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Abstract: Oncometabolites are known to drive metabolic adaptations in oral cancer. Several on-
cometabolites are known to be shared between cancer cells and non-cancer cells including microbiotas
to modulate the tumor microenvironment. Among potential oncometabolites, succinylaminoimi-
dazolecarboxamide ribose5′-phosphate (SAICAR) supports the growth and invasiveness of cancer
cells by pyruvate kinase M2 (PKM2) enzyme in a glucose starved tumor microenvironment. There is
a significant gap that shows the detection of SAICAR in biological samples including nails of oral
cancer patients. Metabolite identification of SAICAR was investigated in the nails of oral cancer
patients using novel vertical tube gel electrophoresis (VTGE) and LC-HRMS. Further molecular
docking and molecular dynamics simulations (MDS) were employed to determine the nature of
molecular interactions of SAICAR (CHEBI ID:18319) with PKM2 (PDB ID: 4G1N). Molecular docking
of SAICAR (CHEBI ID:18319) was performed against pyruvate kinase M2 (PDB ID: 4G1N). Data
suggest the presence of oncometabolite SAICAR in nails of oral cancer. Molecular docking of SAICAR
with PKM2 showed appreciable binding affinity (−8.0 kcal/mol) with residues including ASP407,
THR405, GLU410, ARG443, GLY321, ARG436, HIS439, LYS266, and TYR466. Furthermore, MDS
confirmed the specific binding of SAICAR within the activator site of PKM2 and the stability of
SAICAR and PKM2 molecular interactions. In conclusion, SAICAR is a promising oncometabolite
biomarker present in the nails of oral cancer patients. A significant activation potential of SAICAR
exists with the PKM2 enzyme.

Keywords: oral cancer; metabolite biomarkers; SAICAR; pyruvate kinase M2; in silico studies

1. Introduction

Tumor heterogeneity is contributed by various components including cellular and non-
cellular components such as oncometabolite [1,2]. Mutual exchanges of various metabolites
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are an important feature among cancer cells and non-cancer cells including immune cells,
stromal cells, and microbiotas in the niche of the oral tumor microenvironment (3–4). Well-
established evidence on metabolic heterogeneity is a contributing factor in various oral
tumor hallmarks including invasiveness, metastasis, and drug resistance [1–5].

The importance of oncometabolite in various types of cancers, including oral cancer,
is widely appreciated in the basic understanding of metabolic heterogeneity and thus is
envisaged as a potential source of biomarkers [5–7]. Recently, novel molecular approaches
were reported on the profiling of oncometabolites in biological samples of oral cancer and
precancerous patients [7–9].

A key oncoprotein pyruvate kinase M (PKM) has a vital role in the metabolic adapta-
tions of cancer cells. In the mammalian system, PKM has four types of isomers including
protein kinase M PKM2. PKM2 is reported as a catalyst that converts phosphoenolpyruvate
into pyruvate along with ATP and is associated with high expression in cancer cells [10–13].

In cancer cells, PKM2 works as a dimer to produce pyruvate. Several studies have
revealed that oncometabolites namely succinylaminoimidazolecarboxamide ribose-5′-
phosphate (SAICAR), fructose-1,6-P2, and serine can lead to the formation of tetramer
from a dimer of PKM2 [10–15]. SAICAR, an intermediate product of the de novo purine
nucleotide synthesis pathway, acts as an oncometabolite that supports the growth of cancer
cells in a nutrient-limited medium [15–20].

Altered metabolism and survival under stressed conditions are some of the hallmarks
of cancer. During metabolic reprogramming, cancer cells and cancer supporting stroma
including microbiome establish a source and link partnership for the exchange of key
oncometabolites including SAICAR, for growth and proliferation [21–29]. SAICAR is
known as an important intermediate metabolite that is catalyzed by SAICAR synthetase in
both cancer cells and the microbiome [30–33].

