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Abstract: More than 8000 patients on the waiting list for kidney transplantation die or become ineli-
gible to receive transplants due to health deterioration. At the same time, more than 4000 recovered
kidneys from deceased donors are discarded each year in the United States. This paper develops a
simulation-based optimization model that considers several crucial factors for a kidney transplanta-
tion to improve kidney utilization. Unlike most proposed models, the presented optimization model
incorporates details of the offering process, the deterioration of patient health and kidney quality over
time, the correlation between patients’ health and acceptance decisions, and the probability of kidney
acceptance. We estimate model parameters using data obtained from the United Network of Organ
Sharing (UNOS) and the Scientific Registry of Transplant Recipients (SRTR). Using these parameters,
we illustrate the power of the simulation-based optimization model using two related applications.
The former explores the effects of encouraging patients to pursue multiple-region waitlisting on
post-transplant outcomes. Here, a simulation-based optimization model lets the patient select the
best regions to be waitlisted in, given their demand-to-supply ratios. The second application fo-
cuses on a system-level aspect of transplantation, namely the contribution of information sharing
on improving kidney discard rates and social welfare. We investigate the effects of using modern
information technology to accelerate finding a matching patient to an available donor organ on
waitlist mortality, kidney discard, and transplant rates. We show that modern information technology
support currently developed by the United Network for Organ Sharing (UNOS) is essential and can
significantly improve kidney utilization.

Keywords: simulation model; kidney acceptance; kidney allocation; multiple-region listing; informa-
tion sharing

1. Introduction

Chronic kidney disease (CKD) is a progressive loss of kidney function over time. CKD
is a worldwide health crisis as, at the moment, more than 2 million patients are suffering
from end-stage renal disease (ESRD) or kidney failure. The number of patients diagnosed
with ESRD is expected to increase at a rate between 5% and 7% each year [1]. At present
there is no cure for kidney failure, and patients with ESRD need to receive frequent dialysis
or a kidney transplant from a living or deceased donor to survive. For most patients,
kidney transplantation is the preferred treatment that provides a longer life expectancy
with a higher quality of life than dialysis. However, patients worldwide are faced with a
chronic shortage of donor kidneys accessible for transplant.

At present in the US, close to 100,000 patients are on the waiting list, and on average,
over 3000 new patients are enlisted each month. Each year, more than 4000 patients die
while waiting for a lifesaving kidney transplant, and over 4000 become too sick and are
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removed from the waiting list. In 2019, out of 22,304, deceased donor kidneys were pro-
cured in the US, a total of 16,534 kidneys were transplanted. Despite the high demand and
significant kidney shortage, approximately one in five kidneys recovered from deceased
donors are discarded [2].

To understand the reasons behind such high discard rates, we need to look at the
kidney allocation and offering process. There are considerable differences between living
and deceased donor kidneys and between different countries. We focus here on kidneys
from deceased donors in the US. The most important criteria for deceased donor kidney
allocation are (1) donor-recipient medical compatibility, (2) logistical factors, and (3) the
patient position on the waitlist (e.g., waiting time, points). More specifically, in the US,
the United Network of Organ Sharing (UNOS) administers the Organ Procurement and
Transplantation Network (OPTN) and is responsible for collecting data on both patients
and donors. In addition to logistical information and waiting time, the waiting list data
includes the patient’s identity, demographic factors (e.g., gender, race, age), and medical
characteristics (e.g., ABO blood type, human leukocyte antigens (HLAs), panel-reactive
antibody (PRA)). Similarly, to create a deceased donor database, UNOS obtains infor-
mation on donor demographics, donor logistical, recovery and preservation, and donor
medical characteristics.

UNOS uses a centralized computer network to connect all Organ Procurement Or-
ganizations (OPOs) and transplant centers. To allocate donated kidneys, UNOS uses its
donor-recipient matching system. Each time a new deceased donor kidney is retrieved for
transplantation, UNOS applies a match-run algorithm, a program that compares donor
data with the active waitlisted patients’ data. A rank-ordered list of patients is generated
using kidney allocation rules and policies. Factors considered in creating this list include
waiting time, donor-recipient immune system compatibility, living donor priority eligibility,
distance from the donor hospital, survival benefit (donor-recipient longevity matching),
and pediatric status.

The complete offering process is complex and we focus here only on the main com-
ponents that are necessary for the simulation model discussed in this paper. The process
starts with patients listed in local OPOs (there are 58 OPOs in the US, each with its des-
ignated service area), who are medical compatible and have the highest priority on the
waitlist. If the local allocation is unsuccessful, the organ is offered in the region (the US
is currently divided into 11 transplantation regions) and finally nationwide. Figure 1a,b
show 11 geographic regions in the US [3] and the geographical hierarchy of the kidney
offering process, respectively. More details on organ procurement and allocation policy are
available in [4]. One reason for prioritizing local patients in the kidney assignment process
is to reduce the time between organ procurement and implantation. This time is called
Cold Ischemia Time (CIT) and plays an essential role in kidney transplant outcomes [5,6].

Figure 2 and Table 1 show regional variations in CIT, wait time, and kidney transplant
outcomes across the US, respectively. There is substantial variation in deceased donor
kidney wait times across the US. Multiple factors can influence a patient wait time until
transplant. Besides the patient’s clinical factors such as blood type and degree of sensitiza-
tion shown by PRA (panel reactive antibody), geography and patient’s place of residence
has a tremendous effect on the chance of accessing a timely kidney transplant. This is
important since regions with longer CIT are more likely to have lower post-transplant
graft and patient survival rates. More precisely, as the results of one- and five-year patient
and graft survival rates following a kidney transplant suggest, region 9 with the longest
CIT among all regions has the lowest one- and five-year patient and graft survival rates
among all 11 regions. Typically when CIT reaches 24 h, it is hard to find a patient to accept
the offered organ. In most cases, kidneys are discarded after 48 h of CIT. Thus reducing
kidney CIT through managerial improvements could be a cost-effective way to improve
the current transplantation system and outcomes.
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Figure 1. (a) 11 geographic regions in the US [3], (b) Geographical hierarchy of kidney offering process.

