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Abstract: Working towards sustainable population development is an important part of carbon miti-
gation efforts, and decoupling carbon emissions from population development has great significance
for carbon mitigation. Based on the construction of a comprehensive population development index
(PDI), this study adopts a decoupling model to explore the dependence between carbon emissions
and PDI across 30 Chinese provinces from 2001 to 2017. Then, the stochastic impacts by regression on
population, affluence and technology (STIRPAT) model is used to investigate the impact of popula-
tion factors on carbon emissions. The results show that the decoupling relationship between carbon
emissions and PDI has experienced a transformation from expansive negative coupling to expansive
coupling and then to weak decoupling at the national level, while some provinces have experienced
the same evolutionary process, but the decoupling state in most provinces is not ideal. Sending
talent to western provinces and developing low-carbon supporting industries will accelerate carbon
decoupling. At the national level, incorporating environmental protection into the existing education
system as part of classroom teaching could contribute to carbon decoupling.

Keywords: decoupling; STTRPAT; carbon mitigation; population development index (PDI)

1. Introduction
1.1. Importance and Motivation

With the continuous growth of population and carbon emissions in developing coun-
tries, the issue of sustainable population development has attracted attention. In the face
of the complex climate change situation, implementing carbon mitigation and sustainable
population development strategies to reduce the climate risks caused by carbon emissions
has become the top priority of the Chinese government [1]. To realize the coordinated
development of the economy, society, resources and the environment, China, the country
with the largest population, has experienced the transformation from the family planning
policy to the three-child policy and the population sustainable development policy. During
the demographic transition period, changes in population dynamics and development
patterns will undoubtedly affect China’s energy use and the resulting carbon emissions [2].
Meanwhile, as the world’s largest carbon emitter, China is considered a key player in the
international effort to tackle climate change [3]. In order to reduce carbon emissions, the
Chinese government has also proposed the goal of peaking carbon emissions by 2030 and
achieving carbon neutrality by 2060 [4]. To achieve the goal of dual carbon emission reduc-
tion firstly means that carbon emissions can no longer increase with the social development;
that is to say, carbon emission decoupling is the first step to achieve carbon neutrality [5].
Therefore, evaluating the degree of carbon emission decoupling is of great significance for
promoting carbon emission reduction.

Decoupling research originally focused on how to balance the tension between eco-
nomic growth and environmental pollution [6]. Although some studies have examined
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this link at the national, industry or sector level, the decoupling between carbon emissions
and population development is still unclear because it is rarely discussed. Quantifying the
decoupling states of carbon emissions from a multiperspective can guide more detailed
emission reduction strategies [7]. To achieve population sustainability and low-carbon
development, it is of great importance for the government to understand the decoupling
state between carbon emissions and population factors and the influencing mechanism
between them [8,9].

Moreover, there are significant disparities regarding energy demand, population size,
residential income, urban–rural structure and population quality in Chinese provinces,
which may lead to significant differences in the interaction between carbon emissions and
population development [10]. An objective evaluation of regional population development
will provide an important premise for exploring the decoupling the relationship between
carbon emissions and population development. Therefore, China and its 30 provinces
for which data are available are selected for this study, which may contribute to a better
understanding of the dynamics of carbon decoupling.

1.2. Objective and Contribution

Investigating the dynamics of the decoupling of carbon emissions from population
development and making recommendations that might facilitate the decoupling of carbon
emissions are key objectives of this study. The specific objectives are shown below:

(1) Develop a comprehensive indicator to reflect the multifaceted aspects of population
development;

(2) Explore the decoupling relationship between carbon emissions and population devel-
opment;

(3) Identify the driving force of population development on carbon emissions to promote
carbon decoupling.

This study can make the contribution to the existing knowledge from the followings:
Firstly, as for the research perspective, this study focuses on the dependence of carbon
emissions on population development, while previous studies focus more on decoupling
from the perspective of economic development. Since the population effect has no less of an
impact on carbon emissions than economic development [11,12], this study focuses on the
decoupling of carbon emissions from population, which is a good extension of the existing
studies on the decoupling of carbon emissions and may help to promote managers to focus
on high-quality transition and the sustainable development of population, rather than only
sustainable development at the economic level. Secondly, regarding the research scale,
this study investigates the decoupling state between population development and carbon
emissions at the national and provincial level. China is the world’s most populous country,
with a population of more than 1.4 billion. Of the 30 provinces for which data are available,
20 have a population of more than 30 million in 2017 [13]. As an important contributor to
carbon emissions, the study on the decoupling of China’s carbon emissions will not only
help China’s energy conservation and emission reduction process, but also provides a ref-
erence for sustainable population development in other populous countries, such as India
and other countries, and plays an important role in promoting climate change mitigation
worldwide. Finally, in terms of the research method, based on decoupling analysis and
the stochastic impacts by regression on population, affluence and technology (STIRPAT)
model, this study explores the impact of a series of population development factors on
carbon emissions, including population size, urban–rural structure, employment structure,
age structure, population quality and population affluence, which is a supplement and
extension of the existing research on the driving mechanism of carbon emissions. This
will help decision makers formulate measures to improve population development and
reduce emissions.
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2. Literature Review

Researchers are interested in the study of carbon emission drivers in developing coun-
tries. Most of the current studies focus on carbon emission decomposition or decoupling
from the perspective of energy consumption, economic development, technology progress
and other factors [14–17]. To explore the interaction mechanism between these factors
and carbon emissions, the Tapio decoupling model has proved to be an effective method
and has been widely used. Shuai et al. investigated the global decoupling of economic
growth and carbon emissions and concluded that high-incomes countries are more likely
to have the expected decoupling relationship [18]. Zhang and Da analyzed the decoupling
relationship between carbon emissions and economic growth in China, and the results
indicated that economic growth is the primary driver of carbon emissions growth [19].
Song et al. utilized the decoupling model to evaluate the decoupling status and dynamic
trends of carbon dioxide emissions at the provincial level in China [20]. The decoupling
researches are also focused on the sector level, including construction, industry [21,22],
product [23],transportation [24,25] and agriculture [26].

Economic output has become the main consideration in the study of carbon decoupling
in China [27], and this consideration is also reflected in the research outside China [28]. How-
ever, the dependence of carbon emissions on other factors, such as population, has received
little attention, and only a few studies have assessed the decoupling of carbon emissions
from population-related factors. For example, Ma et al. explored the relationship between
household carbon emissions and economic growth based on decoupling indicators, and
concluded that household carbon dioxide emissions were in a weak decoupling state on the
whole, and changes in CO2 emissions caused by population growth and economic growth
were in a weak decoupling state and expansionary decoupling state, respectively [29]. The
current research has also consistently found that population factors (i.e., size, growth and
other parameters) are strongly correlated with carbon emissions [30–33]. Successful envi-
ronmental social science research projects, such as the Infrastructure Project Assessment
Tool (IPAT), place great emphasis on the relationship between population and the environ-
ment [34]. Therefore, in the transition period of population development, it is necessary to
systematically understand the dependence of carbon emissions on population factors.