Based on the existing knowledge, there is a significant gap in the detection of SAICAR
in biological samples including nails of oral cancer patients. Furthermore, molecular
docking and molecular dynamics (MD) simulation data on SAICAR interactions with
PKM2 are needed for better understanding and future mimetic of SAICAR as an anticancer
drug. Hence, we report on the detection of SAICAR in the nail of oral cancer patients
by using our novel and validated vertical tube gel electrophoresis (VTGE) methodology
and molecular docking and MD simulations to predict the molecular interactions between
SAICAR and PKM2.

2. Materials and Methods
2.1. Study Population

OSCC (n = 5) and healthy controls (n = 6) were recruited at Dr. D. Y. Patil Dental
College and Hospital, Pune, India. The participating subjects in both OSCC and healthy
subjects were in the age group of 30–60 years. Before the commencement of this study,
Institutional Ethics Committee approval was obtained (Ref. No. DYPV/EC I 14{2019 Date:
15 March 2019). In this study, participants were detailed on the purpose of the study, and
informed consent was collected.

2.2. VTGE Assisted Purification of Nail Metabolites

A novel vertical tube gel electrophoresis (VTGE) system was used to detect SAICAR
in the nail metabolite lysate of oral cancer patients (Figure S1). A total of 80 mg of fingernail
clippings of OSCC patients were dissolved in 800 µL of nail lysis buffer (5M Urea, 2.6 M
thiourea, Tris-HCl (20 mM, pH-8.5) and beta-mercaptoethanol). Further, nail lysates were
purified with the help of the VTGE metabolite purification system [34,35]. Purified nail
metabolites of OSCC patients were detected by using LC-HRMS. During LC, the RPC18
column (Zorbax, 2.1 × 50 mm, 1.8 µm) was employed. Then metabolites were submitted
to MS Q-TOF Quadrupole time-of-flight mass spectrometry (Q-TOF-MS) with positive
electrospray ionization (ESI) M-H mode.
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2.3. Molecular Docking

SAICAR was detected as a potential oncometabolite in the nails of OSCC patients,
so we have proceeded to in silico studies on SAICAR. To perform molecular docking,
potential oncometabolite SAICAR (CHEBI ID:18319) was retrieved as a ligand from the
ChEBI database in SDF format. Then OpenBabel software was employed for the conver-
sion of ligands in SDF format into PDB format. Energy minimization of ligands before
performing molecular docking is an important step to obtain stable conformation of the
ligand. Avogadro software was used for energy minimization of the ligand by selecting
the steepest descent method and MMFF94s force field [36]. Pyruvate kinase M2 (PDB ID:
4G1N) was considered as the target receptor protein. It was downloaded in PDB format
from the Protein Data Bank (PDB). To free all the binding pockets on the receptor, bound
ligands were removed by deleting heat atoms from the PDB file. Then the protein PDB file
was opened in AutoDock Tool 4.2. To perform the steps of protein preparation, the steps
consist of the removal of water molecules, bond correction, assigning AD4 type atoms,
the addition of polar hydrogens, and Kollman charges [37] to the receptor. AutoDock
Vina Software was used for molecular docking of SAICAR oncometabolite with PKM2
protein [7].

AutoDock Vina has inbuilt automatic grid maps. First, blind docking was performed
to confirm the active binding sites of the ligand. Blind docking includes the covering of the
whole receptor protein with a grid box of appropriate size. The docking includes organized
conformational expansion of the ligand and further interaction of oncometabolite to the
active site residues of the receptor occurs. Visualization of the binding position of SAICAR
into the binding pockets of the PKM2 was performed using a discovery studio visualizer.