Figure 2. Average wait time and cold ischemia time across 11 regions in US (2019).

Table 1. One and five-year transplant outcomes across 11 regions in US.

One-Year Post Transplant Patient and Graft Survival Rate

Region Patient Survival Rate 95% Confidence Graft Survival Rate 95% Confidence

1 96 (94.9, 96.8) 93 (91.6, 94.1)

2 95.7 (95.1, 96.2) 92 (91.3, 92.7)

3 96.4 (95.9, 96.8) 93.5 (92.8, 94.0)

4 95.8 (95.2, 96.4) 93.1 (92.3, 93.8)

5 97 (96.6, 97.4) 94 (93.5, 94.5)

6 98 (97.2, 98.5) 96.3 (95.3, 97.1)

7 95.3 (94.5, 96.0) 93 (92.0, 93.8)

8 97 (96.3, 97.5) 93.7 (92.8, 94.5)

9 95.2 (94.5, 96.1) 91.6 (90.5, 92.5)

10 95.7 (95.0, 96.3) 92.6 (91.7, 93.4)

11 96.6 (96.0, 97.0) 93.3 (92.6, 94.0)
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Table 1. Cont.

Five-Year Post Transplant Patient and Graft Survival Rate

Region Patient Survival Rate 95% Confidence Graft Survival Rate 95% Confidence

1 82.1 (80.0, 84.0) 75 (72.7, 77.1)

2 80.7 (79.6, 81.8) 69.9 (68.6, 71.1)

3 84.7 (83.8, 85.6) 76.2 (75.1, 77.3)

4 84.6 (83.4, 85.8) 75.1 (73.6, 76.5)

5 85.5 (84.6, 86.4) 79 (78.0, 80.0)

6 88.8 (87.0, 90.3) 82.7 (80.7, 84.6)

7 82.3 (81.0, 83.6) 73.8 (72.3, 75.2)

8 84 (82.6, 85.4) 75.5 (73.8, 77.0)

9 80 (78.5, 81.5) 69.8 (68.1, 71.5)

10 81.7 (80.3, 83.0) 71.9 (70.3, 73.4)

11 82.5 (81.4, 83.6) 72.3 (71.0, 73.5)

Transplant surgeons and regulators in the US have expressed their concerns regarding
high observed kidney discard rates despite the growing waitlist, long wait time, and high
waitlist removal rate. Table 2 demonstrates the waitlist and transplant information for
the US and Eurotransplant (ET) countries. Eurotransplant is an international nonprofit
organization responsible for organ allocation and transplantation in Austria (A), Belgium
(B), Croatia (HR), Germany (D), Hungary (H), Luxembourg (LR), Netherlands (NL), and
Slovenia (SLO). Even though the number of donated kidneys and transplants performed
in 2019 in the US has reached an all-time high, the kidney discard rate of approximately
26% (calculated as the number of deceased kidney transplantations over twice the total
number of deceased donors) remains of concern, compared to the ET countries’ discard
rate of 20%.

Table 2. 2019 Snapshot of US and Eurotransplant (ET) countries with donation rates, waitlist, and transplantation activities.
See the footnote on page 4 for acronym definitions of ET countries. Note that most deceased donors can donate both kidneys
and therefore the number of deceased kidney transplantation is more than the total deceased donors.

US A B D H HR NL SLO Total ET

Total deceased donors 11,152 197 276 904 167 127 289 50 2010

Deceased kidney transplantation 16,534 298 426 1536 281 158 445 53 3197

Waitlist mortality 4012 30 29 399 52 10 67 1 588

No longer eligible for transplant 4285 23 43 187 24 7 112 9 405

Waiting list addition 34,480 487 616 2797 376 223 1510 77 6086

Current kidney waiting list length 99,122 616 870 6881 824 231 803 95 10,320

The most common reason for donor kidney refusal and potential discard are concerns
about the donor kidney quality. Data shows that transplant surgeons would reject low-
quality kidneys for a relatively healthy patient in the hope of receiving a better offer in
the future [7]. In addition to the kidney quality, kidney acceptance and discard rates may
also be affected by the allocation process itself [8]. Evidence shows that kidneys rejected
early in the allocation process are less likely to be accepted later on [9]. Another concern
is the increasing risk aversion of transplant centers due to program-specific reports that
evaluate post-transplant outcomes. These may provide incentives for the centers to demand
higher-quality kidneys. Consequently, they might turn down kidneys adequate for the
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patient, but that poses a risk of negatively impacting the evaluation of their post-transplant
outcomes [8,10–15].

Another reason for not observing sufficiently high kidney utilization is the US geo-
graphical disparity in kidney transplantation access. Table 3 shows geographic disparities
in the number of deceased donors, OPOs, and transplant centers across the 11 regions. Sev-
eral states such as Wyoming, Idaho, and Montana do not have transplant centers despite
their high organ donation rate. Such a variation and difference in OPOs and organ trans-
plant facilities may lead to unfair organ availability, poor access to care, and unnecessary
long waiting time for some patients. One of UNOS’s five strategic goals is to provide
equity in access to transplant and reduce geographic disparity [16]. To improve the chance
of receiving a well-matched donated organ and reduce the long wait time, patients may
move to a region with shorter wait times or enlist in multiple transplant centers, typically
located in different regions [17]. UNOS has established multiple listing policies that allow
patients to be enlisted in more than one transplant center.

Table 3. Kidney transplant waitlist information and the number of OPOs and transplant centers across the 11 regions.

Region 1 2 3 4 5 6 7 8 9 10 11 All Regions

Deceased donor 399 1373 1639 1196 1758 475 833 854 461 953 1211 11,152

Transplant (from deceased donor) 597 1885 2491 1632 2771 605 1122 1151 1039 1350 1891 16,534

Current waitlist length 4846 12,580 12,818 10,447 22,366 2512 7258 3741 7696 5348 9523 99,122

Waitlist addition 1546 4178 4687 3990 5884 1007 2741 1771 2369 2445 3862 34,480

Waitlist removal (death) 197 523 560 387 1021 49 268 141 327 201 338 4012

Waitlist removal (health) 184 551 588 530 677 159 375 173 264 282 502 4285

Numbers of OPOs 2 5 10 4 8 3 4 5 4 6 7 58

Numbers of Transplant centers 14 36 30 29 31 10 23 18 16 20 24 251

Currently, around 4% of the patients waiting for a kidney transplant are multiple-listed,
which is the highest rate among all organs [18].