To clarify the interaction mechanism between population and carbon emissions, re-
searchers examined the effect of various population factors on carbon emissions. Wang, et al.
explored the impact of population size, per capita consumption, urbanization and an aging
population on carbon emissions [11]. Zhu and Peng studied the impact of population
change on China’s carbon emissions, and they revealed that consumption levels and popu-
lation structure significantly affect carbon emissions [35]. Jorgenson and Clark argued that
population size is positively correlated with carbon emissions [36]. More and more research
argued that population size, population structure, quality and other indicators should be
considered in the economy-environment model to fully reflect the impact of population
factors on carbon emissions [37,38]. In some research, carbon emissions are related to pop-
ulation aging, and the working-age population is also considered an important indicator of
future carbon emission mitigation [39,40]. Li et al. found that the relationship between the
aging structure and carbon emissions in China can be described by an inverted U-shaped
curve [41]. In some developing countries, population quality also has a significant impact
on carbon emissions [42]. A cross-nation study adds to the discussion on the link between
population size and other demographic factors and pollution, arguing that population
increases are matched by proportional increases in emissions while a higher urbanization
rate and lower average household size increase emissions [43].

In terms of population development characteristics, almost all of the important pop-
ulation factors, including population size, population structure, population quality and
population distribution, are constantly changing, which have a complex and changeable
impact on carbon emissions [35]. Generally, the impact of population on carbon emissions
is uncertain due to the varied population features in different regions [44]. It is certain that
if the population factors are measured by population scale, it cannot fully reflect the popu-
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lation impact on carbon emissions. However, this is what most studies have done when
exploring carbon emissions drivers by multiple regressions in the economy-environment
model. The assumption behind this treatment is that each individual in a population shares
the same production and consumption behavior, but this assumption may be inaccurate
and misleading [45]. Thus, an integral description that utilizes the multidimensional char-
acteristics of population development is required, which will help to understand the effect
of population on carbon emissions.

In summary, the impact of various population factors, including population size,
population growth rate, age structure, urban–rural structure, employment structure, popu-
lation quality, consumption structure and per capita GDP, on carbon emissions have been
studied. Although some progress has been made, there are still some limitations, which
highlight the following research gaps: (1) various population factors are simply used,
and without an integral indicator to reflect multidimensional population development
characteristics; (2) most studies on carbon decoupling have been typically conducted at a
sectoral or country level and measured by economic outputs. This makes the relationship
between population development and carbon emissions unclear.

To address the research gap, this study: (1) develops a population development index
(PDI) to evaluate multidimensional population development; (2) establishes a decoupling
model to investigate the decoupling between carbon emissions and the PDI in 30 Chinese
provinces; (3) investigates the impact of various population factors on carbon emissions
and explores policy suggestions to promote the decoupling of carbon emissions from PDI.

This paper is organized as follows. Section 3 describes the research methods. The
study areas and the data sources are presented in Section 4, and Section 5 presents the
results and discussion, which is followed by the final conclusions and policy implications.

3. Materials and Methods
3.1. PDI Construction

The PDI is developed through the following three steps: (1) select indicators that
represent the level of population development; (2) determine the weight of each indicator;
and (3) calculate the PDI.

3.1.1. Indicator Selection

The evaluation of the population development level usually includes a series of
complex index systems, including the total population index, the population structure
index, population quality index, population economic activity index and these indexes
objectively reflect the population development level [40]. Some important population
studies provide reference for the establishment of a population development index [46–50];
population size, population growth, population quality, population living standard and
population age structure are incorporated into the PDI in this study. The indicators that
make up the PDI are shown in Table 1.

Table 1. PDI indicator.

Index Sub-Indicator Data Interpretation Symbol

Size
Total regional population Total population TP

Demographic trends Natural population growth rate PG

Structure

Age structure
Population aged 0–14 P0–14

Population aged 15–64 P15–64
Population over 65 years old P65+

Urban–rural structure Population urbanization rate UR

Employment structure Employed population in the secondary industry ES
Employed population in the tertiary industry ET

Quality Education level
Higher education proportion EP

Adult illiteracy rate IR

Wealth
National economic output GDP per capita GP

Consumption ability Per capita consumption expenditure CE
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Population size: As a population factor that has a significant impact on carbon, it
is often included in the IPAT/STIRPAT model to investigate the environmental pressure.
In terms of population development, the more people there are, the more social wealth
can be created. Population growth promotes the development of the service industry
and industrial transformation [51], and also has a long-term positive impact on economic
development [52]. In turn, economic growth promotes population development [53].
Under the current three-child policy in China, population size can be regarded as a positive
indicator to promote population development. This study uses the total population and
population growth rate to measure the population size.

Population structure: in this study, population structure is considered by age struc-
ture, urban–rural structure and employment structure.

In terms of age structure, it reflects the structural health of the population. The
population aging trends will impose challenges for China’s sustainable development on the
supply and demand sides in the long term [54]. Governments around the world are also
urgently formulating policies to deal with the phenomenon of population aging [49,55].
Therefore, from the perspective of long-term population development, population aging is
considered as a negative indicator in the PDI establishment.

Urban–rural structure reflects the distribution and migration of population in the process
of urbanization. It is generally argued that the population distribution in urban areas is more
concentrated, and the population density is higher than that in rural areas. The higher the ur-
banization level, the stronger the regional development. The level of population urbanization
plays a very important role in promoting population progress and development [56], so the
urban–rural structure is considered as a positive indicator of the PDI.

Employment structure: It is generally believed that the greater the number of people
engaged in the secondary and tertiary industries, the higher the degree of development
of industrial and social services. In terms of China’s current stage of development, the
employment population in the secondary industry and tertiary industry will be considered
as positive indicators of the PDI because both industry and service industry contribute
significantly to economic and population development [57].

Population quality: population quality often represents the civilization construction
level of a country or region, and is usually measured by the educational level of the
population, which plays a very important role in promoting population development [58].

Population wealth: population wealth reflects the ability of the population to create
wealth. The higher the per capita wealth is, the higher the people’s living standard and the
higher the consumption level are. In the context of rapid economic development, the level
of population wealth has further promoted the shift of population development to high
quality [59].