2.4. Molecular Dynamics (MD) Simulations

Desmond software was used for 10ns molecular dynamics (MD) simulation of the
oncometabolite SAICAR—PKM2 complex to confirm the binding stability and strength of
the complex (39). This software comes with the features of adding pressure, temperature,
volume system, and many other functions to complete the protein–ligand binding. Protein–
Ligand complex was immersed in a water-filled orthorhombic box of 10 Å spacing (40). The
SAICAR–PKM2 complex system is solvated by 21,066 water molecules using an extended
three-point water model (TIP3P) with periodic boundary conditions. These studies were
performed with a run of 10ns and temperature 300 K, considering certain parameters
such as integrator as MD. The conformational changes upon binding of SAICAR with
PKM2 were recorded with the help of 1000 trajectories frames generated during 10ns
MD simulation. The root mean square deviation (RMSD) was calculated to confirm the
deviation in the conformation of ligand and protein.

2.5. vNN-ADMET Toxicity Prediction

The canonical smiles of selected oncometabolite SAICAR were downloaded from the
PubChem database. Further, these chemical structures were tested in vNN-ADMET web
servers (41) to predict the substrate specificity of P-gp, mutagenicity (AMES mutagenesis),
and cytotoxicity.

3. Results
3.1. Identification of Oncometabolite from Nails of Oral Cancer Patients

Previous findings on oral cancer and precancerous lesions, the contribution of on-
cometabolite including SAICAR is appreciated [23–25,28]. However, preclinical, clinical,
and molecular interaction attributes of SAICAR in the case of oral cancer are highly limited.
Additionally, the importance of SAICAR has relevance as a biomarker and a source of
future anticancer drugs as metabolic mimetics that can block the pro-cancer enzymes. In
line with existing views, the authors report on a novel approach to the detection of SAICAR
in the nails of oral cancer patients with the assistance of a novel and in-house vertical tube
gel electrophoresis (VTGE) tool [26,29] (27).
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Here, elutes of nail metabolites prepared by VTGE were identified by using LC-
HRMS in a positive ESI mode. By the analysis of the LC-HRMS profile, SAICAR is
detected as an oncometabolite in the nails of oral cancer patients compared to the healthy
control. SAICAR showed distinctive mass ion spectra with the chemical formula (C13
H19 N4 O12 P), m/z (436.0626), and mass (454.0726) in a positive ESI mode (Figure 1) (see
Appendix A). This is the first study that showed the presence of SAICAR in the nail of oral
cancer patients. This observation prompted the investigation of the biological relevance
of SAICAR in cancer metabolic adaptations by using molecular docking and molecular
dynamics (MD) simulations.
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Figure 1. An oncometabolite SAICAR is detected in nails of oral cancer patients. A positive ESI extracted ion chromatogram
(EIC) of SAICAR was detected during LC-HRMS of nail lysates purified with the help of a novel VTGE tool.

3.2. Molecular Docking

It is understood that SAICAR binds to the dimeric form of PKM2 and converts it into
the trimetric form [15,16]. The progression of the tumor is associated with the activation
of inactive PKM2 by SAICAR and other oncometabolite [17]. There is a lack of molecular
interaction studies between SAICAR to PKM2 that leads to the activation of this enzyme.

Here, the authors have performed molecular docking to understand the binding
pattern of SAICAR upon PKM2.

Molecular docking of SAICAR with PKM2 (PDB ID: 4G1N) predicted appreciable
binding affinity (−8.0 kcal/mol) (Figure 2A). Upon the detailed visualization of interactive
amino residues, SAICAR binds through 13 polar bonds to the binding residues including
ASP407, THR405, GLU410, ARG443, GLY321, ARG436, HIS439, LYS266, and TYR466 within
the active pocket of PKM2 (Figure 2B–D).

3.3. Molecular Dynamics (MD) Simulations

MD simulations were performed for the duration of 10ns to examine the stability
of the ligand–protein complex. The root mean square deviation (RMSD) of ligand and
protein was calculated during the 10ns of the simulation period. RMSD was aimed to
measure the average change in the displacement of C-α atoms for 1000 frames concerning
a reference frame (initial docked conformation). The RMSD plot of PKM2 protein indicates
that displacement of protein is up to 2.5 Å, which is acceptable within range (1–3 Å) for
the stability of protein throughout the simulation period. The RMSD plot of the SAICAR–
PKM2 illustrates that initial displacement in the conformation of the complex up to 4ns,
afterward it maintains the equilibration state (Figure 3).