As with any transplant enlisting, the patient must complete evaluation tests and be
committed to the transplant center’s regulation, such as the ability to get to the transplant
center within a given time.

For enlisting in multiple centers, this process can be quiet costly since most insurance
companies may not reimburse the cost of additional evaluations [15,19]. In addition,
patients who receive organ transplants are required to take immunosuppression drugs as
part of their post-transplant care to make sure their body does not reject a new organ [20].
Therefore, a patient needs to learn if post-transplant care can be transferred to a center
closer to her residence. Without policies for adequate financial support for travel expenses,
this clearly still poses an issue in terms of equity and fairness that policymakers need
to address.

In this paper, we introduce a stochastic simulation model that can be used to ana-
lyze the effect of changes to the kidney allocation system and the offering process. The
simulation model involves patient’s health, donor-kidney quality represented by Kidney
Donor Profile Index (KDPI) [21], donor-kidney quality deterioration due to accumulating
CIT during the allocation process and also kidney supply and demand. Furthermore,
the model considers the chance that a donor kidney cannot be accepted for other reasons
(e.g., short-term sickness of the patient, insufficient surgical resources, cross-matching
result). Using model parameters estimated from data provided by UNOS and the Scientific
Registry of Transplant Recipients (SRTR), we apply the simulation model to investigate the
following two crucial trends to improve donor kidney transplantation rates:
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1. Multiple-listing: Transferring to a region with a shorter wait time or waitlisting in
multiple regions can help a patient by increasing her chance to receive a kidney
transplant earlier. Consequently, the patient can improve post-transplant outcomes
due to less health deterioration of staying on dialysis. However, developing a strategy
to guide the patient’s decision to transferring or multilisting is not easy. We formulate
the decision as a utility maximization problem under a set of budget, distance, and
facility constraints at the regional level. Supply and demand vary widely across the
11 US regions and for different blood types. Such a variation results in widely varying
wait times, leading to different expected utilities and optimal kidney acceptance
strategies (expressed as optimal kidney quality thresholds). To derive a patient’s
utility for different regions, we use the simulation model to obtain the utility under
individualized optimal kidney transplant acceptance decisions based on the patient’s
health status and supply and demand for the patient’s blood type. We use the
obtained information to solve the optimization problem and derive an optimal region
selection policy.

2. Information technology: Rapid and precise communication between UNOS and
transplant centers is necessary to make organ allocation more efficient, which even
becomes more critical in the face of multilisted patients. UNOS has the goal to
increase the use of information technology in organ allocation and transplantation.
They have implemented a secure online-based system that collects data to enhance
the transplant system’s capability to improve the patient’s chance of receiving a
life-saving organ. As technology has evolved, UNOS also encourages developing
and using modern technology such as mobile devices for faster and more efficient
consideration of donor’s kidney offers to achieve a higher kidney utilization rate [22].
For instance, mobile devices will make it easier to collect up-to-date patients’ avail-
ability for transplantation (e.g., via an app). Using this information, OPTN will
allocate the kidney faster, reducing kidney deterioration and discard. In the ideal
case of perfect information, OPTN could find the first patient on the waitlist who will
instantly accept the kidney, reducing CIT and discard to a minimum. The presented
simulation evaluates the effect of a realistic case of imperfect information sharing.

2. Literature Review

In this section, we review both medical and analytical studies about organ transplan-
tation relevant to this paper. For medical papers, we mainly focus on CIT and waiting time
on dialysis as two manageable independent risk factors effectively contributing to renal
transplant outcomes. For the analytical section, we review papers that fall within one or
both of the two research streams concerned with decision-making to accept deceased-donor
organs and the allocation process design.

2.1. Medical Literature

Several researchers across North America, South America, and Europe have studied
the association between CIT and kidney transplant outcomes [23,24]. The analysis done
by Nieto-Ríos et al. [25] shows that CIT is an independent risk factor for delayed graft
function (DGF). More precisely, the risk of developing DGF increases as CIT surpasses
18 h. However, it does not negatively impact the results in acute rejection or one-year
post-transplant graft loss.

A French study by Debout et al. [26] finds that the risk of post-transplant allograft
failure and mortality notably increases for each additional hour of CIT. A similar study
performed by Valdivia et al. [27] in Andalusia, Spain, confirms that prolonged CIT may
impact both patient and graft survival rates. The study suggests that the long CIT may
increase the risk of initial poor graft function regardless of both donor and recipient ages.
As CIT increase, the chance of DGF also increases. However, the harmful association of
prolonged CIT with the risk of DGF is not amplified in older donors (e.g., expanded criteria
donors). The study shows that the effect of CIT on acute renal transplant rejection (ARTR)



Int. J. Environ. Res. Public Health 2021, 18, 873 7 of 20

is more noticeable among patients undergoing kidney retransplantation. The analysis
also suggests that donated kidneys with CIT of 24 h or longer are at a greater risk of
ARTR compared to that of organs with CIT less than 12 h. Koizumi et al. [6] report that
regional variations in kidney outcomes have been observed in the US, but the main reason
behind these variations is unclear. The study reveals significant cold ischemia time (CIT)
variations across regions for donor kidneys. Specifically, they find that regions with longer
CIT are more likely to have a lower post-transplant kidney survival rate. They suggest that
managerial improvements can be a cost-effective choice to enhance the current transplant
system performance and potentiality reduces organ discard rates.