3.1.2. Weight Determination and PDI Calculation

All of the indicators are standardized to make different variables comparable by using
the following formulas [60]:

y+ij =
(
xij − xijmin

)
/
(

xijmax − xijmin
)

(1)

y−ij =
(
xijmax − xij

)
/
(
xijmax − xijmin

)
(2)

where y+ij represents the positive indicator; y−ij represents the negative indicator; xij
represents the value of indicator j in province i; and xijmax and xijmin indicate the maximum
and minimum value of the indicator j, respectively. Then, the entropy weight calculation is
used to determine the importance of each indicator:

Firstly, to calculate the sample indicator weight:

pij = xij/ ∑n
i=1xij, (3)
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Secondly, to calculate the entropy of indicator j:

ej = −k/ ∑n
i=1 pij × lnpij, (4)

k = 1/ln n (5)

Thirdly, to calculate the utility value of each indicator:

dj = 1 − ej (6)

Finally, to calculate the indicator weight:

wj = dj/ ∑n
j=1dj, (7)

where pij represents the share of province i on indicator j; ej is the entropy of indicator j;
n is the number of the indicator; dj is the utility value of each indicator.

The linear weighted sum method is commonly used for evaluating the performance
of a system which consists of multiple dimensions of indicators. By using this method, the
performance value of the PDI in province i, can be calculated as follows:

PDIi = ∑n
j=1wj × yij, (8)

where wj is the PDI weight of indicator j.

3.2. Carbon Emission Estimation

More than 95% of carbon emissions come from energy consumption [61], according to
the IPCC National Greenhouse Gas Inventories and energy consumption [62]. The carbon
emissions is calculated by following formula:

C = ∑m
e=1Ee feke

44
12

, (9)

where C represents the emissions; m is the number of the energy type; Ee is the consumption
of fossil fuel e; fe indicates the standard coal conversion factor of fossil fuel e; ke is the carbon
emission factor for fossil fuel e [62,63]; and 44/12 is the molecular transition from carbon
dioxide to carbon.

3.3. Decoupling Elasticity Model

The Tapio model proposed a theoretical framework of decoupling when studying the
relationship between GDP, traffic volume and transport carbon emissions in the European
Union, which has become a commonly used model to explore the correlation between
social development and environmental impact [64]. The Tapio model described the GDP
decoupling elastic of carbon emissions in transportation industry as:

β = %∆C/%∆GDP (10)

The decoupling model is improved in this study by using the PDI instead of a single
index to reveal the decoupling features between population development and carbon
emissions. The decoupling elasticity, β, can be represented as follows:

β = EC/EPDI (11)

EC = ∆C/Cb = (Ct − Cb)/Cb (12)

EPDI = ∆PDI/PDIb = (PDIt − PDIb)/PDIb (13)

where ∆C and ∆PDI represent the change of carbon emissions and the PDI from base
year b to target year t, respectively; Ct and Cb denote carbon emissions in year t and year
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b, respectively; and PDIt and PDIb indicate the value of the PDI in year t and year b,
respectively.

In order not to overinterpret slight changes as significant, a ±20% variation in the
elasticity values around 1.0 is still regarded as coupling. Thus, coupling is defined as
elasticity values of 0.8–1.2, and decoupling and negative decoupling is defined outside
of this scope [64]. The decoupling can be divided into three degrees and eight states, as
shown in Table 2.

Table 2. Decoupling degrees.

Degree State Symbol ∆C ∆P β

Decoupling
Strong decoupling SD <0 >0 <0
Weak decoupling WD >0 >0 0 < t < 0.8

Recessive decoupling RD <0 <0 >1.2

Coupling Recessive coupling RC <0 <0 0.8 < t < 1.2
Expansive coupling EC >0 >0 0.8 < t < 1.2

Negative
decoupling

Strong negative decoupling SN >0 <0 <0
Weak negative decoupling WN <0 <0 0 < t < 0.8

Expansive negative decoupling EN >0 >0 >1.2

3.4. The Extended STIRPAT Model

The STIRPAT model is introduced to evaluate the nonlinear impact of population, the
economy and technological development on the environment [65,66]. It can be expressed
as follows:

I = aPb AcTde (14)

lnI = lna + blnP + clnA + dlnT + lne (15)

where I represents the environmental impact, which is carbon emission in this study.
P represents the PDI; A represents affluence per capita; T represents the technological level
and is measured by technology market turnover and number of patents; b, c and d reflect
the importance of P, A and T respectively; a and e are constants.

To identify the impact of population-related factors on carbon emissions, we disaggre-
gated population factors into the following: population size (total and trend), population
structure (age, urban–rural and employment structure), population quality (education
level) and population wealth (economy and consumption). The extended STIRPAT model
is expressed as follows:

lnI = lna + b1lnTP + b2lnPG + b3lnP0−14 + b4lnP15−64 + b5lnP65+ + b6lnUR + b7lnES + b8lnET
+b9lnEP + b10lnIR + b11lnGP + b12lnCE + dlnT + lne

(16)

where A is integrated into population wealth, other meanings are the same as the above.
In this study, time series data are used for the regression of 30 provinces to clarify the

driving mechanism of carbon emissions in each province.

3.5. Ridge Regression

The standard form of multiple linear regression model is usually expressed as:

Y = Xβ + ε, (17)

where Y is a (n × 1) matrix of dependent variables, X is a (n × p) matrix (rank p) of
independent variables, β is a (p × 1) vector of coefficients and ε denotes the normally
distributed random errors. The unbiased estimate of β is normally given by:

β̂ =
(

XTX
)−1

XTY, (18)
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Due to the limitation of the social and economic variables, there are always correlations
among the variables, that is, multicollinearity. When there is a multicollinearity between the
independent variables, the XTX matrix is ill conditioned, i.e., the value of its determinant∣∣XTX

∣∣ ≈ 0. The calculation of the XTX matrix is sensitive to slight variations in the data.
The addition or deletion of a variable or the slight change of a variable will have a great
impact on the results, leading to the instability of the regression results. To control the
general instability and inflation in estimating β, the ill-conditioned problem needs to be
transformed into a conformity problem by adding a regularization term to the loss function,
i.e., ridge regression [67]. The ridge regression model can obtain an acceptable biased
estimate with small mean square error in independent variables through a bias variance
tradeoff, which is one of the effective methods to deal with multicollinearity [68]. The
general expression of the ridge regression model is as follows:

β̂ =
(

XTX + kE
)−1

XTY, (19)

where E is unit matrix, k is the variable ridge regression coefficient in ridge traces and the
value of k varies from 0 to 1. The ridge regression estimates are computed with various
increasing values of k, starting from k = 0, until an optimum value of k is determined for
where all the regression coefficients appear to have stabilized.

