #3. This phenomenon has
been reported in the literature [38,39]. In comparison, over 75% of H and SLR reduction
efficiencies occurred on the plots #1, #5–#10 (Figure 3). This can relate to the impact
of vegetation measures on hydrological and soil erosion processes through intercepting
rainfall, altering runoff infiltration into soils, and changing runoff and sediment flow
velocity on the ground [40,41]. In contrast to the mono-species communities, stratified
vegetation communities can effectively reduce runoff and soil loss [36,42]. Due to dense
forest, grass, and shrub coverage, no runoff occurred on plot #10 from 2014 to 2020, despite
having a steep slope (Table 1). The runoff and SLR reduction efficiencies were comparable
to the reported results from the literature [43–45]. As expected, high-coverage grass was
more efficient in reducing H and SLR than low-coverage grass. Due to the dense surface



Int. J. Environ. Res. Public Health 2021, 18, 9583 8 of 16

cover, the shrub and grass plots #8 and #9 were better able to control soil loss than the
forest plot #6, because lower vegetation is more efficient in reducing rainfall splash erosion,
increasing water infiltration into the soil, and controlling soil loss [46–48].
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In recent years, due to the reduced precipitation and increased implementation of
management practices, decreased surface runoff and sediment loss have been reported
in literature [24,28,46,49,50]. The reduction of runoff induced by soil conservation mea-
sures on slopes has led to the decreased water discharge into the Miyun Reservoir [19,20].
As a result of the implemented soil conservation measures, more runoff was intercepted
and infiltrated into the soils, and thus made available for human use through wells, or
eventually by feeding the Miyun Reservoir through groundwater seepage. However, the
intercepted runoff can also be used by vegetation, and then lost through evapotranspi-
ration [51]. The effect of forest or reforestation on runoff is a highly complex issue, and
is beyond the scope of the present study. However, in the study region, research found
that the time at which soil conservation measures were widely implemented coincided
well with the decrease in water discharge into the downstream reservoir [52]. This implies
that the implementation of soil conservation measures reduced the downstream water
resource. Therefore, the strategies for implementation of soil conservation measures should
be adjusted to allow more water discharge to the reservoir to ensure drinking water safety
for Beijing city [19,20]. The current research shows that lower vegetation coverage can also
decrease SLR to below the tolerable value (i.e., 200 t km−2 yr−1) and allows for more runoff
generation in the study area. For example, annual SLR values on plots #6–#8 in Table 3
were considerably lower than the tolerable level and their annual H values were less than
8 mm due to dense vegetation cover (Table 1). Therefore, the vegetation coverage should
be lower. Similarly, the terrace plot (i.e., plot #1) intercepted around 95.5% of water on
the gentle slopes (Figure 3). The terracing practices should not be implemented on gentle
slopes, or the terrace size should be adjusted to allow for more runoff generation.

Chestnut forests are widespread in the study area, particularly on steep slopes. Be-
cause weeds under chestnut trees are often completely cleared by hand, without leaving
stalks or residue, the SLR on the 8◦–25◦ slopes was higher than 2430 t km−2 yr−1 [53],
which significantly exceeds the threshold tolerable value of 200 t km−2 yr−1. Due to the
completely exposed soil surface, higher soil erodibility, and less biological diversity, se-
rious soil erosion in forested areas was also reported in previous literature [54–56]. For
example, Wang et al. [55] found that rills and ephemeral gullies developed under Pinus
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massoniana trees, where the soil layer depth of 71.2 mm was eroded away. Yuan et al. [56]
also undertook a systematic review of soil loss under economic forests. In the present study,
because the soil surface of the chestnut forest was covered with weeds on a level bench
(Figure 4c), plot #5, which had a steep slope, had a larger threshold rainfall amount and
a much smaller SLR value (i.e., 147.9 t km−2 yr−1) than other plots, and there were only
eight erosive rainfall events from 2014 to 2020. Therefore, soil surface protection should be
considered in the chestnut forest lands of the study area. Level benching and/or other soil
conservation measures may better control soil losses in chestnut forests.

In the present study, plots #5–#8 had comparable slopes and H values, whereas plots
#5 and #6 with engineering measures produced higher SLR values than those from plots
#7 and #8 with vegetation measures. This is because the vegetation measures are more
efficient in controlling soil loss through reducing sediment concentration [44]. In contrast,
the engineering measures, such as terracing, level benching, and fish-scale pits, can decrease
slope gradient and slope length, and change the topographic characteristics, Thus, they
are more efficient in intercepting runoff, resulting in higher threshold rainfall amounts
(Table 3). The combined use of vegetation and engineering soil control measures can better
control soil loss in the study area.