Meier-Kriesche et al. [28] uses the data from the United States Renal Data System
Registry (USRDS) to consider the potential association between the wait time and renal
transplant outcomes. Their study confirms that long waiting time is a significant risk factor
that negatively affects renal transplant’s survival benefit. As a result, they suggest that the
earlier the ESRD patients receive a renal transplant, the higher their chances of long-term
survival. Meier-Kriesche and Kaplan [29] investigates the importance of wait time on
dialysis as the most substantial independent risk factor on kidney transplant outcomes.
As part of their analysis, they apply Kaplan–Meier estimates and Cox proportional hazards
models on the US renal data system database to explore the effect of wait time on deceased
donor kidney results. Their findings show that five- and ten-year graft survival rates are
significantly worse among paired kidney recipients who have waited for more than two
years on dialysis compared to paired kidney recipients with a wait time of less than half
a year.

2.2. Analytical Literature

Analytical literature focuses on the design of the kidney allocation process and em-
ploys often simulation models. Issues discussed are the effectiveness and equity of the
allocation process and the effect the kidney acceptance decision.

To analyze the allocation process used in 2000, Zenios et al. [30] proposes dynamic
resource allocation that maximizes the patient’s life expectancy from receiving a kidney
transplant while minimizing the inequity between patients. The constructed simulation
model shows that the currently-employed organ allocation policy boosts the patient’s
quality-adjusted life expectancy and reduces the expected waiting time.

The kidney acceptance decision is central for a whole stream of research. Ahn and
Hornberger [31] develops a theoretical model that considers the patient’s health in making
an acceptance/rejection decision concerning the quality of offered kidneys. Their analysis
reveals that a relatively healthy patient can afford to be selective about the quality of donor
kidneys and expect to receive a better post-transplant outcome by accepting a high-quality
kidney. The effect of the patient’s choice on the organ allocation system is studied by Su
and Zenios [32]. The study introduces a queuing model that analyzes the effects of patient
choice on kidney rejection rates by evaluating the waiting system’s performance under
both the first-com-first-serve (FCFS) and the last-come-first-serve (LCFS) policies. They
conclude that LCFS is more efficient than FCFS. In fact, in contrast to LCFS, the FCFS policy
incentivizes patients to refuse low-quality kidneys, resulting in low kidney utilization.
On the other hand, the model shows that the LCFS policy obtains optimal organ utilization.
In a different study, Su and Zenios [33] investigate the role of patient choice in kidney
allocation using a sequential stochastic assignment model. The model addresses the conflict
between patient choice and social welfare. The analysis considers two schemes, where the
first one assumes that patients have to accept any offered kidney. The first-best solution is
to find an allocation policy that maximizes social welfare. By introducing patient choice,
the first-best policy is modified to achieve a second-best policy. As a result, an incentive
compatibility condition is introduced, which forces the allocation policy to be designed
in such a way to assure that patients will accept any kidney offer. Su and Zenios [34]
introduce a mechanism design model for organ allocation that takes patient choice into
account. Patients state the kidney types (e.g., quality) they desire to receive upon joining
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the kidney transplant waiting list (not at the time of donor kidney offer) and join the queue
that serves the declared kidney type. That way, the model reduces the long searching
process by identifying appropriate patients who desire to accept retrieved donor kidneys
more effectively.

Fairness and equity are an important topic Bertsimas et al. [35] study geographical
disparities in access to deceased donor kidneys. They use a fluid approximation for a
queuing model to formulate the optimal way for a patient to be enlisted in the waiting
lists of multiple transplant centers. The patient’s objective is to maximize life expectancy
while minimizing the congestion cost. By combining analytical, simulation, and numerical
results, they show that multiple listing greatly promotes geographical equity and increases
the donor kidney supply. Having more donors leads to a higher transplant rate and reduces
the patient mortality rate on the waiting list. A few studies [36–38] have developed models
that enable an incompatible pair of donor-recipient still to receive a living-donor kidney via
an exchange with other incompatible donor-recipient pairs. While most existing models
aim to maximize the total number of possible kidney exchanges and social welfare, they do
not consider the fairness component defined as donor-recipient satisfaction. Lee et al. [39]
present a two-stage stochastic programming model that considers fairness in living-donor
Kidney Exchange Programs. The study examines multiple scenarios to investigate the effect
of fairness on the kidney exchange outcomes. The numerical results show the improvement
in the living donor-exchange program’s outcome when fairness is taken into account in
matching incompatible pairs. Note that some studies discussed here consider the impact
of fairness in living kidney transplantation; however, we focus only on transplants using
deceased-donor kidneys.

The simulations presented in the literature use strong assumptions. For instance, Su
and Zenios [33] assume that patients have to accept any offered kidney, or in [34] patients
cannot change their initially chosen kidney quality. In addition, most simulations typically
focus on a single variable. For instance, the study by Ruth et al. [40] focuses on waitlist
length. The study proposes a simulation model for the organ allocation process and finds
that under the organ allocation conditions in 1985, the waiting list’s length will continue to
grow. The simulation model we present in this paper gives a more thorough picture by
considering the effect of patient’s decisions, supply and demand in different regions, the
efficiency of the allocation process, and the expected effect of post-transplant utility.

3. Models Description

In the following sections, we discuss in detail the main components of both simulation
and optimization models. The simulation models include patient (organ demand), deceased
donor kidney’s arrival (organ supply), the deceased donor kidney consecutive offering
process to find the optimal kidney quality threshold, and expected post-transplant utility
for a patient with a given health level. We then utilize the simulation model’s output as the
coefficients of the optimization model’s objective function to recommend multiple-listing
policy and suggests a set of regions that patient can choose.

3.1. Simulation Model

We develop a simulation model that lets the patient identify the optimal kidney quality
threshold that maximizes her post-transplant utility. The model parameters depend on the
supply and demand of the patients’ region. We simulate the kidney acceptance strategy
and the resulting post-transplant utility corresponding to each transplantation. Figure 3
illustrates the simulation process. We discuss the key components in the following sections.
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Figure 3. The simulation model for the kidney allocation and acceptance process.

3.1.1. Organ Demand

The demand is represented by patients in the waiting list. We split the patients into
several groups of competitive patients who can receive the same type of deceased donor
organ depending on blood types and other clinical criteria. We model each group separately.
We will consider the interaction between groups (e.g., some patients with blood type AB
may receive organs from donors with any blood type) by adjusting organ supply to the
individual groups.