4. Study Areas and Data Sources
4.1. Study Areas

China’s 30 provinces (Figure 1) are investigated (excluding Tibet, Hong Kong, Taiwan
and Macau where data are not available). These provinces have made great achievements
driven by reform and an opening-up policy. For example, per capita GDP rose from less
than CNY 10,000 in 2001 to more than CNY 60,000 in 2017, and the urbanization level has
also improved significantly. However, there are significant differences between provinces.
The economic strength and urbanization processes of the eastern provinces are higher than
those central and western provinces, and the population distribution is also quite different.
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Figure 1. Study areas.

The population density of the eastern provinces is much higher than that of the western
provinces. The development status of different provinces and regions leads to differences in
the spatial distribution of population development and carbon emissions. The decoupling
state of carbon emissions and population development in different provinces may also
vary greatly. In order to further clarify the decoupling state of each region and provide
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support for decision making, this study discusses the decoupling relationship between
carbon emissions and the PDI at the national and provincial scales.

4.2. Data Sources

The PDI component data (2001–2017) are obtained from the China Statistical Yearbook
and Population Census Bulletin. The energy consumption data (2001–2017) comes from
the China Energy Statistics Yearbook. The data of Chinese administrative boundaries are
obtained from the Resources and Environment Science and Data Center of the Chinese
Academy of Sciences. These data sources are listed in Table 3.

Table 3. Data sources.

Data Data Description Year Source

Population size Total population and growth trend 2001–2017 China Statistical Yearbook

Population structure Urban–rural structure, age, labor
force distribution 2001–2017

China Statistical Yearbook; The data
for 2010 are from the sixth National

Population Census Bulletin
Population quality Education level 2001–2017 China Statistical Yearbook

Personal wealth Affluence degree 2001–2017 China Statistical Yearbook
Energy consumption Fossil energy consumption 2001–2017 China Energy Statistical Yearbook

Boundaries Chinese provincial administrative
boundary 2015

Resources and Environment Science
and Data Center, Chinese Academy

of Sciences

5. Results and Discussion
5.1. PDI of the 30 Provinces in China

The PDI changes of 30 provinces from 2001 to 2017 are evaluated to reflect the charac-
teristics of population development. Among the 30 provinces, Guangdong has the highest
PDI score, as shown in Figure 2. As the province that contributes the most to China’s GDP,
its per capita wealth is higher than that of the other 29 provinces, and the population age
structure is getting younger. Beijing and Shanghai also have strong PDI competitiveness.
Shandong, Jiangsu, Zhejiang, Tianjin, Henan and Fujian also saw a significant increase
in the PDI between 2001 and 2017. These provinces have higher per capita wealth or
population size, resulting in a higher PDI than other provinces.

Jilin, Heilongjiang and Gansu are at the bottom of the PDI list. Although continuous
population urbanization is occurring in Jilin and Heilongjiang, the geographical location
and climate problems of these two provinces have led to a large population outflow.
In addition, the natural population growth rate is low, the population scale is on the
decline and the elderly population continues to grow, which is not conducive to the long-
term population and regional development. There is limited per capita wealth and an
aging population, which are common characteristics of these three provinces. For these
provinces, it is important to formulate relevant population policies to promote population
inflow, reduce the proportion of the aging population and give full play to the dividend of
population agglomeration so as to promote long-term population development.

The average PDI in the 30 provinces increases over time, while regional disparities
are also reflected in the PDI, similar to how Table 4 shows, which contained the statistical
information of the PDI. In 2001, Guangdong Province showed the optimal PDI of 0.38,
while Guizhou and Qinghai had the lowest PDI, which is only 0.20, lower than the national
average of 0.25. In 2017, the optimal PDI reached 0.67, while the lowest PDI was 0.28.
The individual gap between the optimal PDI and the worst gradually widens each year
in the sample period, indicating a huge development gap. Although the PDI in Hebei,
Shanxi, Inner Mongolia, Anhui, Jiangxi, Hubei, Hunan, Guangxi, Hainan, Chongqing,
Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang showed a
gradual upward trend, they still failed to reach the initial value of Guangdong, which
indicates that there is great potential for further improvements in these provinces.



Int. J. Environ. Res. Public Health 2021, 18, 11024 10 of 20

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 10 of 22 
 

 

5. Results and Discussion 

5.1. PDI of the 30 Provinces in China 

The PDI changes of 30 provinces from 2001 to 2017 are evaluated to reflect the char-

acteristics of population development. Among the 30 provinces, Guangdong has the high-

est PDI score, as shown in Figure 2. As the province that contributes the most to China’s 

GDP, its per capita wealth is higher than that of the other 29 provinces, and the population 

age structure is getting younger. Beijing and Shanghai also have strong PDI competitive-

ness. Shandong, Jiangsu, Zhejiang, Tianjin, Henan and Fujian also saw a significant in-

crease in the PDI between 2001 and 2017. These provinces have higher per capita wealth 

or population size, resulting in a higher PDI than other provinces. 

 

Figure 2. The PDI changes in 30 provinces from 2001 to 2017. 

Jilin, Heilongjiang and Gansu are at the bottom of the PDI list. Although continuous 

population urbanization is occurring in Jilin and Heilongjiang, the geographical location 

and climate problems of these two provinces have led to a large population outflow. In 

addition, the natural population growth rate is low, the population scale is on the decline 

and the elderly population continues to grow, which is not conducive to the long-term 

population and regional development. There is limited per capita wealth and an aging 

population, which are common characteristics of these three provinces. For these prov-

inces, it is important to formulate relevant population policies to promote population in-

flow, reduce the proportion of the aging population and give full play to the dividend of 

population agglomeration so as to promote long-term population development. 

The average PDI in the 30 provinces increases over time, while regional disparities 

are also reflected in the PDI, similar to how Table 4 shows, which contained the statistical 

information of the PDI. In 2001, Guangdong Province showed the optimal PDI of 0.38, 

while Guizhou and Qinghai had the lowest PDI, which is only 0.20, lower than the na-

tional average of 0.25. In 2017, the optimal PDI reached 0.67, while the lowest PDI was 

0.28. The individual gap between the optimal PDI and the worst gradually widens each 

year in the sample period, indicating a huge development gap. Although the PDI in Hebei, 

Shanxi, Inner Mongolia, Anhui, Jiangxi, Hubei, Hunan, Guangxi, Hainan, Chongqing, 

Figure 2. The PDI changes in 30 provinces from 2001 to 2017.