The left axis depicts the RMSD plot for the PKM2 enzyme regarding changes in
structural conformation during 10ns simulation time. The changes in the protein RMSD
value are observed in the range of 1–3 Å. The right-Y axis denotes the RMSD value of
bound SAICAR (CHEBI ID:18319) to PKM2 and this value is not significantly larger than
the RMSD value of the PKM2 enzyme (PDB ID: 4G1N). Thus, the RMSD plot describes the
stable ligand–protein complex.
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Figure 2. An oncometabolite SAICAR (CHEBI ID: 18319) shows strong molecular binding with
pyruvate kinase M2 (PKM2) enzyme (PDB ID: 4G1N). Molecular docking and interaction of SAICAR
with PKM2 were visualized with the help of Discovery Studio Visualizer. (A) Molecular docking
affinity estimated by AutoDock Vina. (B) Three-dimensional view of interaction between SAICAR
and PKM2 with binding residues, bond distances, and types of bonds. (C) The docked molecular
structure between SAICAR and PKM2 is visualized in a 3D image depicting H-bond interactions
(acceptor in green and donor in pink color) (D) Two-dimensional image of docked molecular structure
between SAICAR and PKM2 derived from Discovery Studio Visualizer.
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Figure 3. An oncometabolite SAICAR displays stable complex with PKM2. PKM2–SAICAR root
mean square deviation (RMSD) plot for 10ns of time frame showing the stability of the complex
between SAICAR depicts strong and specific binding to PKM2.

MD simulation study also comprises the graphical presentation of protein–ligand
contacts, categorized by the type of bonds. It explains the availability of interaction between
ligand and protein throughout the simulation. This graph shows that SER406 and ASP407
have hydrogen bonds for 60% to 90% of simulation time (Figure 4A). Another graph for
protein–ligand interaction depicts the interaction of each residue with ligand in each time
frame of the simulation. There is a darker shade of orange in the graph, which describes
that some residues have more than one specific contact with the ligand. Simulation data
suggested that ASP407, GLU285, SER 406, ASP407, and GLU410 have more than one
bond with the ligand. MD simulations also provide the schematic diagram of detailed
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ligand interaction with residues of the protein, it shows the interaction, which generates for
more than 30% of the simulation time of the selected 0.00 to 10.00 ns trajectory (Figure 4B).
Amino acid residues such as ASP407, THR405, SER406, and ARG443 were shown to interact
with ligands in a schematic diagram with the nature of the residues in different colors.
Altogether, data collected from molecular docking and MD simulations suggested strong
evidence of SAICAR–PKM2 interactions.
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Figure 4. SAICAR shows specific contacts within the activation site of PKM2. (A) PKM2 and
SAICAR interaction plot on the interaction between amino acid residues and ligand remained during
10 ns simulation. On the Y-axis, the interaction fraction shows the time of established interaction
between key amino acid and ligand through different types of bonds such as hydrogen bonds,
hydrophobic, ionic, and water bridges. (B) Schematic diagram on the interaction of the ligand with
amino acid residues, which has remained for more than 30% of interaction time of the simulation.
Here, various color combinations are used to represent the extent and nature of ligands to enzyme
atomic interactions including ionic, hydrophobic, polar, water, and solvent exposure.

3.4. vNN-ADMET Toxicity Prediction

The relevance of SAICAR produced within the tumor microenvironment by cancer
cells and cancer supporting cells including the microbiome is predicted in the perspective of
the extent of the toxicity and suitable substrate of drug transporters. vNN-ADMET hinted
that even if SAICAR is produced in large quantities within the tumor microenvironment,
no cellular toxicity and adverse effects are predicted (Figure 5). Interestingly, SAICAR
appears to be a good substrate of P-gp drug transporter.
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4. Discussion

PKM2 is described as one of the limiting enzymes in glycolysis, which induces the
formation of pyruvate and ATP from phosphoenolpyruvate (PEP) and ADP in proliferating
cancer cells [27,30]. PKM2 is present in the dimeric form with a higher Km value for the
phosphoenolpyruvate (PEP) substrate, accordingly the dimeric form of PKM2 is in an
inactive state at a normal physiological state [31,32].

