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Abstract: The rapid growth of artificially constructed mining camps has negatively impacted the
camps’ surrounding environment and the informal communities that have developed inside the
camps. However, artisanal and small-scale gold mining (ASGM) is generally informal, illegal,
and unregulated; thus, transformations of the mining activities and potential social-environmental
problems resulting from these changes are not revealed. This study assesses the transformation
of mining activities in camp-type ASGM sectors in Gorontalo, Indonesia, during 2014–2020 using
remotely sensed data, such as Landsat series, nighttime light, and precipitation data obtained through
Google Earth Engine. Results show that the combined growth of the built-up areas increased 4.8-fold,
and their annual mean nighttime light increased 3.8-fold during 2014–2019. Furthermore, diverse
increases in the sizes of area and nighttime light intensity were identified from the mining camps.
Among the studied camps, since 2017, Motomboto camp 3 showed a particularly rapid change in
activity regardless of the season of the year. Hence, these approaches are capable of identifying rapid
transformations in the mining activities and provide significant insight into the socio-environmental
problems originating from the closed and vulnerable camp-based ASGM sector. Our results also
contribute to developing rapid and appropriate interventions and strengthening environmental
governance.

Keywords: artisanal and small-scale gold mining; environmental governance; Indonesia; landcover
change; mining camp; nighttime light; remote sensing

1. Introduction

Rapid growth of artificially constructed mining camps has negatively impacted their
surrounding environments and the informal communities that have developed inside them.
The communities that have developed in such camps may face severe socio-environmental
problems at various levels owing to their informal status. Therefore, detecting such
camps and determining their rate of development as well as the transformations of their
activities should provide significant insights into and the identification of possible social-
environmental problems that originate in these vulnerable mining communities. This may
also enable environmental governance to be promoted at various levels.

The artisanal and small-scale gold-mining (ASGM) sector, which is characterized as
informal, unregistered, and illegal, is a significant gold-producing sector that uses rudimen-
tary technology at the individual, group, or community levels [1]. In this sector, 70–80% of
small-scale miners are informal workers [2]. The United Nations Environment Programme
reported that ASGM is the largest employer in gold mining throughout the world, repre-
senting approximately 20% (400–600 T/year) of the worldwide gold production and 90%
of the global gold-mining workforce, respectively [3]. In the process of gold extraction,
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mercury is commonly used at the stage of amalgamation, resulting in substantial harmful
environmental and health risks owing to mercury pollution [4–6], such as mercury emis-
sions into the atmosphere and release into water. Such mercury pollution has mainly been
reported in South America, Africa, and Asia [4,7]. Additionally, other health problems—
such as silicosis, methyl orthophosphate-oriented poisoning, and various injuries—also
occur during the mining process [8]. Despite the high socio-environmental risks, ASGM
has been undertaken continuously in more than 80 countries as a tool for poverty allevia-
tion during their socioeconomic development [3,9]. In Indonesia, a continuous growth in
ASGM has been observed across the country. Both active and non-active ASGM practices
have been located in 93 regencies in 30 out of 34 provinces in Indonesia, estimating more
than 1200 hotspots in 2017 [10] with 250,000–300,000 miners [11]. Furthermore, Indonesia’s
fastest rise in the number of polluted sites has been reported in the past 20 years at the
global level [2]. In Gorontalo province, which shows the fifth highest poverty rate of 25.9%
in 2019 [12], many informal mining activities have been widespread even in national park
areas, affecting biodiversity and human health [10].

The ASGM sector can be categorized into two types: “travel-type,” in which miners
commute daily from their local residences to the mining sites, and “camp-type,” in which
miners live and conduct mining activities at the worksites [13]. The camp-type ASGM
(hereafter referred to as C-ASGM) sites are artificially constructed, basic settlements—in
general, with poor infrastructure—resulting in the formation of an informal society in each
camp [13]. The scale and workforce of the ASGM sector has been expanding along with
the increase in gold prices since 2000 [14]. A relationship between the increases in ASGM
and the high price of gold has been confirmed in the literature [15,16].

Recent research has focused mainly on the environmental and health assessments of
mercury pollution originating in the ASGM sector [1,8,17–24]. Several studies have focused
on the C-ASGM sites, but they have been limited to point-based, time-cross-sectional
analyses [25,26]. Thus, quantitative analyses of the time-series of the transformations of
mining activities have not been dealt with in-depth. Furthermore, due to the development
of geoinformation technology, several studies have conducted ASGM-related time-series
assessments of associated features, such as deforestation, mining-area detection, and
geomorphic and hydrological changes [16,22–25,27], but they have mainly examined travel-
type ASGM sites. To investigate the closed C-ASGM sites, [13] recently conducted a
quantitative time-series analysis using satellite remote-sensing imagery of the growth of
the built-up areas at the C-ASGM sites. However, the authors only captured the growth of
the mining camps represented by the built-up areas, and the detailed changes and volumes
of mining activities in these camps are not well understood.