Table 4. The PDI Statistical information.

Year Maximum Minimum Max-Min Average

2001 0.38 0.20 0.18 0.25
2002 0.40 0.21 0.19 0.25
2003 0.42 0.21 0.21 0.26
2004 0.43 0.21 0.22 0.27
2005 0.45 0.22 0.23 0.29
2006 0.47 0.23 0.25 0.30
2007 0.49 0.24 0.25 0.31
2008 0.51 0.25 0.26 0.32
2009 0.52 0.26 0.26 0.32
2010 0.56 0.27 0.29 0.35
2011 0.57 0.27 0.29 0.36
2012 0.58 0.28 0.31 0.37
2013 0.59 0.29 0.31 0.38
2014 0.59 0.29 0.30 0.39
2015 0.61 0.28 0.33 0.40
2016 0.63 0.29 0.35 0.41
2017 0.67 0.28 0.38 0.43

Reviewing the population development of all of the provinces, we find that Guang-
dong’s population wealth and population structure, regardless of age structure or employ-
ment structure, are in the best state in China. Therefore, for most provinces, improving the
quality of population development should not only focus on accelerating the urbanization
of population, but also pay attention to the improvement of population wealth and em-
ployment. Meanwhile, resources should be coordinated at the national level. Instead of
widening the development gap gradually, provinces that develop first should lead those
that develop later, and finally achieve common development.

5.2. Decoupling between Carbon Emissions and PDI
5.2.1. Decoupling at the National Scale

The national decoupling between carbon emissions and the PDI during the study
period can be divided into four states: expansive negative decoupling (EN), expansive
coupling (EC), strong decoupling (SD) and weak decoupling (WD). Table 5 provides a
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complete decoupling relationship dynamic, showing that the interannual decoupling state
gradually changes from EN to the decoupling state at the end of the study period. In the
period from 2012 to 2015, each interannual decoupling both showed a SD state, while other
periods, except from 2016 to 2017, showed a coupling state, including EN and EC. EN and
EC reflects the close relationship between carbon emissions and the PDI, which indicates
that both carbon emissions and the PDI increased, and carbon emissions changed more
than the PDI in EN state. The decoupling state, including WD and SD, indicates that the
dependence of carbon emissions on PDI decreases. In particular, in the SD state, the PDI
continues to rise while carbon emissions are reducing, which is an ideal state.

Table 5. Decoupling trends at the national scale from 2001 to 2017.

Period ∆C ∆P Decoupling
Elasticity

Decoupling
Degrees

2001–2002 >0 >0 4.21 EN
2002–2003 >0 >0 3.72 EN
2003–2004 >0 >0 2.96 EN
2004–2005 >0 >0 2.60 EN
2005–2006 >0 >0 2.27 EN
2006–2007 >0 >0 1.53 EN
2007–2008 >0 >0 1.02 EC
2008–2009 >0 >0 0.99 EC
2009–2010 >0 >0 2.07 EN
2010–2011 >0 >0 1.38 EN
2011–2012 >0 >0 1.13 EC
2012–2013 <0 >0 −0.15 SD
2013–2014 <0 >0 −0.22 SD
2014–2015 <0 >0 −0.08 SD
2015–2016 >0 >0 1.14 EC
2016–2017 >0 >0 0.77 WD
2001–2005 >0 >0 2.94 EN
2006–2010 >0 >0 1.99 EN
2011–2015 >0 >0 1.19 EC
2016–2017 >0 >0 0.77 WD

In the early stage of the sample (2001–2007), economic globalization promoted China’s
rapid development, and the economic growth rate reached over 9%, which also exacer-
bates the contradiction between social development driven by energy consumption and
sustainable development. During this period, the carbon emissions growth rate is much
higher than that of the PDI; EN is the primary decoupling state.

In 2007–2008 and 2008–2009, there was EC, the economic situation was not optimistic
and the industrialization process slowed down due to the impact of the economic crisis.
Industries with high energy consumption and high emissions, such as construction, had
been largely shut down due to the decline in market purchasing power, which greatly
reduced carbon emissions. Although the population unemployment rate increased and the
growth rate of population wealth slowed down, from the perspective of multidimensional
population development, the impact of the economic crisis on the population development
is not obvious. As shown in Figure 2, the PDI of most provinces continued to grow during
this period.

In each period between 2009 and 2012, the EN or EC showed that the link between
carbon emissions and the PDI had strengthened after the economic crisis. In order to
promote economic development and safeguard people’s well-being, China adopted a series
of macro-economic regulation measures, including tax cuts and tax rebates, expanding
domestic demand, etc., which led to the growth of carbon emissions. China also became
the largest carbon emitter during this period [69]. In order to ease the pressure of carbon
emissions, China paid more attention to the harmony with nature in the following years
(2012–2017); SD was the main decoupling relationship during the period. However, it is
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important to note that EC also appeared during this period, which is a nondecoupling state.
Our results show that the growth rate of the PDI is greater than zero in both decoupling
years and nondecoupling years, but the change rate of carbon emissions in nondecoupling
years is larger, while the change rate of carbon emissions in decoupling years is small or
negative. In the long run, SD state may be difficult to maintain, which means that there is
no real decoupling between carbon emissions and the PDI. The same decoupling trend is
also reflected in the research of Shang and Luo [27]. Therefore, the key to decoupling is to
effectively control the change rate of carbon emissions, while evaluating the effectiveness
of the decoupling state requires examining the changes of carbon emissions and the PDI
over a period, for example, taking 5 years as an evaluation cycle.

Table 5 also shows the long-term decoupling relationship. The results show that
although the interannual decoupling relationship between 2011 and 2015 is dominated
by SD, the tension between carbon emissions and population development is not actually
alleviated from the five-year assessment period because EC is a long-term decoupling state.
This means that the growth rate of carbon emissions is still higher than the growth rate of
the PDI, and only shows a short and small decrease in some years, making the decoupling
state vulnerable to variable changes in the short term. The change of the decoupling state
undoubtedly shows that both active and passive emission reduction need a long-term
process, and decoupling can only have a discernible effect on the climate if it is consistent
over a number of years. The long-term change trend of the decoupling relationship from
EN to EC and then to WD means that carbon emissions are gradually decoupling. However,
WD also indicates that carbon emissions have not shown a downward trend, and there are
still many efforts to be made at the national level, such as developing clean energy and
improving population welfare, so as to achieve a stable strong decoupling state in some
period in the future.