3.4. Impact of Rainfall on Runoff and Soil Loss

The Pearson correlation coefficient matrix in Table 4 indicates that among the five
rainfall eigenvalues (i.e., P, RD, Im, I30, and I60), only P and I30 were significantly correlated
with H for all the plots, whereas the mean rainfall intensities (i.e., Im) were not significantly
correlated with H for all the plots. In contrast, with the exception of Im, all of these rainfall
eigenvalues were significantly correlated with H on the cultivated and bare soil plots #1–#4.
The RD values were significantly correlated with H on the plots #1–#6 at 0.05 and/or 0.0
levels, and not significantly correlated with other plots’ vegetation measures. This indicates
that the vegetation measures are less efficient in intercepting runoff than the engineering
measures. The correlation coefficients were much lower for the plots covered with both
vegetation and engineering measures [45].

Table 4. Pearson correlation coefficients between rainfall eigenvalues (i.e., P, I30, I60, Im) and runoff,
and soil loss rate for the selected runoff plots in 2014–2020.

Plot # RD p Im I30 I60

H

1 0.399 ** 0.656 ** −0.019 0.330 ** 0.294 *
2 0.263 * 0.566 ** 0.117 0.651 ** 0.460 **
3 0.293 * 0.642 ** 0.058 0.546 ** 0.407 **
4 0.379 ** 0.601 ** 0.008 0.473** 0.368 **
5 0.344 ** 0.412 ** −0.117 0.212 0.146
6 0.248 * 0.574 ** −0.020 0.122 0.148
7 0.070 0.260 * 0.198 0.398 ** 0.259 *
8 0.196 0.359 ** 0.195 0.365 ** 0.250 *
9 0.181 0.537 ** 0.171 0.514 ** 0.410 **

SLR

1 0.004 0.359 ** 0.126 0.218 0.304*
2 0.082 0.347 ** 0.168 0.441 ** 0.335 **
3 0.002 0.310 * 0.188 0.431 ** 0.317 **
4 −0.014 0.298 * 0.223 0.410 ** 0.366 **
5 0.051 0.229 0.089 0.283 ** 0.151
6 0.460 ** 0.420 ** −0.077 0.265 * 0.240
7 −0.154 0.000 0.210 0.319 * 0.155
8 −0.096 0.024 0.225 0.205 0.097
9 −0.052 0.306 * 0.113 0.179 0.225

Note: Pearson correlation coefficients were not calculated for plot #10 because no runoff occurred during the study
period. RD = rainfall duration, CV = coefficient of variation, p = rainfall amount, Im = mean rainfall intensity,
I30 = maximum 30 min rainfall intensity, and I60 = maximum 60 min rainfall intensity. * represents significance at
0.05 level, and ** represents significance at the 0.01 level.
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Similarly, P and/or I30 were significantly correlated with SLRs on the plots #1–#7 and
#9 and not significantly correlated on the plot #8, resulting from dense grass cover on the
soil surface. I60 was only significantly correlated with SLR for the cultivated and bare plots
#1–#4, and the mean rainfall intensities (i.e., Im) were insignificantly correlated with SLR
values for all the plots. No significant correlations existed between RD and SLR values,
with the exception of plot #6, which was covered with forest (Table 1).

The stepwise regression functions in Table 5 indicate that H can be significantly deter-
mined by P, I30, and other rainfall eigenvalues, with a determinant coefficient R2 higher
than 0.40 for the cultivated and bare soil plots (i.e., plots #1–#4). H was significantly influ-
enced by P and/or I30 on all the plots. The soil conservation measures greatly influenced
their relationships [57], resulting in lower R2 on the vegetated plots. H was not correlated
with I30 on plots #1, #5, and #6 with engineering measures. On these plots, mean annual
H was only 3.4 mm, which was much less than on most of the other plots. Cai [58] and
Xiao et al. [59] reported that little soil loss occurred on terraced land when event P was
less than 50 mm, which is higher than the event-averaged value in the present study (i.e.,
31.51 mm; Table 2).

Table 5. Multiple regression analysis for runoff depth (H) and the five rainfall eigenvalues of rainfall amount (P), rain-
fall duration (RD), mean rainfall intensity (Im), maximum 30 min rainfall intensity (I30), and maximum 60min rainfall
intensity (I60).

Plot # Regression Function R2 F Sig sigP sigI30 sigI60 sigIm sigRD

1 H = 0.03P − 0.56 0.43 48.44 ** ** - - - -
2 H = 0.10P + 0.31I30 − 0.16I60 − 1.05 0.57 27.45 ** ** ** * - -
3 H = 0.13P + 0.15I30 − 0.45 0.51 32.93 ** ** ** - - -
4 H = 0.13P + 0.12I30 + 0.83 0.43 23.32 ** ** ** - - -
5 H = 0.05P − 0.56 0.17 13.11 ** ** - - - -
6 H = 0.11P-0.003RD + 0.07I60 − 0.34 0.45 17.01 ** ** - * - **
7 H = 0.06I30 − 0.66 0.16 12.02 ** - ** - - -
8 H = 0.01P + 0.03I30 − 0.60 0.19 7.24 ** * * - - -
9 H = 0.06P + 0.09I30 − 2.53 0.39 25.92 ** ** ** - - -

Note: Regression analysis was excluded; R = complex correlation coefficient, sig = significance level, sigP = the significance level of H
affected by P, and sigI30 = the significance level of H affected by I30. * = significance at the 0.05 level, and ** = significance at the 0.01 level.