Each competitive patient group is modeled by a queue related to blood type j where
j ∈ {A, B, AB, O}. Patients can join their matched queue (e.g., based on blood type) with
the rate of λj and get served by compatible donors. Compatible kidneys arrive at the
blood type j queue with a rate of µi. For instance, for the blood type A queue, compatible
kidneys are of types A and O. Patients depart from the waitlist j with a transplant rate of
ηi when (1) they accept an offered kidney, or (2) with a rate of θi they either get too sick
for transplantation or die on the waitlist. The structure of the queuing model is shown in
Figure 4.

Following the study in [34], blood type j patients arrive according to a Poisson process
with the arrival rate of λj to join the waiting list. The patients join the waiting list in
the model with an unobservable initial health status h0 representing the remaining time
they can survive on dialysis when they join. We model the distribution of h0 in the
patient population using a Weibull distribution. The Weibull distribution is often used in
survival analysis to represent time-to-failure since it is able to express failure rates that are
decreasing, constant, or increasing over time. The health for a simulated patient, h0, is then
the realization of a random variable H0 ∼ Weibull(a, b), where a and b are the scale and
shape parameters, respectively. Patients depart from the waitlist if either (1) they receive a
transplant or (2) they leave the queue due to poor health (or death). Since h0 is the time
the patient can survive on dialysis when she joins the waitlist (i.e., the index indicates that
she waited zero years so far), the actual health after waiting w years is hw = h0 − w which
means the patient will leave the waitlist at the latest when w = h0.
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Figure 4. The structure of the queuing model.

3.1.2. Organ Supply

Following [34], compatible deceased donor kidneys arrive at the queue for blood type
j according to an independent homogeneous Poisson process with arrival rate µj. OPTN
defined a kidney quality metric called Kidney Donor Profile Index (KDPI) that incorporates
ten clinical donor factors to rank kidneys according to the estimated post-transplant kidney
survival [41]. KDPI considers the following donor characteristics: age, height, weight,
ethnicity, whether the donor died due to loss of heart function or loss of brain function,
stroke as the cause of death, history of high blood pressure, history of diabetes, exposure to
the hepatitis-C virus, serum creatinine (a measure of kidney function). By construction,
KDPI is close to uniformly distributed over all kidneys harvested in a given year. Following
KDPI, we model the quality of an arriving donor kidney shown with q0 as the realization of
a random variable Q ∼ Unif(0, 1). We use 0 to represent the lowest and 1 the highest kidney
quality, i.e., q0 = 1−KDPI. When a new donor kidney becomes available in the simulation
then the kidney is simultaneously offered to a group of g patients with a specified time
window to consider the offer and make the acceptance/rejection decision. If nobody in the
group of g patients can accept the kidney after the allocated time, then the kidney is offered
to the next group of g patients on the waitlist. The allocation process continues until the
organ is either accepted by a patient or discarded (due to an unsuccessful search or organ
placement). For the current donor kidney shortage, we have µj < λj, i.e., kidneys arrive at
a lower rate than new patients. Patient removal due to health or death keeps the queue at a
finite size. Longer waitlists result in longer wait times and more health deterioration for
the patients. In turn, this increases the removal rate (patients leaving without receiving a
transplant). The queue length stabilizes at the equilibrium where the transplant rate plus
the patient removal rate match the patient arrival rate.
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3.1.3. Kidney Acceptance/Rejection Decision

Over time, as the process of donor kidney offering continues, the kidney accumulates
CIT and its quality deteriorates. We model this deterioration as qt = f (q0, δ, t). In this
equation t represents the accumulated CIT and q0 represents the kidney quality at the
time of recovery when t = 0. Variable δ represents a kidney quality deterioration factor.
We require that the quality function f is decreasing in δ and t, i.e., ∂ f (q0,δ,t)

∂δ < 0 and
∂ f (q0,δ,t)

∂t < 0. In the simulation model, we measure time as multiples of the time allowed for
one round of offers. If the patients have one hour to decide, then t represents accumulated
CIT in hours. We model the kidney accept/reject decision by the patient and the subsequent
transplantation in two steps. First, the patient uses a threshold strategy to decide if an
offered kidney is acceptable. The patient would accept the offer if qt ≥ k, where k is
the kidney quality threshold decided on by the patient and the surgeon. For acceptable
kidneys, we consider several factors related to the patient’s health and the transplant center.
In the simulation model, we use the probability of the transplant being performed given an
acceptable kidney is offered as

p(transplant | qt ≥ k) = p(patient factors) p(center factors),

where p(patient factors) represents the patient’s specific medical situation and any fact that
the patient or the surgeon may decide against the kidney for reasons not explained purely
by kidney quality (e.g., the patient is temporary set inactive on the waitlist, unfavorable
cross-matching result). The probability p(center factors) represents the transplant center’s
readiness (e.g., availability of staff, operating rooms, etc.) as well as considerations of
the impact of the transplantation on the center’s performance evaluation. The patient
chooses her decision threshold k in consultation with the surgeon. Such a threshold will be
influenced by the patient’s health h0 since a patient who has more time left on dialysis will
wait for a better quality kidney. We model this relationship in the simulation by choosing k
for each patient from a random variable K ∼ Unif(0,1) which is correlated with the patient’s
h0 represented by a Spearman’s rank correlation coefficient of ρH0,K.