To further promote the decoupling of carbon emissions from the PDI, and prevent the
transition from decoupling to coupling again, on the one hand, the national level should
continue to adhere to the green and sustainable development, gradually eliminate the
industries with high energy consumption and high emissions, and promote the transition
from the consumption structure based on fossil energy to the utilization of renewable
energy. On the other hand, the government should continue to create employment op-
portunities, improve the level of per capita education and the quality of the population,
formulate population policies, improve the aging phenomenon and promote high-quality
population development.

5.2.2. Decoupling at the Provincial Scale

The interannual decoupling state of each province is determined by calculating the de-
coupling coefficients of each province from 2001 to 2017. The evolution trend of decoupling
coefficient in most provinces is basically consistent with the national level. Meanwhile, the
decoupling coefficient across most provinces also shows a similar trend without consider-
ing the decoupling state. However, the provincial interannual decoupling state includes
not only the EN, EC, WD and SD state, but also the SN state. Ningxia, Qinghai and Gansu
are significantly different. These provinces showed more SN state, indicating that the
growth rate of carbon emissions is higher than that of the PDI, and there is unbalanced
development between the two. The main reason is that these provinces, located in western
China, are rich in fossil resources. In the context of the urgent need of local governments to
improve their development level and the Great Western Development Strategy of China,
the energy-driven development model will undoubtedly lead to a large amount of carbon
emissions. Although the PDI has also improved, it also pays a high environmental cost
(carbon emissions).

As mentioned above, a long-term state of decoupling might make more sense. The
long-term evolution of decoupling is shown in Figure 3. The research period is divided
into 2001–2005 (10th Five-Year Plan), 2006–2010 (11th Five-Year Plan), 2011–2015 (12th
Five-Year Plan) and 2016–2017 (13th Five-Year Plan). It can be clearly seen that EN is the
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main decoupling state during 2001–2005 and 2006–2010, while EC state appeared in a few
provinces and WD only appeared in Beijing and Shanghai. During the 12th Five-Year
Plan period (2011–2015), more and more provinces began to show EC and WD states,
and only Shanghai is in the SD state. The coexistence of EN, EC and WD is the main
decoupling feature in this period. Most of the central and western provinces are in the
EN state, indicating that carbon emissions and the PDI is still unbalanced, but the tension
between carbon emissions and the PDI has eased compared with the previous two periods.
Provinces in the EC state are mainly distributed in the central region, while most eastern
coastal provinces are in the WD state.
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In the 13th Five-Year Plan period (2016–2017), the number of provinces in the EN state
has further decreased, and some provinces, including Beijing, Shanghai and Chongqing,
appeared in the SD state, showing an ideal direction of decoupling evolution. However,
there are also some provinces that showed the opposite direction of evolution. For example,
in the 12th five-year period, Shandong and Henan are in the WD state, Yunnan is in the EC
state and from 2016 to 2017, the three provinces are in the EN state again. This may be due
to the lack of complete data for the 13th Five-Year Plan (2016–2020). As mentioned above,
the short-term decoupling relationship is susceptible to the effects of variable tiny changes.
Still, it is a reminder to managers that they need to continue to reduce carbon emissions as
they develop to prevent carbon emissions from rising again.

From the perspective of the decoupling evolution of each province, we found some
noteworthy phenomena. The decoupling status of some provinces, including Inner Mon-
golia, Gansu, Ningxia and Qinghai, did not changed during the four periods, which is
more reflected in EN. In terms of geographical location, these provinces are all located
in the central and western regions of China. Due to the population flow, especially some
young labor force to the eastern provinces, there are obvious differences in population
development between these provinces and eastern provinces of China. In addition to
geographical conditions, economic policies and other reasons, although the PDI of each
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province is on the rise, the development gap between regions is gradually widening, which
is consistent with the results of Section 5.1. Meanwhile, these provinces are key players
in China’s power grid supply. Due to the large population and high energy demand of
central and eastern provinces, coupled with the resource mismatch between provinces in
China, the stable supply of electricity requires the export of resource-rich provinces, such
as Inner Mongolia, Gansu, Qinghai and Ningxia [70].

The existing studies show that the power sector is one of the largest carbon emission
sectors in China [71]. If China’s power sector was considered as a country, it would be the
third largest carbon emitter in the world [72,73]. However, the embodied carbon emissions
associated with power transfer are not considered in our study. Large-scale electricity
production generates carbon emissions locally, so decoupling remains a challenge for
these provinces. The decoupling changes of Henan and Shandong are also worth paying
attention to because their decoupling states have undergone a transition from coupling to
decoupling and then to coupling. To further promote the decoupling of carbon emissions,
two major efforts may be possible: on the one hand, optimize the energy production
structure and gradually replace the current coal-dominated secondary power generation
structure; on the other hand, formulate policies to attract talent and improve the population
welfare to promote the improvement of the PDI.

5.3. Analysis of Population Effect on Carbon Emissions

A ridge regression is used to eliminate the influence of multicollinearity among the
variables on the regression results. Supported by time series data, the extended STIRPAT
model results of 30 provinces are obtained, as shown in Table 6. For each of the 30 provinces,
the regression equation is significant (F statistic sig < 0.05), and the fitting degree (R2 ≥ 0.9)
is good. However, some of the variables in some provinces do not pass the significance test
of the ridge regression with 90 percentile confidence intervals, for example, PG in Tianjin,
P65+ in Hebei and other specific significance results are also presented in Table 6.

The STIRPAT model is utilized to explore the impact of different population factors
on carbon emissions, and on this basis to explore policy recommendations to promote
decoupling. From our empirical results, we identify several meaningful phenomena.

First, compared with other factors, population growth has no significant impact on
carbon emissions in most provinces and the total population has an impact on carbon
emissions in all of the provinces. As one of the main driving factors of carbon emissions,
the total population promotes the growth of carbon emissions in most provinces, while
the inhibiting effect is only in a few provinces (Liaoning, Jilin, Heilongjiang, Anhui, Hubei
and Chongqing). For these provinces that have the effect of population inhibiting carbon
emissions, attractive talent introduction policies can be formulated to promote population
transfer, further play the emission reduction effect of population and promote decoupling
between carbon emissions and the PDI. In addition, according to our results, controlling
rapid population growth is obviously beneficial to carbon emission reduction in most
provinces, but it should be noted that it may accelerate the emergence of other social
problems, such as the phenomenon of population aging. The results show that the aging
phenomenon in most provinces promoted the growth of carbon emissions, which means
the carbon emissions are not mitigated and is not conducive to population development.
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Table 6. Extended STIRPAT model results for 30 Chinese provinces.