There are reports that SAICAR concentration in cancer cells increases gradually during
the starvation of glucose and eventually stimulates PKM2 for cancer progression [15,16].
PKM2 expression promotes the uptake of glucose upon inhibition of oxygen and expres-
sion of low-active PKM2 dimer brings the accumulation of metabolites such as serine,
phosphoenolpyruvate (PEP), and glucose-6-phosphate [33,34]. Serine binds to PKM2 and
activates it by maximizing the use of glucose and in glucose-deprived conditions switches
to SAICAR for activation of dimeric PKM2 independent of FBP [7,35,36]. Furthermore, the
clinical relevance of the PKM2 enzyme is linked with oral cancer and supports the growth
and proliferation during abnormal glucose metabolism [1,38,39].

Besides existing views, there is a complete gap in the clinical relevance of SAICAR as
an oncometabolite in OSCC. In the present work, the detection of SAICAR in the nails of
oral cancer patients is attributed to a novel VTGE assisted approach that helped in a clear
detection of SAICAR. On the other hand, SAICAR is not detectable in healthy control.

SAICAR is detected as an oncometabolite and there is evidence of the overexpression
of the PKM2 enzyme in oral cancer. Therefore, we attempted to reveal the molecular
interaction of SAICAR with the PKM2 enzyme by using molecular docking and MDS. As
well as the strong binding affinity of SAICAR, interactive amino acid residues including
ASP407, THR405, GLU410, ARG443, GLY321, ARG436, HIS439, LYS266, and TYR466 of
PKM2 the presence of a good number of 13 polar bonds. Apart from molecular docking
data, the MD simulation study of the SAICAR–PKM2 complex confirmed the key amino
acid residues ASP407, THR405, SER406, and ARG443. In literature, THR405, SER406, and
ASP407 residues are spanning within the key pocket of allosteric activator sites in PKM2
enzyme for activator oncometabolites such as F16BP and serine [33,40]. Therefore, present
molecular interaction studies provide additional information on the activation binding
sites of SAICAR upon PKM2 and support the existing in vitro and in vivo evidence on
SAICAR as an activator of PKM2.

Sharing of Saicar between Oral Cancer Cell and Microbiome

Recently, the role of SAICAR was highlighted in the activation of PKM2 that promotes
the growth and proliferation of cancer cells including oral cancer cells. (16) However, the
source of SAICAR within the tumor microenvironment is cancer cells and the microbiome
in the niche of the tumor. Interestingly, the generation of SAICAR with the help of SAICAR
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synthetase in bacterial cells is a well-known metabolic adaptation feature during glucose
starvation. (15) Hence, a proposition is warranted to understand the possibility of the
exchange of SAICAR produced by microbiomes such as P. gingivalis, F. nucleatum, P. inter-
media, E. coli, and S. aureus to cancer cells for the activation of key metabolic enzyme PKM2.
Sharing of oncometabolite resources between cancer cells and the microbiome is a potential
interaction that supports the link between microbiome and cancer cells.

Prediction studies from webserver to predict absorption, distribution, metabolism,
excretion, and toxicity (vNN-ADMET) hinted at the suitability of SAICAR as a good
substrate of P-gp, which is known as a key play in drug resistance and other environmental
stress. This supported our proposition on the possibilities of exchanges of SAICAR among
cancer cells, microbiome, and non-cancer cells such as macrophages to fuel up the metabolic
adaptations during growth, proliferation, and drug resistance. Such prediction raises the
possibility of metabolic exchange SAICAR among the cellular components within the
tumor microenvironment. This prediction is well supported by the existing literature
on the role of SAICAR and PKM2 activation is associated with the pro-inflammatory act
by macrophages that may work as cancer-supporting non-cancer cells [41,42]. Finally a
proposed model for SAICAR as a metabolite biomarker in the nails of oral cancer patients
with overexpression of PKM2 and dietary patterns of oral cancer patients is presented
in Figure 6.
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5. Conclusions