In contrast to the regression relationships between H and the rainfall eigenvalues, SLR
was linearly correlated with I30 on most plots (Table 6). On the plots #1, #6, and #9, P and
RD significantly influenced SLR. Impacted by high-coverage grass, no rainfall eigenvalues
were selected by the regression function for plot #8. The intensive vegetation measures also
reduced the impact of rainfall intensity on SLR. A similar conclusion was also reported by
Liu et al. [60].

Table 6. Multiple regression analysis for soil loss rate (SLR) and the five rainfall eigenvalues of rainfall amount (P),
rainfall duration (RD), mean rainfall intensity (Im), maximum 30 min rainfall intensity (I30), and maximum 60 min rainfall
intensity (I60).

Plot # Regression Function R2 F sig sigP sigI30 sigI60 sigIm sigRD

1 SLR =−0.002RD + 0.04P − 0.20 0.25 10.57 ** ** - - - **
2 SLR = 13.51I30 − 88.41 0.19 15.43 ** - ** - - -
3 SLR = 13.97I30 − 30.40 0.19 14.61 ** - ** - - -
4 SLR = 13.51I30 − 68.25 0.17 12.95 ** - ** - - -
5 SLR = 1.04I30 − 11.95 0.08 5.57 * - * - - -
6 SLR = 0.02RD + 0.26I30 − 11.19 0.29 17.19 ** - * - - **
7 SLR = 0.08I30 − 1.16 0.10 7.24 ** - ** - - -
8 - - - - - - - - -
9 SLR = −0.11RD + 2.39P − 8.87 0.24 9.70 ** ** - - - **

Note: Regression analysis was excluded; R2 = determinant coefficient, sig = significance level, sigP = the significance level of SLR affected
by P, and sigI30 = the significance level of SLR affected by I30. * = significance at the 0.05 level, and ** = significance at the 0.01 level.
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3.5. Relationships between H and SLR

There were positive relationships between H and SLR for all the plots (Table 7). In
comparison to the linear functions, the power functions (y = axb) were better able to
describe their relationships and had higher R2 values. This kind of regression function
was also widely reported in the literature [61,62]. Physically, the exponent b in the power
function reflects the sensitivity of the soil surface to rainfall. Higher b values appeared for
the bare soil and cultivated plots, with the exception of the terraced plot #1, and smaller
b values occurred for the plots with intensive vegetative or engineering measures. The
finding of a smaller b value for plot #8 than for plot #9 further proved that vegetation
can decrease SLR by reducing surface runoff and sediment concentration [63]. Notably,
the b value for plot #2 was comparable to those for bare soil and cultivated plots, further
implying that contour tillage on steep slopes cannot effectively reduce soil loss. Similar
findings were also reported in other regions [13,44]. Therefore, alternative soil conservation
measures should be considered for cultivated slopes having steep gradients.

Table 7. Relationships between runoff depth (H) and soil loss rate (SLR) from the plots for the 66
erosive rainfall events.

Plot #
Linear Function: y = a + bx Power Function: y = axb

Function R2 Function R2

1 SLR = 0.78H + 0.09 0.42 SLR = 0.84 H0.96 0.96
2 SLR = 43.99H − 53.40 0.36 SLR = 6.71 H1.48 0.88
3 SLR = 40.60H + 26.29 0.31 SLR = 8.49H1.50 0.81
4 SLR = 37.70H − 11.31 0.25 SLR = 6.50 H1.39 0.72
5 SLR = 8.54H + 8.33 0.18 SLR = 5.75H0.93 0.93
6 SLR = 1.841H +0.86 0.10 SLR = 0.67 H0.91 0.89
7 SLR = 1.42H − 0.16 0.60 SLR = 0.76 H0.94 0.96
8 SLR = 1.27H − 0.08 0.47 SLR = 0.68 H0.92 0.96
9 SLR = 15.37H − 6.89 0.46 SLR = 2.15 H1.17 0.92

Note: R2 = determinant coefficient.

3.6. Multivariate Analysis of Slope Degree, Soil Cover, and Rainfall Erosivity

Rainfall erosivity reflects the properties of event P and rainfall intensity. Therefore,
slope degree, soil cover, rainfall duration, and rainfall erosivity were used to model their
impacts on soil loss. The GLM model provided a result with an adjusted R2 of 0.37. The
partial
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Table 8. Summary results of the general linear model (GML) for event soil loss rate as the target variable.
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