Province lnTP lnPG lnP0−14 lnP15−64 lnP65+ lnUR lnES lnET lnEP lnIR lnGP lnCE lnT Cons R2

Beijing 0.589 ** 0.004 ** −0.233 *** 0.682 ** −0.575 ** 0.62 *** 0.527 *** 0.419 ** 0.069 * 0.001 −0.156 *** 1.548 ** −0.934 ** 1.415 *** 0.95
Tianjin 1.033 ** 0.002 −0.13 * 0.837 * −0.254 * 1.458 ** 0.779 *** −0.35 * 0.106 ** 0.003 * 0.215 ** 0.746 *** −0.378 ** 2.566 *** 0.93
Hebei 0.891 ** 0.006 * −0.018 ** 0.445 * −0.046 * 0.734 *** 0.433 ** 0.217 *** 0.405 ** 0.005 * 0.768 ** 0.371 *** −0.199 *** −1.054 *** 0.94
Shanxi 0.465 *** −0.003 ** −0.007 * 0.624 ** −0.087 *** 0.695 *** 0.352 *** 0.423 *** 0.618 ** 0.011 0.836 *** 0.262 ** −0.107 ** 3.45 *** 0.97
Inner

Mongolia 0.562 *** 0.016 0.187 * 1.396 *** 0.024 ** 0.339 *** −0.195 *** 0.28 ** 0.525 * 0.021 0.787 ** −0.543 *** 0.152 *** −2.645 *** 0.96

Liaoning −0.526 ** −0.158 ** −0.122 * −0.263 ** 0.394 *** 0.637 ** −0.119 *** 0.135 *** 0.176 * 0.032 * 0.387 *** 0.214 * 0.103 * 3.699 *** 0.97
Jilin −0.874 *** −0.079 * −0.138 ** −0.462 * 0.191 ** 0.89 *** −0.273 *** 0.105 * 0.254 ** 0.177 0.344 *** −0.176 *** 0.462 *** 2.67*** 0.92

Heilongjiang −0.479 ** −0.165 * −0.241 −0.015 *** 0.452 ** 0.746 *** −0.172 *** 0.078 0.125 ** 0.084 * 0.92 *** 0.256 *** 0.201 ** 0.983 *** 0.94
Shanghai 0.342 * 0.31 ** 0.385 *** 0.874 *** −0.653 * 0.839 ** 0.548 *** −0.461 ** 0.11 ** 0.021 0.104 *** 0.356 *** −1.529 *** −3.607 *** 0.91
Jiangsu 0.835 ** 0.024 * −0.426 ** 0.262 *** −0.115 *** 0.56 *** 0.137 *** 0.268 *** −0.417 0.043 * −0.181 *** −0.134 ** −0.296 *** −0.425 ** 0.96

Zhejiang 0.943 ** 0.16 * −0.227 ** 0.396 ** −0.241 *** 0.567 *** 0.253 *** −0.275 *** 0.272 ** 0.05 0.174 *** 0.233 *** −0.652 ** −0.782 *** 0.98
Anhui −0.684 0.037 *** −0.196 * −0.125 ** 0.087 * 0.239 *** 0.192 *** −0.247 * 0.015 * 0.027 * 0.865 ** 0.223 ** 0.314 *** −1.654 *** 0.98
Fujian 0.572 *** 0.186 * 0.359 0.06 *** −0.254 ** 0.304 ** 0.131 *** 0.107 *** 0.225 *** 0.011 0.148 *** 0.435 *** −0.552 *** −2.645 *** 0.96
Jiangxi 0.631 ** 0.104 * −0.165 ** 0.047 ** −0.129 ** 0.402 *** 0.113 *** 0.147 *** 0.093 ** 0.032 * 0.106 *** 0.264 * −0.118 * −3.135 *** 0.95

Shandong 1.014*** 0.037 ** 0.562 ** 0.106 ** 0.191 *** −0.148 *** 0.105 ** 0.174 *** 0.229 * −0.057 * 0.133 *** −0.088 *** −0.325 *** −0.647 *** 0.99
Henan 0.108 ** −0.042 −0.117 *** 0.625 *** −0.169 * 0.43 *** 0.241 *** 0.139 ** 0.238 *** 0.074 * 0.201 ** 0.196 ** −0.435 ** −0.342 *** 0.98
Hubei −0.126 ** 0.103 ** −0.182 * −0.195 ** −0.084 * 0.763 *** 0.157 ** 0.099 *** 0.335 ** 0.025 ** −0.142 *** 0.254 *** −0.373 *** −2.051 ** 0.96
Hunan 0.675 * 0.297 0.255 −0.356 ** 0.217 ** 0.193 *** 0.262 *** 0.108 *** 0.412 * 0.164 ** −0.057 ** 0.106 * −0.14 * −1.956 *** 0.93

Guangdong 0.264 * 0.058 −0.173 ** 0.426 *** −0.113 *** 0.653 ** 0.187 *** −0.08 ** 0.044 ** 0.062 * −0.158 *** −0.043 *** −0.384 *** 0.25 *** 0.94
Guangxi 0.392 ** 0.006 * 0.075 0.101 *** 0.024 * 0.586 *** 0.195 *** 0.152 *** 0.325 * −0.064 * 0.156 * 0.266 0.152 * −3.615 *** 0.91
Hainan 0.345 ** −0.197 −0.161 * 0.874 ** −0.105 *** 0.406 *** 0.053 *** 0.076 *** 0.264 *** −0.011 0.087 *** 0.092 *** −0.093 *** 0.413 *** 0.95

Chongqing −0.27 ** 0.155 −0.126 ** 0.154 *** 0.219 *** 0.513 * 0.268 *** 0.027 ** 0.112 ** 0.174 −0.215 * −0.139 *** −0.248 ** 1.158 *** 0.95
Sichuan 0.265 *** −0.046 * −0.142 * 0.349 *** 0.134 ** 0.409 *** 0.115 * 0.047 *** 0.025 *** 0.031 0.157 *** 0.136 *** −0.154 *** −0.974 *** 0.96
Guizhou 0.437 ** −0.169 *** −0.159 * 0.264 ** 0.101 *** 0.223 *** 0.295 *** 0.154 ** 0.132** 0.227** 0.076 *** 0.084 *** −0.106 *** −1.482 *** 0.98
Yunnan 0.168 * −0.049 −0.127 0.351 * 0.145 * 0.413 *** 0.126 ** 0.173 *** −0.009 *** 0.242 * 0.175 *** 0.153 *** −0.215 *** −0.186 *** 0.93
Shaanxi 0.582 *** 0.036 ** −0.103 ** 0.517 ** 0.089 ** 0.494 ** 0.164 *** 0.055 0.081*** 0.107 0.187 ** 0.243 *** −0.254 * −2.413 ** 0.98
Gansu 0.411 ** −0.15 * −0.187 *** 0.234 ** 0.073 * 0.513 *** 0.195*** 0.154 * 0.102 ** 0.076 * 0.218 *** 0.106 * −0.182 *** −1.181 *** 0.94