3.1.4. Patient’s Post-Transplant Utility

If the patient accepts the deceased donor kidney offer and transplantation occurs, a
patient receives post-transplant utility. The post-transplant utility depends on the kidney’s
quality at transplantation time qt, and the patient’s wait time w resulting in a health status
of hw = h0 − w. The post-transplant utility can be broken down into two components

U(qt, h0, w) = B(h0, qt) D(h0, w), (1)

where B(·) represents the benefit for the patient depending on the kidney quality, and D(·)
accounts for the deterioration of the patient on the waitlist. Breaking the utility into these
two components has benefits for estimating parameters from data. The function B(·)
can be seen as the patients benefit if she would receive a kidney with quality qt without
waiting. The benefit function needs to satisfy that it increases with patient health h0 and
the kidney quality, i.e., ∂B(h0,qt)

∂h0
> 0 and ∂B(h0,qt)

∂qt
> 0. D(·) represents a cost in the form of a

deterioration factor due to waiting w for the kidney. The cost function needs to increase as
wait time increases and decreases with the patient health., i.e., ∂D(h0,w)

∂h0
> 0 and ∂D(h0,w)

∂w < 0.
A common way to define functions like B(·) is in the form of a logistic regression for

survival proposed by Cox [42] which models the conditional odds of dying at any time
point given survival up to that point as

B(h0, qt) =
m(h0)

1 + exp(−β(qt − α))
, (2)
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where m(h0) indicates the transplant outcome for a patient with health level h0 who
received a perfect kidney (qt = 1) right away (w = 0). Naturally, m(h0) is increasing with
the patient’s health h0. We use for D(·) the functional from

D(h0, w, γ) =

(
1− w

h0

)γ

, (3)

where γ controls the rate of deterioration. The deterioration factor equals one (i.e., no dete-
rioration) when the wait time is zero (w = 0). If the patient waits for a very high-quality
kidney and runs out of time (i.e., w = h0), then the deterioration factor becomes zero.
The chosen functional form is vert flexible and can express linear deterioration (γ = 1),
slowing down deterioration (γ > 1), and increasing deterioration (γ < 1). By estimating
parameters from data and using simulation optimization, we can find for each patient the
the optimal kidney quality threshold k∗ that maximises the post-transplant utility.

3.2. Region Selection and Multiple Listing Optimization Model

A patient can improve her chances of receiving a transplant by moving to a different
region (region selection) or by listing in transplant centers in multiple regions. To help the
patient to identify a set of regions for multiple-enlisting, we utilize the simulation model
to calculate the optimal threshold policy parameter k∗i and the maximum expected utility
that a patient is likely to obtain from a transplant in each region. This is represented by 11
utility values Ui(k∗i , h0, w), i ∈ 1, 2, . . . , 11. For simplicity, we write Ui(k∗i ) to represent the
post-transplant expected utility for a patient with given h0 and w. Region selection is now
done by picking the region with the largest utility.

For multiple listing, we represent the action of enlisting in region i by the binary
decision variable

ri =

{
1 if region i, and
0 otherwise.

(4)

The patient has 11 decision variables, one for each region. We assume that the patient
will want to increase her chances by listing in the best regions with the highest expected utility
given a set of constraints. This can be formulated as the following optimization problem.

max ∑
i∈I

Ui(k∗i )ri

s.t.

∑
i∈I

ciri ≤ C

diri ≤ D

piri ≥ P

ri = 0 or 1

(5)

Summing the region utility makes sure that the regions with the largest utilities are
included in the solution. The first constraint makes sure that the solution satisfies the total
budget C of the given patient. The second constraint considers the maximum distance D
the patient can travel to get to the transplant center in time. The third constraint considers
the patient’s expectation about the region’s performance P, and finally, the last constraint
restricts ri to be 0 or 1. Since the number of regions is small, with only 11, this problem can
be solved by enumeration.

4. Applications and Numerical Results

We start this section with estimating the parameters needed for the simulation model
and then present how the model can be used for two applications. The first application
illustrates how the model can provide a strategic guideline to support a patient’s choice for
moving to a different region or enlisting in multiple regions.
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The second application analyzes the potential benefits of using modern information
shared technology (e.g., via smartphone apps) to improve social welfare through increasing
patient’s post-transplant utility and kidney utilization rates.

4.1. Parameters Estimation

We use data from UNOS and SRTR to estimate model parameters. We extract UNOS
data for the year 2019 to estimate waitlist additions and donor kidney supply. For wait
time calculation, we use values reported by SRTR. The SRTR data system contains detailed
medical and demographic data for all donors, waitlisted patients, and transplant recipients
in the US. The used dataset consists of more than 400,000 patients who are first-time
recipients of deceased donor kidney transplants between October 1987 and the end of 2019.

The annual reports by SRTR and UNOS provide information on organ arrivals and
waiting list activity (e.g., patient’s addition and removal statistics). We use this data to
estimate λj and µj in each period.

An important factor for estimating the kidney arrival rate to a blood type j queue
is blood type compatibility between patients and donors. According to the blood type
compatibility criteria, donors with blood type O are universal donors whose kidney organs
can be offered to patients of all blood types. On the other hand, donors with blood type AB
can donate their kidneys to only blood type AB patients while they are universal recipients
from all blood types. Table 4 shows the blood type compatibility for a kidney transplant in
detail. This paper only reports results for blood type A. The results for other blood types
can be obtained similarly. Table 5 shows donors and patient arrivals for blood type A.

Table 4. Blood type compatibility for kidney transplantation.

Blood Type % of US Can Donate
Kidney to

Can Receive
Kidney from

O 45% O, A, B, AB O

A 40% A, AB O, A

B 11% B, AB O, B

AB 4% AB O, A, B, AB

Based on SRTR data blood type A patients receive on average 94% and 6% of the
organs from donors of blood types A and O, respectively, which is reflected in the kidney
supply parameter µj in Table 5. Following the current offering scheme used by OPTN
in the US, we use the patient group size of g = 5 in our simulation model. We set the
kidney degradation rate δ to 5% according to the reports that organs are rarely used after a
CIT of 48 h [6]. At δ = 0.05, the quality of the kidney deteriorates to (1− 0.05)48 = 8.5%
of its initial quality after 48 h. Based on discussions with a medical collaborator, we
use a transplantation probability p(transplant) = 0.8 for all regions. A probability for
each region could also be estimated from data, but information on rejections of kidney
offers is currently not available to us. The parameters α, β, and γ for the benefit function
B(h0, qt) and the cost factor C(h0, w) can be estimated if the outcome data including the
post-transplant survival is available. However, since our dataset does not include these
data, we use α = 0.4, β = 8 and γ = 0.5 in our simulation. We add patients to the waitlist
with a health h0 drawn from a random variable H0 with a Weibull distribution. We use
a scale parameter a = 8 and a shape parameter b = 2 to get an average health of close
to 7 years and around 90% of the population below 12 years. We use a Spearman’s rank
correlation ρ(H0,K) of 0.2, close to the correlation between the accepted kidney quality and
the patient health observed in the data.
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Table 5. Estimation of annual kidney supply µj and patient arrival rates λj for blood type A waitlisted patients over the
11 US regions (2019).