However, miners living in the C-ASGM sites may face severe social risks within
these communities owing to their informal, illegal, unregulated, and vulnerable natures.
Thus, a better understanding of C-ASGM sites is required to reveal hidden, severe social
problems. For this reason, [28] investigated the economic outputs of small-scale areas with
low economic densities using remote-sensing-based light measurements. Applying such
data may provide a key to understanding how remote rural ASGM camps have developed
and how their mining activities have been transformed. Thus, tracing the nighttime light
(NTL) and weather data associated with the spatial distributions of the built-up areas may
provide better indicators of activity transformations in the mining camps located in remote
rural areas.

This study primarily assesses the transformation of the ASGM activities during
2014–2020 in Bone Bolango Regency, Gorontalo Province, Indonesia, where active C-ASGM
activities have been conducted. Specifically, our objectives were: (1) to assess the built-up
areas in the mining camps using the Landsat series and (2) to characterize the mining
activities by associating the detected built-up areas with the NTL data obtained using
the Visible Infrared Imaging Radiometer Suite (VIIRS) from the National Oceanic and
Atmospheric Administration (NOAA) and the Climate Hazards Group InfraRed Precip-
itation with Station (CHIRPS) data. The results of this study are expected to contribute
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to identifying potential socio-environmental problems originating in vulnerable mining
communities, potentially resulting in the strengthening of environmental governance.

2. Materials and Methods
2.1. Overall Methodological Workflow

Figure 1 shows the methodological workflow used in this study. This workflow
employed three main steps to achieve its primary objective of assessing the rapid transfor-
mation of ASGM activities. First, the areas built-up in the mining camps during 2014–2020
were identified using Landsat series data. Second, the NTL intensities for those areas were
calculated using VIIRS–NOAA data. Third, the amounts of precipitation in those areas
were obtained using CHIRPS data. Then, the relationships between the built-up areas was
identified, and the volume of NTL and the amount of precipitation were assessed. Together,
this evidence enabled us to understand the rapid transformation of the ASGM activities
at the mining camps. In this report, we present a discussion based on all the findings
described above. The methods utilized in each step are explained in the following sections.
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Figure 1. Overall methodology.

2.2. Study Area

North Sulawesi, Indonesia, is a well-mineralized metallogenic region with significant
gold mineralization associated with quartz veins in andesite-hosted epithermal settings.
The East Suwawa ASGM area is located in Bogani Nani Wartabone National Park, Bone
Bolango Regency, approximately 30 km southeast of the city of Gorontalo, Gorontalo
Province, Indonesia. This East Suwawa region is categorized as a high-sulfidation epither-
mal setting containing copper, gold, and silver [29].

The first mining activities in Bone Bolango Regency occurred in the Dutch era (18th
century) [30]. Much later, mining activity in the West Motomboto and Tulabolo areas was
developed by Tropic Endeavour Indonesia in 1988 [31]. However, these mining sites were
closed in 1991 because they overlapped the area being developed into the Bogani Nani
Wartabone National Park [31]. The closure of the former mining site triggered the entry of
residents to carry out mining activities [31]. In 2013, more than 9000 small-scale miners
were reported in the Bogani Nani Wartabone National Park [32].

In this study, the Mohutango and Motomboto ASGM camps 1, 2, and 3 in East Suwawa
in Bone Bolango Regency, Gorontalo Province, Indonesia—each of which utilizes the shaft-
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based method of mining—are targeted (Figure 2). Those camps are located 4–6 h away
from the center of East Suwawa. Access to the camps is very poor; they are only accessible
by motorcycle and require the crossing of several rivers in the mountains [13]. The basic
settlements in these C-ASGM sites consist of tin roofs covered by tarpaulins, and they are
spread across small valleys, forming village-like settlements. All the gold-mining activities
are conducted in these simple camps using 24-h shift operations [13].
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2.3. Satellite Imagery