Qinghai 0.365 0.064 ** −0.077 * 0.316 *** 0.122 ** 0.435 *** 0.207** 0.085 *** 0.039 * 0.106 0.159 ** 0.193 ** −0.25 ** −1.647 *** 0.91
Ningxia 0.284 ** −0.091 * −0.111 *** 0.223 ** 0.067 ** 0.369 ** 0.098** 0.027 *** 0.115 *** 0.17 ** 0.151 *** 0.185 *** 0.086*** −3.812 ** 0.95
Xinjiang 0.162 ** 0.054 * 0.138 ** −0.435 *** 0.1 0.62 *** 0.195*** 0.07 * 0.184 ** 0.139 ** 0.159 *** 0.187 * −0.164 ** 1.643 *** 0.97

Note: ***, ** and * represents significant at 1%, 5% and 10% levels, respectively.
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Second, the labor-oriented age structure contributes to the growth of carbon emissions,
and the aging population is negatively correlated with carbon emissions in provinces with
a higher PDI, while positively correlated with carbon emissions in provinces with a lower
PDI. This is consistent with the results of Zhang and Tan [40]. Even after retirement, as the
older individuals continue to look for other jobs, the swelling labor force led to the growth
of carbon emissions. In addition, they are less willing to pay for environmental protection
because the costs are immediate, but they will not benefit from a high-quality environment
in the future. It may be helpful to promote carbon decoupling by build more green leisure
places for the elderly to ease the labor glut.

Third, the obvious improvement of the urban–rural structure means that economic
development is effective, and the population is richer and has a stronger purchasing power.
On the one hand, the improvement of the living standard lead to more direct and indirect
carbon emissions, including more direct energy demand and fuller range purchases of
home appliances, as well as more entertainment and leisure spending.

On the other hand, a higher industry and technology level promotes the consumption
of more commodities and stronger purchasing power, and demand further promotes the
development of the industrial and technological level. Many are choosing to shift from
agriculture to higher-paying secondary and tertiary industries. The changes in employment
structure also have an impact on carbon emissions, and the employment in both secondary
and tertiary industries has contributed to the growth of carbon emissions during the current
development period in almost all of the provinces. This means that the development level
of China’s tertiary industry still needs to be improved because, theoretically, the more
people engaged in the tertiary industry, the more developed, cleaner and more efficient the
tertiary industry will be, and the lower the carbon emissions will be.

Therefore, in order to promote the decoupling of carbon emissions from the PDI, it is
necessary to establish low-carbon supporting industries based on the characteristics and
needs of the provinces. For example, for those provinces that are in the SN decoupling
state, most of which are in central and western China, they can make use of their location
and resource advantages to vigorously develop wind power, natural gas, new energy and
other industries to shift the way of people’s life towards reliance on clean energy. This is
not only conducive to promoting the decoupling of carbon emissions but is also conducive
to optimizing the employment structure. While promoting China to achieve the carbon
peak and carbon neutral goals, it will also raise the level of population development.

At last, population quality contributes to carbon emissions, although it is not signifi-
cant in some provinces. Studies have shown that education is positively correlated with
carbon emissions [74,75]. In China, improving population quality can promote economic
prosperity, which, in turn, contributes to more carbon emissions. High-quality people also
tend to have the ability to do more consumption and other behaviors that contribute to
carbon emissions [76–78]. Environmental protection, therefore, should be integrated into
the existing teaching system as a classroom teaching content. The government should
guide people to adopt a green and low-carbon consumption pattern, such as introducing
free buses to replace private cars, so as to promote the change of population’s consump-
tion concept and promote carbon decoupling. This is not only for the provinces in SN
decoupling state, but also for other provinces in China.

6. Conclusions

As working towards sustainable population development is an important part of
carbon mitigation efforts, this study conducts a decoupling relationship analysis between
carbon emissions and the PDI and investigates the influential mechanism between them.
The following objectives are achieved in this study: (1) an integral population-related
indicator, the PDI, is constructed to reflect the population development features, including
population size, age structure, urban–rural structure, employment structure, population
quality and personal wealth; (2) the decoupling model is established to investigate the
decoupling relationship between carbon emissions and the PDI; and (3) the impact of
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population factors on carbon emissions are investigated and some suggestions are put
forward for promoting carbon decoupling. The main findings and policy implications are
as follows:

There is a significant increase in the PDI in all of the provinces, however, the inter-
provincial gap has widened in terms of population development. In order to narrow
the gap, the local governments should pay attention to the multidimensional population
development process, and the central government should the coordinate resources and
talent to favor China’s western provinces.

The decoupling relationship between carbon emissions and the PDI at the national
level has experienced a transition from EN to EC, and then to the decoupling state, showing
an ideal evolution process. The decoupling degree at the provincial level has also strength-
ened from 2001 to 2017, but some provinces are still in the EN state. These provinces
can promote the decoupling of carbon emission from the PDI by developing clean energy
supporting industries and increasing subsidies for clean energy markets.

The influence of population factors on carbon emissions is different in different
provinces, but the total population, population wealth, population urbanization, labor
force population and elderly population in most provinces are almost always positively
correlated with carbon emissions. To promote the decoupling of carbon emissions from
the PDI, provinces should develop low-carbon-supporting industries according to their
own characteristics.

Although our research is focused on China, given that it is the world’s largest carbon
emitter and most populous country, this study may help to prompt managers to focus
on sustainable population development, not just high-quality economic development,
as China shifts to high-quality development. Meanwhile, these implications may also
promote some studies on population decarbonization in other countries of the world, thus
promoting sustainable human development at the international level. In addition, due
to the complexity of the influencing factors of carbon emissions, decoupling research can
be further extended to other factors in the future, so as to promote the development of
overall decoupling.

Still, this study also has limitations: On the one hand, in the construction process
of the PDI, this study only focused on several major aspects of the current population,
which can represent the development degree of population to some extent, but it is not
comprehensive from the perspective of all-round evaluation. On the other hand, the carbon
emission accounting in this study is based on the end-energy consumption of each province.
Given the large-scale electricity trade at the provincial level in China, this will lead to a
large amount of embodied carbon transfer, which is not considered in our study. In future
studies, we will explore more comprehensive indicators of population development and
explore the possible impact of embodied carbon transfer on decoupling.
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