Region Kindey Arrival Rate to Blood Type A Queue (µA) Blood Type A Patient Arrival Rate (λA)

1 229 536
2 748 1774
3 892 1680
4 587 1154
5 882 1914
6 270 378
7 461 1008
8 436 690
9 220 735
10 548 1040
11 590 1089

4.2. Region Selection and Multiple Listing

To illustrate the region selection approach, we report the results for a target patient
with blood type A, one life-year on dialysis (h0 = 1) who is currently in position 100 of the
waitlist. We fill the waitlist with randomly generated patients (whose health is drawn from
a Weibull distribution with a correlated policy threshold). We perform the same simulation
100 times each for the decision threshold values k ∈ {0, 0.1, 0.2, · · · , 0.9} and average the
results of the 100 runs to estimate the expected utility for each threshold.

Table 6 reports the results for the optimal threshold, k∗i , resulting in the largest expected
post-transplant utility, Ui(k∗i ), for each region. The kidney arrival rate to the queue (blood
type A waitlisted patients) per year is µA and qt is the average transplanted kidney quality.
For instance, if the target patient is enrolled in region 6, a threshold of k = 0.65 is optimal,
which leads to a utility of 9.6 years. In contrast, if she is enlisted in region 2, the optimal
decision can be as high as 0.85 with a utility of 13.22 years.

Table 7 represents the estimated data we used in our optimization model to find a set
of feasible regions for a blood type A patient assumed to be currently living and enlisted
in region 6. We use a UNOS dataset to estimate the expected wait time and the 5-year
survival rate for such patient across all 11 regions. In each region, we choose a major city
and estimate its corresponding monthly cost of living using the city’s cost of living index.
The evaluation cost is defined as the product of the total expected number of evaluations
until kidney transplantation and cost per evaluation. The expected number of evaluations
is estimated based on a 6-month reevaluation policy mandated by most transplant centers.
In general, the patient is responsible for paying for the periodic evaluation cost if she wishes
to be enlisted in more than one region since most insurance policies cover the periodic
evaluation cost of only one registration. The total cost is calculated as follows: the total
amount of money a patient has to pay (number of evaluations times cost of evaluation)
plus the cost of traveling to and staying in another region for three days.

As an example, here we assume the patient has a budget of C = $15,000. She also can
travel as far as D = 1500 miles, and her minimum expectation from a region’s performance
is 75% of five-year survival. Intending to maximize her post-transplant outcome under
these three constraints, our model finds that besides home-region 6, the patient can also be
enlisted in regions 5, 4, or 8, with region 5 providing the highest expected utility. OPTN is
committed to provide equity in access to transplants and reduce geographic disparities [16].
Under free multiple listing, patients have an incentive to enroll in as many regions as they
can, given their budget constraints. This means that access to transplantation is affected
by the patient’s financial resources, which may pose a problem in terms of equity and
fairness. However, in the long run, free region selection and multiple listing can reduce
geographic disparities. More patients will enlist in regions that are currently offering higher
utility, leveling out demand disparities, and reducing the utility gap. At that point, the
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advantage of having more budget to enlist in multiple regions will diminish, leading to
a more equitable situation. In the short term, equity needs to be ensured temporarily by
appropriate policies to make multiple listings available to more patients.

Table 6. Optimal post-transplant utility Ui(k∗i ) under the optimal decision threshold in different regions for a blood type A
patient in waitlist position 100.

Region Kidney Arrival Rate Optimal Kidney Quality Average Life Years Gain
b to Blood Type A Queue (µA) Acceptance Threshold (k∗

i ) form Transplant (Ui(k∗
i ))

1 229 0.60 9.12
2 748 0.85 13.23
3 892 0.85 13.57
4 587 0.80 12.81
5 882 0.85 13.50
6 270 0.65 9.65
7 461 0.75 12.00
8 436 0.75 11.90
9 220 0.60 8.9
10 548 0.80 12.70
11 590 0.80 12.84

Table 7. Illustration of the region selection process for multiple-region listing.

Region Cost of Living Expected Wait Evaluations Evaluation Survival Rate Distance Ui(k∗
i )

per Month Time in Years Cost (5 Year) (Air Miles)

1 $2454 2.4 4 $6381 73% 2200 9.1
2 $1879 1.8 3 $4614 70% 1904 13.2
3 $1637 1.9 3 $4541 76% 1706 13.6
4 $2328 1.4 2 $3166 75% 1160 12.8
5 $2130 2.5 5 $7815 79% 374 13.5
6 $2413 1.6 3 $0 83% 0 9.7
7 $2686 2.3 4 $6474 74% 670 12.0
8 $2869 1.4 2 $3274 76% 569 11.9
9 $2705 2.2 4 $6482 69% 1195 8.9
10 $2005 1.8 3 $4651 72% 565 12.7
11 $2706 1.4 2 $3241 72% 941 12.8

4.3. The Effect of Information Sharing on Allocation Efficiency

One of the initiatives in the OPTN Strategic Plan (2018–2021) [16] under the goal
of increasing the number of transplants is to pursue system tools for more efficient
donor/recipient matching. Such tools include tools for information sharing, which means
the transplantation center and the patient share up-to-date information with OPTN, has
the potential to speed up the kidney allocation process and thus reduce cold ischemia time
(CIT) and kidney discard rate.

Information that can be shared includes:

1. The patient’s acceptance threshold k: Each patient reports her kidney quality accep-
tance threshold k decided by herself and her physician.

2. Any additional decision criteria used by the patient: The patient’s and surgeon’s
decision can be affected by information not included in the kidney quality assessment
(KDPI). Having more standardized quality parameters, where the patient can prespec-
ify what she accepts, would improve kidney allocation. Under complete information,
OPTN could instantly identify the patients who would accept the kidney and save
valuable CIT.
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3. The patient’s current availability: An up-to-date indication if the patient can currently
receive transplantation. Factors include current health and traveling.