Atmospherically corrected, cloud-free Landsat data from the Enhanced Thematic
Mapper Plus (ETM+) and Operational Land Imager (OLI)’s surface-reflectance products,
available from the United States Geological Survey, together with the VIIRS–NOAA and
CHIRPS data products, were used. Those datasets are available in Google Earth Engine,
and they can be used to extract and calculate time-series of the built-up areas, the NTL
intensities, and the amounts of precipitation. Therefore, the Landsat series from 2014 to
2020, which has a ground resolution of 30 m in the World Geodetic System 84 (WGS84)
geographic-coordinate reference system and applies the cloud-removal function, was
utilized to extract the built-up areas. Furthermore, VIIRS (stray-light-corrected)–NOAA
datasets acquired during 2014–2020 were masked, with the NTL values masked to be
greater than or equal to 0. Then, annual mean and monthly values were calculated by
applying resampling to a spatial resolution of 30 m. The CHIRPS datasets acquired for
2014–2020 were used to calculate monthly-sum values by resampling them to the same
scale. Finally, the resulting data for the built-up areas, annual mean NTL, monthly NTL,
and monthly precipitation were overlaid.

In previous studies, the mining areas in Bone Bolango Regency were estimated to
cover a total of 0.62 km2 in 2012 [26]. However, a continuous expansion of the built-up
areas in the camps that employ 24-h shift operations has since been reported [13]. Hence,
the long-term trends in ASGM camps could be observed from satellite imagery even with
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a 30-m ground resolution. The main specifications of the databases used in this study are
summarized in Table 1.

Table 1. Main specification of satellite imagery in the study.

Satellite Acquisition Date Temporal Resolution Spatial Resolution

NOAA VIIRS 2014.01.01–2020.12.31 Monthly 15 arc seconds

CHIRPS 2014.01.01–2020.12.31 Daily 0.05 degrees

Landsat 7 ETM+ 2014.04.24 16 days 30 m

Landsat 8 OLI

2015.07.08 16 days 30 m
2016.04.05
2017.04.24
2018.03.10
2019.08.04
2020.03.15

2.4. Extraction of Built-Up Areas, NTL, and Precipitation Data

Satellite-based observational data—such as Landsat, VIIRS, and CHIRPS—acquired
in 2014–2020 were used. Because the transformation of ASGM activities in remote rural
areas is associated with the miners living at the worksites, a combination of the growth of
the built-up areas and associated changes in the NTL can provide significant indicators
for assessing the detailed activity in the camps. Furthermore, as described in Section 2.2,
the basic settlements in the studied C-ASGM sites are made of poor materials; thus, their
mining activities have higher sensitivity to weather conditions. To clarify their changes, we
further assessed them along with the changes in precipitation amount.

In this study, the built-up areas were defined based on their physical aspects, such as
a built-up environment consisting mostly of human-constructed elements [33]. A number
of spectral indices, together with human visual interpretation [33–41], were employed to
detect built-up areas using remote-sensing technology. Previous studies found that the
Normalized Difference Built-up Index (NDBI) [42,43] and the Urban Index (UI) [44,45]
had high sensitivities for retrieving built-up areas; however, these have been employed
mainly in urban studies. As the NDBI and UI are incapable of separating built-up areas
from bare land effectively [35], separating the two in rural areas can be expected to be
more complicated. Therefore, in this study, the Normalized Difference Vegetation Index
(NDVI) was applied, as employed by [13,46], to detect remote rural mining areas over long
timescales. The value of NDVI in the built-up areas was calculated using Equation (1):

NDVI = (NIR − Red)/(NIR + Red) (1)

NDVI, which ranges from −1 to +1, has a high value for denser vegetation, while it is
lower for desert or non-vegetation areas [47]. In this study, the NDVI was further restricted
to the range 0 ≤ NDVI ≤ 0.48 in order to exclude vegetated areas on the land surface from
the built-up areas. This threshold value was determined based on comparisons to the
accuracy levels for high-resolution satellite data. In this way, the results were visualized
in time-series. A hundred points were randomly selected within the study area, and the
accuracy of the results was assessed using a high-resolution image obtained on 8 February
2017 from Google Earth Pro. Because images were not available on the same date for which
the Landsat imagery had been acquired, images acquired on the closest date, 24 April 2017,
were used. In this study, the validated accuracy was applied to all classification results
owing to the unavailability of reference data.

NTL data were acquired from the VIIRS, representing radiance values from −1.5 to
193,564.92, for the period 2014–2020. The negative radiance is generated by the airglow
effect in unpopulated regions, where the probability of illumination is zero or very low [48].
For this study, values less than 0 were excluded from the whole dataset. After summarizing
the monthly radiance values, a 12-month moving average was calculated for 2014–2020.
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Meanwhile, an annual mean radiance value was calculated per year to generate a time-
series of annual maps, which were overlaid against the detected built-up areas.