In conclusion, we suggest the potential of SAICAR as oncometabolite biomarkers in
the nails of oral cancer patients. Furthermore, SAICAR shows effective allosteric binding
upon the PKM2 enzyme. SAICAR is predicted as a key oncometabolite that is shared
among the various cellular components including the microbiome within the oral tumor
microenvironment. Moreover, this paper highlights the relevance of in-house developed
novel VTGE methodology that assists in the metabolic study including qualitative and
quantitative in nature. This approach has prospects for uses in other biological samples
including urine, serum and saliva with slight modifications. The authors propose that
VTGE approach may have relevance various other cancer types other than oral cancer
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and metabolic diseases such as inborn errors and diabetes. This study may be helpful for
future therapeutic approaches as mimetic of SAICAR that can disrupt the SAICAR–PKM2
interaction and this may disturb the metabolic landscape of cancer cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph182111225/s1, Figure S1: A model on a novel vertical tube gel electrophoresis (VTGE)
system. (A) Flow diagram of VTGE system. (B) A running model on VTGE system.
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Appendix A

Figure 1. An oncometabolite SAICAR is detected in nails of oral cancer patients.
A positive ESI extracted ion chromatogram (EIC) of SAICAR was detected during

LC-HRMS of nail lysates purified with the help of a novel VTGE tool.
Figure 2. An oncometabolite SAICAR (CHEBI ID: 18319) shows strong molecular

binding with pyruvate kinase M2 (PKM2) enzyme (PDB ID: 4G1N).
Molecular docking and interaction of SAICAR with PKM2 were visualized with the

help of Discovery Studio Visualizer.
(A) Molecular docking affinity estimated by AutoDock Vina. (B) Three-dimensional

view of the interaction between SAICAR and PKM2 with binding residues, bond distances,
and types of bonds. (C) The docked molecular structure between SAICAR and PKM2 is
visualized in a 3D image depicting H-bond interactions (acceptor in green and donor in
pink color) (D) Two-dimensional image of docked molecular structure between SAICAR
and PKM2 derived from Discovery Studio Visualizer.

Figure 3. An oncometabolite SAICAR displays a stable complex with PKM2.

https://www.mdpi.com/article/10.3390/ijerph182111225/s1
https://www.mdpi.com/article/10.3390/ijerph182111225/s1
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PKM2–SAICAR root mean square deviation (RMSD) plot for 10ns of time frame
showing the stability of the complex between SAICAR depicts strong and specific binding
to PKM2.

Figure 4. SAICAR shows specific contacts within the activation site of PKM2.
(A) PKM2 and SAICAR interaction plot on the interaction between amino acid residues

and ligand remained during 10ns simulation. On the Y-axis, the interaction fraction
shows the time of established interaction between key amino acid and ligand through
different types of bonds such as hydrogen bonds, hydrophobic, ionic, and water bridges.
(B) Schematic diagram on the interaction of the ligand with amino acid residues, which
has remained for more than 30% of interaction time of the simulation. Here, various color
combinations are used to represent the extent and nature of ligands to enzyme atomic
interactions including ionic, hydrophobic, polar, water, and solvent exposure.

Figure 5. Webserver to predict absorption, distribution, metabolism, excretion, and
toxicity (vNN-ADMET) predicts SAICAR as a substrate of drug transporter P-gp and no
adverse cell toxicity.

Figure 6. A proposed model on the role of SAICAR oncometabolite as a nail metabolite
biomarker and predicted as a key metabolite in growth and proliferation by binding
to PKM2.

Figure S1. A model on a novel vertical tube gel electrophoresis (VTGE) system.
(A) A flow diagram of VTGE system. (B) A running model on VTGE system.
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