4. The transplant center’s availability: Considers the availability of the transplant cen-
ter’s facility such as prepared operating rooms, surgeons, nurses, and staffs for
performing the surgery on time.

Under perfect information, OPTN would have access to up-to-date information about
all patients’ acceptance thresholds k, any additional requirement for the organ, and if the
patient and center are available. Therefore, OPTN could directly identify the first patient
on the waitlist who will accept and receive the transplant. This will effectively reduce
CIT, i.e., t, to the minimum needed to extract the organ and perform the transplantation.
In the simulation model, perfect information can be expressed by setting g to the waitlist’s
length, indicating that the whole waitlist is searched for a matching patient instantaneously.
Assuming perfect information is unrealistic for many reasons. For example, technical
issues may impact information availability and patients or centers may not keep all the
information constantly up-to-date. A more realistic setting is improved but still imperfect
information sharing. More information means that patients can be identified faster using
the shared information. We express this fact in the simulation model by an increased
number of patients that can be searched per hour (i.e., an increase in g).

To illustrate the effect of improved information sharing, we report the results for
patients of blood type A in region 6. We initialize the waiting list with 1000 patients and
run the simulation until the waitlist length stabilizes around 1800 patients (200 months).
We report results after this warm-up period averaged over 300 months. The baseline
is the currently used group size of g = 5. We vary g to represent varying levels of
information sharing.

Table 8 shows the impact of information sharing expressed by how many patients
on the waitlist can effectively be considered per hour. At the baseline group size of five,
the accepted kidney’s average quality is 0.66, leading to the average utility of 10.76 years
per transplanted patient. The kidney can travel as far as 45 patients on the waitlist and is
accepted on average by the sixth patient. Table 9 presents kidney utilization and waitlist
mortality rates, in addition to the transplant rate. The kidney utilization rate increases
significantly as g increases.

Table 8. The effect of information sharing on patient’s post transplant utility based on region-6
kidney supply and demand.

Group
Size g

Waitlist Position
(Mean)

Waitlist Position
(Max)

Average
q

Average
Patient

Utility (Year)

5 6.00 45 0.66 10.76
10 8.00 80 0.62 11.20
20 10.00 119 0.60 11.14
100 22.00 344 0.57 11.35

100,000 58.00 1383 0.55 11.50

As Figure 5 demonstrates, the improvement in the kidney transplant rate is 17%
for doubling the speed of the offering process g = 10, and it reaches 47% when perfect
information is available. On the other hand, the waitlist mortality rate decreases by 7%
when g = 10, and the reduction can be as high as 21%. The simulation illustrates the effect
on efficiency that information sharing can bring to the allocation process.

Information sharing can be implemented in many ways, using current technology.
Examples include using apps and medical wearable devices to track the patient’s availabil-
ity close to real-time. Standardized interfaces between the transplant centers’ information
system and OPTN can be used to manage center availability. Rolling out these technologies



Int. J. Environ. Res. Public Health 2021, 18, 873 17 of 20

will take time, but the results presented in this simulation study indicate that the potential
payoff is significant with the potential to reduce kidney discard rates to a minimum.

Table 9. Kidney utilization, discard, waitlist removal, and transplant rates in region 6.

Group
Size g

Kidney
Utilization

Rate

Kidney
Discard

Rate

Waitlist
Removal

Rate

Kidney
Transplant

Rate
5 85.0% 15.0% 8.9% 17%

10 90.9% 9.1% 8.3% 20%
20 94.3% 5.7% 7.9% 21.5%

100 98.5% 1.5% 7.3% 23.8%
100,000 99.98% 0.02% 7.1% 25.2%

Figure 5. Kidney transplant and waitlist mortality rates improvements due to information sharing
compared to the baseline of g = 5.

5. Concluding Remarks

This research’s first contribution is developing a simulation model that provides an
optimal deceased donor kidney acceptance guidance for decision-makers (patients and
surgeons). The major challenge of modeling organ acceptance/rejection is incorporating
real-world conditions and situations to make a crucial life-saving decision. For this reason,
our primary intention as the main novelty of this work is to recognize, aggregate, and
implement different essential elements that contribute to kidney selection criteria. The
proposed model allows for diversity in patients’ health and kidney’s quality, as well as
their correlation. Moreover, we include the quality deterioration of kidneys caused by
accumulating CIT as the allocation process goes on. In addition to all aforementioned
elements, we also incorporate patient health and availability together with human and
facility resources to propose an optimal transplant solution.

The proposed model can be used to investigate how different policy choices can affect
the strategic goals stated by OTPN [16]. We illustrated this with two applications. First, we
showed how the model can be applied to inform patients’ decisions regarding multiple-
enlisting given cost, distance, and care quality constraints. While multiple listing in the
short-term can pose challenges to equity between patients based on financial resources,
it has the potential to even out geographical disparities in access to transplants and thus
increase equity.

A second illustration draws attention to the social welfare aspect of kidney trans-
plantation rather than focusing on finding an optimal solution as considered in the first
application. We compare the social welfare results (i.e., donor kidney utilization and
system-wide post-transplant utility) for several levels of available information, ranging
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from no information to perfect information. Increased information leads to faster kidney
assignment and a reduced kidney discard rate. Increasing the transplant rate improves
social welfare utility and reduces the length of the kidney transplant waiting list, time,
and mortality rate. Policymakers can use these results to motivate the value of modern
information technology to collect the needed information and show the importance of
designing incentive structures that encourage timely information sharing by patients and
centers. For example, designing an organ transplantation application for a smartphone
device can provide a safe, easy, and fast way to submit and update the required information
in a timely fashion. The policymaker may wish to establish a ground rule that all patients
and transplant centers need to follow to receive offers. For instance, using mandatory
app technology and service, transplant centers can revise or verify their submitted data
regularly (e.g., every day) after a patient’s position on the waitlist passes a certain threshold.
The proposed model is simple and flexible enough to be easily adapted to investigate many
other aspects of the kidney assignment process.
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