Precipitation data was acquired from CHIRPS for the period 2014–2020. Before the
CHIRPS data were analyzed, data consistency was evaluated using reference data observed
at Bone Bolango climatology station provided by the Indonesian Agency for Meteorology,
Climatology and Geophysics (BMKG) [49]. Precipitation data provide by CHIRPS were
accumulated in the form of monthly data to match the monthly data provided by BMKG.
After the data validation, the sums of the amounts of precipitation by month were calculated
for each camp. These results were graphed together with the detected monthly NTL.

2.5. Investigation of ASGM Camps

Field observation was conducted on 6 February 2020 to investigate the ASGM camps.
Additionally, interviews were conducted with key informant miners on the worksites.

3. Results
3.1. Growth of Built-Up Areas in the Mining Camps

To detect the land-cover changes surrounding the ASGM camps during the period
of 2014–2020, the calculated NDVI was primarily used. Using these NDVI results, the
built-up areas in the ASGM camps were calculated with an accuracy of 99%, as described
in Section 2.4. Figure 3 shows how the built-up areas have developed over time in the
camps. The built-up areas in the Mohutango and Motomboto ASGM camps 1 and 2 were
identified beginning early 2014, and camp 3 was identified early in 2016, and the camps
showed various types of growth. The growth of all the built-up areas combined exhibited
a 4.8-fold increase during 2014–2020. While the Mohutango and Motomboto ASGM camp
1 remained similar in extent from 2014 to 2020, the Motomboto camps 2 and 3 developed
substantially in extent in 2015 and 2019, respectively. Among these mining camps, the
growth of camp 3 is clearly distinguishable from the cases mentioned above, showing
continuous and rapid annual growth of the built-up areas to the southern part. While the
growth of the Mohutango camp and Motomboto camp 1 showed only 1.1- and 1.4-fold
increases, respectively, during 2014–2020, and camp 2 showed a 1.2-fold increase during
2015–2020, camp 3 showed a remarkable 23.1-fold increase during 2016–2020. Through the
field observations, we confirmed that the identified built-up areas were either residences
of miners or settlements for mining activities where trommel machines and pools for
immersing the materials were placed. Furthermore, the ASGM activity in this area has
rapidly increased since 2017 after the gold price increased (according to interview with a
local miner).

3.2. Relationship between Built-Up Areas and NTL Intensity in the Mining Camps

The built-up areas were further overlaid against the corresponding annual mean NTL
images as an indicator of the volume of mining activity in time-series (Figure 3). The
total annual mean NTL showed a 3.8-fold increase during 2014–2020, while the individual
Mohutango and Motomboto camps 1, 2, and 3 showed 3.0-, 2.8-, 2.6-, and 5.4-fold increases,
respectively. The highest NTL increase occurred in mining camp 3, where the rapid
growth of built-up areas was observed (Section 3.1). On the contrary, the Mohutango and
Motomboto camps 1 and 2, which were already identified in 2014, showed lower growths
of NTL intensity in comparison to Motomboto camp 3. Based on our field observations,
electricity was generated using diesel generators and distributed across the camp (as
reported by a local miner).
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To deepen our understanding of the mining activities in the camps represented by the
NTL intensity, the monthly NTL intensity and the 12-month moving average of NTL were
graphed against the built-up areas (Figure 4). Even though the NTL intensities vary by
camps, the study found a similar trend of the NTL intensity by season. For example, lower
NTL intensities were found in the rainy seasons—i.e., during April–June and November–
December—while higher intensities were found in the other months, during the dry seasons.
There was no significant change in the maximum values in the Mohutango and Motomboto
camps 1 and 2; however, the NTL from Motomboto camp 3 showed a 2.0-fold increase for
2014–2020. Furthermore, notable increases in the NTL were found in Motomboto camp 3
even in the rainy season, along with the growth of built-up areas since 2017. The 12-month
moving average for Motomboto camp 3 also showed a continuous increase.

3.3. Relationship between the NLT Intensity and Precipitation by Month

As described in Section 2.2, the basic settlements in the studied C-ASGM sites are made
of tin roofs covered by tarpaulins; consequently, their mining activities may have higher
sensitivity to weather conditions. We therefore expanded our analysis of the NTL intensity
described in Section 3.1 by associating it with the amount of precipitation, with a correlation
of 89%. As described above, higher NTL intensities have been observed since 2017, even
in the rainy season, especially in Motomboto camp 3; thus, we summarized the monthly
precipitation and NTL intensities by camp in a graph (Figure 5). The annual precipitation
in 2014–2020 was 1333, 887, 1437, 1760, 1170, 918, and 1643 mm, respectively. Even though
the annual amount of precipitation varied, the NTL volumes in 2020 were the highest
during the entire study period. Despite the increase in the volume of precipitation, the
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NTL intensity increased during the rainy season even in the simple settlements, especially
after 2017.
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4. Discussion and Limitations
4.1. Discussion

We studied the rapid transformation of activities in the C-ASGM sector from 2014–2020
using time-series associated with the built-up areas, the NTL, and precipitation data. A
quantitative time-series analysis of the artificially constructed C-ASGM sectors can help to
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achieve better understanding of the rate of development of such mining activities and their
transformations across time. Detecting such rapid transformations can provide significant
insights into hidden, severe social problems inside these vulnerable mining communities,
potentially resulting in the strengthening of environmental governance at various levels.

By combining the extraction of indicators of the growth of the built-up areas of C-
ASGMs, the NTL intensity as an indicator of the mining activities, and the precipitation
data, this study demonstrated the transformations of the mining activities undertaken
in the C-ASGM sectors over a significant fraction of a decade (Figures 3–5). Using a
quantitative analysis over the time, this study detected the various forms of built-up areas
and NTL intensities in the mining camps. For example, Motomboto camp 3 was identified
in 2016, and it showed a more rapid and extensive growth of the built-up areas and the
NTL intensity than the other camps during 2016–2020, with 23.1- and 2.0-fold increases,
respectively, as described in Section 3.1. We found notable increases in Motomboto camp
3 since 2017, which is in accordance with a previous study [13]. As the study sites are
remote, rural C-ASGMs, a significant source of the growth identified in this area may be
due to large influxes of miners from neighboring regions, such as Bolaang Mongondow
and Minahasa in North Sulawesi [32]. This huge entry may have been encouraged by weak
regulations resulting from the informal, illegal, and closed nature of this sector [9]; limited
government resources and administrative capacity to provide adequate technical assistance
or enforce compliance [50]; and the remote locations of the mining sites [27], which could
further result in large socioeconomic problems.

The transformation of the working pattern was also identified since 2017 regardless of
the season. This may imply that local villagers near the mining sites previously engaged
in the mining activity as an additional income-generating activity during the agricultural
off-season. However, the increased influx of miners from neighboring regions that has
occurred since 2017 appears to have resulted in workers staying at the mining camps
continuously, becoming occupational miners throughout the year. As discussed above, [13]
previously revealed the expansion of the C-ASGM sector; however, the increase of NTL, in
association with the precipitation data, enables the further identification of the detailed
volumes of and changes in the hidden mining activities.

The C-ASGM sector can operate successfully owing to its high productivity of gold.
Despite its status as an informal sector, large influxes of miners have entered the camps
continuously, resulting in their rapid growth. These influxes of large populations into
artificially constructed spaces, which lack fundamental infrastructures and systems, defi-
nitely cause and accelerate socioeconomic and environmental problems relating to children,
family, education, health, sexual health, sanitation, garbage, and water usage, as reported
elsewhere as well [51–54]. However, their informal and illegal status limits the power of
law over and control of the camps, resulting in severe situations at some camps. In particu-
lar, this may be the case for the rapidly growing C-ASGM sector, as has been observed at
Motomboto camp 3. Thus, detection of such rapidly developing, hidden C-ASGM sectors
can definitely contribute to strengthening environmental governance by attracting and
involving various stakeholders at various levels.

Many of ASGM-related assessments are limited to a particular discipline; thus, inter-
disciplinary researches involving health and environmental impact assessments will be
carried out in different regions to prove the effectiveness of remote sensing analysis in the
future.

4.2. Limitations

The results of this study have some limitations associated with the quality of the
input data. First, the presence of small negative-radiance values caused by the airglow
effect in uninhabited regions [48] can lead to underestimates of the NTL intensity. Second,
differences in the spatial resolution of the utilized datasets results in mixed pixels, which
can cause the overestimation or miscalculation of factors such as built-up areas and NTL
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intensities. Third, the methodology used in this study is applicable only to similar mining
sectors that employ 24-h operations.

5. Conclusions

The rapid growth of artificially constructed mining camps has negatively impacted the
environment surrounding them and the informal societies that have formed inside them. In
this study, the transformations of the ASGM activities in Bone Bolango Regency, Gorontalo
Province, Indonesia, were assessed using remote-sensing data. The results presented
herein show that the growth of the built-up areas and annual mean NTL experienced 4.8-
and 3.8-fold increases, respectively, during 2014–2020. In particular, rapid changes in the
working patterns were found in Motomboto camp 3 regardless of the season. Therefore, it
can be concluded that transformations of the activities undertaken in the closed C-ASGM
sites can be determined by combining observations of the built-up areas and NTL in the
mining camps with the precipitation volumes. These results extend our understanding
of the transformations of mining activities in the hidden C-ASGM sectors and provide
significant insight into the potential for social problems that can occur in vulnerable
informal mining communities. These findings are expected to assist in developing rapid
and appropriate interventions for strengthening environmental governance by involving
various stakeholders.
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17. Macháček, J. Alluvial artisanal and small-scale mining in a river stream-Rutsiro case study (Rwanda). Forests 2020, 11, 762.

[CrossRef]
18. Kahhat, R.; Parodi, E.; Larrea-Gallegos, G.; Mesta, C.; Vázquez-Rowe, I. Environmental impacts of the life cycle of alluvial gold

mining in the Peruvian Amazon rainforest. Sci. Total Environ. 2019, 662, 940–951. [CrossRef]
19. Nakazawa, K.; Nagafuchi, O.; Kawakami, T.; Inoue, T.; Yokota, K.; Serikawa, Y.; Basir-Cyio, M.; Elvince, R. Human health risk

assessment of mercury vapor around artisanal small-scale gold mining area, Palu city, Central Sulawesi, Indonesia. Ecotoxicol.
Environ. Saf. 2016, 124, 155–162. [CrossRef] [PubMed]

20. Bose-O’Reilly, S.; Drasch, G.; Beinhoff, C.; Rodrigues-Filho, S.; Roider, G.; Lettmeier, B.; Maydl, A.; Maydl, S.; Siebert, U. Health
assessment of artisanal gold miners in Indonesia. Sci. Total Environ. 2009, 408, 713–725. [CrossRef]

21. Wyatt, L.; Ortiz, E.J.; Feingold, B.; Berky, A.; Diringer, S.; Morales, A.M.; Jurado, E.R.; Hsu-Kim, H.; Pan, W. Spatial, Temporal, and
Dietary Variables Associated with Elevated Mercury Exposure in Peruvian Riverine Communities Upstream and Downstream of
Artisanal and Small-Scale Gold Mining. Int. J. Environ. Res. Public Health 2017, 14, 1582. [CrossRef] [PubMed]

22. Schmid, T.; Rico, C.; Rodríguez-Rastrero, M.; José Sierra, M.; Javier Díaz-Puente, F.; Pelayo, M.; Millán, R. Monitoring of the
mercury mining site Almadén implementing remote sensing technologies. Environ. Res. 2013, 125, 92–102. [CrossRef]

23. Espejo, J.C.; Messinger, M.; Román-Dañobeytia, F.; Ascorra, C.; Fernandez, L.E.; Silman, M. Deforestation and forest degradation
due to gold mining in the Peruvian Amazon: A 34-year perspective. Remote Sens. 2018, 10, 1–17. [CrossRef]

24. Emel, J.; Plisinski, J.; Rogan, J. Monitoring geomorphic and hydrologic change at mine sites using satellite imagery: The Geita
Gold Mine in Tanzania. Appl. Geogr. 2014, 54, 243–249. [CrossRef]

25. Owusu-Nimo, F.; Mantey, J.; Nyarko, K.B.; Appiah-Effah, E.; Aubynn, A. Spatial distribution patterns of illegal artisanal small
scale gold mining (Galamsey) operations in Ghana: A focus on the Western Region. Heliyon 2018, 4, e00534. [CrossRef] [PubMed]

26. Puluhulawa, F.; Harun, A.A. Policy formalization of Artisanal and Small-Scale Gold Mining (ASGM) post-ratification of Minamata
Convention for Sustainability (case study of ASGM Gorontalo). E3S Web Conf. 2019, 125, 02006. [CrossRef]

27. Gallwey, J.; Robiati, C.; Coggan, J.; Vogt, D.; Eyre, M. A Sentinel-2 based multispectral convolutional neural network for detecting
artisanal small-scale mining in Ghana: Applying deep learning to shallow mining. Remote Sens. Environ. 2020, 248, 111970.
[CrossRef]

28. Chen, X.; Nordhaus, W. A test of the new VIIRS lights data set: Population and economic output in Africa. Remote Sens. 2015, 7,
4937–4947. [CrossRef]

29. PT Bumi Resources Minerals Tbk. Laporan Tahunan 2019 Annual Report; PT Bumi Resources Minerals Tbk: Jakarta, Indonesia,
2019.

30. Van Bemmelen, R.W. The Geology of Indonesia. General Geology of Indonesia and Adjacent Archipelagoes. Gov. Print. Off.
Hague 1949, 545–547, 561–562.

31. Kesatuan Pengelotaan Hutan. Rencana Pengelolaan Hutan Jangka Panjang Kphp Unit Vii Bone Bolango Tahun 2016–2025; Bone
Bolango Regency: Suwawa, Indonesia, 2016.

32. Hatu, R.A. Socio-economic conditions in the illegal gold miners Tulabolo Village, Gorontalo-in Indonesian. Asian J. Appl. Sci.
2016, 9, 97–105. [CrossRef]

33. Kimijima, S.; Nagai, M. Human mobility analysis for extracting local interactions under rapid socio-economic transformation in
Dawei, Myanmar. Sustainability 2017, 9, 1598. [CrossRef]

34. Kawamura, M.; Jayamana, S.; Tsujiko, Y. Relation between social and environmental conditions in colombo sri lanka and the
urban index estimated by satellite remote sensing data. Int. Arch. Photogramm. Remote Sens. 1996, 31, 321–326.

35. Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J.
Remote Sens. 2003, 24, 583–594. [CrossRef]

36. Xu, H. A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 2008, 29, 4269–4276. [CrossRef]
37. Bhatti, S.S.; Tripathi, N.K. Built-up area extraction using Landsat 8 OLI imagery. GIScience Remote Sens. 2014, 51, 445–467.

[CrossRef]
38. As-syakur, A.R.; Adnyana, I.W.S.; Arthana, I.W.; Nuarsa, I.W. Enhanced built-UP and bareness index (EBBI) for mapping built-UP

and bare land in an urban area. Remote Sens. 2012, 4, 2957–2970. [CrossRef]

http://doi.org/10.3390/ijerph18189441
http://www.ncbi.nlm.nih.gov/pubmed/34574366
https://goldprice.org/spot-gold.html
http://doi.org/10.1073/pnas.1318271110
http://doi.org/10.1371/journal.pone.0018875
http://doi.org/10.3390/f11070762
http://doi.org/10.1016/j.scitotenv.2019.01.246
http://doi.org/10.1016/j.ecoenv.2015.09.042
http://www.ncbi.nlm.nih.gov/pubmed/26513531
http://doi.org/10.1016/j.scitotenv.2009.10.070
http://doi.org/10.3390/ijerph14121582
http://www.ncbi.nlm.nih.gov/pubmed/29244775
http://doi.org/10.1016/j.envres.2012.12.014
http://doi.org/10.3390/rs10121903
http://doi.org/10.1016/j.apgeog.2014.07.009
http://doi.org/10.1016/j.heliyon.2018.e00534
http://www.ncbi.nlm.nih.gov/pubmed/29511743
http://doi.org/10.1051/e3sconf/201912502006
http://doi.org/10.1016/j.rse.2020.111970
http://doi.org/10.3390/rs70404937
http://doi.org/10.3923/ajaps.2016.97.105
http://doi.org/10.3390/su9091598
http://doi.org/10.1080/01431160304987
http://doi.org/10.1080/01431160802039957
http://doi.org/10.1080/15481603.2014.939539
http://doi.org/10.3390/rs4102957


Int. J. Environ. Res. Public Health 2021, 18, 10954 12 of 12

39. Waqar, M.M.; Mirza, J.F.; Mumtaz, R.; Hussain, E. Development of New Indices for Extraction of Built-Up Area & Bare Soil. Open
Access Sci. Reports 2012, 1, 1–4.

40. Kaimaris, D.; Patias, P. Identification and Area Measurement of the Built-Up Area with the Built-Up Index (bui). Available
online: https://www.semanticscholar.org/paper/Identification-and-Area-Measurement-of-the-Built-up-Kaimaris-Patias/8af1
41e5f616488d238384111b69137bb54b1ec9 (accessed on 1 August 2021).

41. Firozjaei, M.K.; Sedighi, A.; Kiavarz, M.; Qureshi, S.; Haase, D.; Alavipanah, S.K. Automated built-up extraction index: A new
technique for mapping surface built-up areas using LANDSAT 8 OLI imagery. Remote Sens. 2019, 11, 1966. [CrossRef]

42. Villa, P.; Mousivand, A.; Bresciani, M. Aquatic vegetation indices assessment through radiative transfer modeling and linear
mixture simulation. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 113–127. [CrossRef]

43. Zhou, G.; Ma, Z.; Sathyendranath, S.; Platt, T.; Jiang, C.; Sun, K. Canopy reflectance modeling of aquatic vegetation for algorithm
development: Global sensitivity analysis. Remote Sens. 2018, 10, 837. [CrossRef]

44. Jaskuła, J.; Sojka, M. Assessing spectral indices for detecting vegetative overgrowth of reservoirs. Polish J. Environ. Stud. 2019, 28,
4199–4211. [CrossRef]

45. Villa, P.; Bresciani, M.; Braga, F.; Bolpagni, R. Comparative Assessment of Broadband Vegetation Indices Over Aquatic Vegetation.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3117–3127. [CrossRef]

46. Pericak, A.A.; Thomas, C.J.; Kroodsma, D.A.; Wasson, M.F.; Ross, M.R.V.; Clinton, N.E.; Campagna, D.J.; Franklin, Y.; Bernhardt,
E.S.; Amos, J.F. Mapping the yearly extent of surface coal mining in central appalachia using landsat and google earth engine.
PLoS ONE 2018, 13, 1–15. [CrossRef]

47. Japan Association on Remote Sensing. Remote Sensing Note; Japan Association on Remote Sensing: Tokyo, Japan, 1993.
48. Jeswani, R.; Anurag, K.; Gupta, P.K.; Srivastav, S.K. Evaluation of the consistency of DMSP-OLS and SNPP-VIIRS night-time light

datasets Reshma. J. Geomatics 2019, 13, 98–105.
49. Indonesian Agency for Meteorology Climatology and Geophysics. Daily Data of Bone Bolango Climatology Station. 2021.

Available online: https://dataonline.bmkg.go.id/ (accessed on 10 October 2021).
50. Sousa, R.N.; Veiga, M.M.; Meech, J.; Jokinen, J.; Sousa, A.J. A simpli fi ed matrix of environmental impacts to support an

intervention program in a small-scale mining site. J. Clean. Prod. 2011, 19, 580–587. [CrossRef]
51. Gafur, N.A.; Sakakibara, M.; Sano, S.; Sera, K. A case study of heavy metal pollution in water of Bone River by Artisanal

Small-Scale Gold Mine Activities in Eastern Part of Gorontalo, Indonesia. Water 2018, 10, 1507. [CrossRef]
52. Long, R.N.; Renne, E.P.; Basu, N. Understanding the social context of the asgm sector in ghana: A qualitative description of the

demographic, health, and nutritional characteristics of a small-scale gold mining community in Ghana. Int. J. Environ. Res. Public
Health 2015, 12, 12679–12696. [CrossRef]

53. Basu, N.; Renne, E.P.; Long, R.N. An integrated assessment approach to address artisanal and small-scale gold mining in Ghana.
Int. J. Environ. Res. Public Health 2015, 12, 11683–11698. [CrossRef]

54. Rajaee, M.; Obiri, S.; Green, A.; Long, R.; Cobbina, S.J.; Nartey, V.; Buck, D.; Antwi, E.; Basu, N. Integrated Assessment of Artisanal
and Small-Scale Gold Mining In Ghana—Part 2: Natural Sciences Review. Int. J. Environ. Res. Public Health 2015, 12, 8971–9011.
[CrossRef] [PubMed]

https://www.semanticscholar.org/paper/Identification-and-Area-Measurement-of-the-Built-up-Kaimaris-Patias/8af141e5f616488d238384111b69137bb54b1ec9
https://www.semanticscholar.org/paper/Identification-and-Area-Measurement-of-the-Built-up-Kaimaris-Patias/8af141e5f616488d238384111b69137bb54b1ec9
http://doi.org/10.3390/rs11171966
http://doi.org/10.1016/j.jag.2014.01.017
http://doi.org/10.3390/rs10060837
http://doi.org/10.15244/pjoes/98994
http://doi.org/10.1109/JSTARS.2014.2315718
http://doi.org/10.1371/journal.pone.0197758
https://dataonline.bmkg.go.id/
http://doi.org/10.1016/j.jclepro.2010.11.017
http://doi.org/10.3390/w10111507
http://doi.org/10.3390/ijerph121012679
http://doi.org/10.3390/ijerph120911683
http://doi.org/10.3390/ijerph120808971
http://www.ncbi.nlm.nih.gov/pubmed/26264012

	Introduction 
	Materials and Methods 
	Overall Methodological Workflow 
	Study Area 
	Satellite Imagery 
	Extraction of Built-Up Areas, NTL, and Precipitation Data 
	Investigation of ASGM Camps 

	Results 
	Growth of Built-Up Areas in the Mining Camps 
	Relationship between Built-Up Areas and NTL Intensity in the Mining Camps 
	Relationship between the NLT Intensity and Precipitation by Month 

	Discussion and Limitations 
	Discussion 
	Limitations 

	Conclusions 
	References

