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Abstract: An accurate estimation of exposure is essential for road collision rate estimation, which is
key when evaluating the impact of road safety measures. The quasi-induced exposure method was
developed to estimate relative exposure for different driver groups based on its main hypothesis:
the not-at-fault drivers involved in two-vehicle collisions are taken as a random sample of driver
populations. Liability assignment is thus crucial in this method to identify not-at-fault drivers, but
often no liability labels are given in collision records, so unsupervised analysis tools are required.
To date, most researchers consider only driver and speed offences in liability assignment, but an
open question is if more information could be added. To this end, in this paper, the visual clustering
technique of self-organizing maps (SOM) has been applied to better understand the multivariate
structure in the data, to find out the most important variables for driver liability, analyzing their
influence, and to identify relevant liability patterns. The results show that alcohol/drug use could
be influential on liability and further analysis is required for disability and sudden illness. More
information has been used, given that a larger proportion of the data was considered. SOM thus
appears as a promising tool for liability assessment.

Keywords: road safety; vehicle collisions; pattern identification; driver liability assignment; Self-
Organizing Maps (SOM); quasi-induced exposure

1. Introduction

In road safety research, a critical point is the estimation of vehicle collision risks and
rates of the different driver groups (male vs. female, drivers in different age groups and so
forth), with the aim of establishing preventive measures which try to avoid crashes or, at
least, to minimize their impact, as pointed out by many researchers such as [1–13].

However, to assess the risk levels of the different driver groups, it is necessary to
count on some measure of the exposure levels of the driver groups or vehicles which
are being analyzed, given that vehicle collision rates are defined as the ratio between
the number of collisions in the group and their exposure [1,4,14]. The problem here lies
in the exposure term, which is not available in most databases and its determination
is not an easy task, particularly in the more specific (restricted) groups of drivers or
under several risk combinations [2,15,16], so this constitutes one of the most important
issues for vehicle collision analyses. This occurs especially in countries like Spain, where
the surveys for determining the exposure of the different driver groups are not carried
out routinely [1,9,12,14].

The quasi-induced exposure method is selected here to estimate the relative expo-
sure of the drivers studied and also the crash-causing propensity by means the relative
accident involvement ratio (RAIR), which is calculated by taking the ratio of the number
of at-fault drivers in a specific subgroup to that of the not-at-fault drivers in the same
subgroup [15,17,18]. The quasi-induced exposure method uses the vehicle collision data
on the basis of several hypotheses [1,4,8–10,12,13,17,19,20].
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The theory of the quasi-induced method presents two basic underlying hypotheses:
(a) data from exclusively clean collisions—where only one of the drivers has been classi-
fied as at-fault—are to be applied, and (b) the not-at-fault drivers in clean two-vehicle
collisions constitute a sample of the total drivers in specific time and place as high-
lighted by [1–3,5–11,13,14,18,20–23].

Therefore, one of the main issues when estimating the relative exposure lies in the
correct liability assignment of the collision based on the information provided in the vehicle
collision records. This very relevant issue has been debated since the beginning of the
history of the quasi-induced techniques [21]. The Spanish General Road Crashes database
does not include specific information about the liability of each driver who is involved in a
crash, although it includes the offences committed by drivers and their conditions [11,12];
for example: speed offences or alcohol/drugs use.

It is observed that many authors, like [3], have applied the “contributing human factor”
for determining collision liability, and this considers both hazardous driving behavior (e.g.,
not to observe a Stop signal or distracted driving) and the non-driving behaviors (e.g.,
driving whilst under the influence of drugs or alcohol) [7,8]. In turn, other authors, such
as [13,24] took the “driver’s citation” (any citation by the police) as a starting point to
determine driver liability in collisions [5–8]. The remaining scientific literature, mostly, use
different combinations of the two above mentioned factors, like [10,25] or do not specify in
detail which criteria to use to determine vehicle collision liability. Presumably, the driver’s
state citation could be used as a warrant for liability assignment [4,8,9,23]. A more thorough
review may be found in [7,8].

Therefore, in most cases, the not-at-fault driver is defined as the one who does not
provide any contributing human factor for the occurrence of the vehicle collision and has
not received any citation by the police [1,3]. However, adding information on non-driving
behavior or on the driver’s state citations could result in uncertainty or statistical bias in
exposure estimation [5–8,20,26]. For example, there exists in police citations, the risk of
“negative halo bias” [26]. An example of this phenomenon was illustrated by [7], who
discovered that young male drivers using alcohol/drugs were more likely to be receive a
police citation, which would in turn bias citation sampling [6–8].

This is why, mainly during the last few years, researchers have mostly been inclined
to consider essentially hazardous driving behavior (mainly driver and speed offences)
to assign driver liability in the collision, considering that, in the literature to date, the
quasi-induced exposure method is based on driver behavior and condition [6–8]. However,
there are driver impairments or offences regarding driver behavior and condition, for
example alcohol or drugs use, which increase the probability that a driver is at fault,
especially if they are combined with other variables. Nevertheless, they are usually not
considered because they are not per-se determinant in the liability assignment so they
could, in a deterministic approach, bias the process. This approach is considered a priori
too restrictive by the authors of this paper, who believe that there are additional variables
which individually or jointly could affect driver liability, so this issue should be explored.
Therefore, incorporating additional variables regarding driver behavior or condition in
liability assignment, applied to the quasi-induced exposure method, could be considered.

Given that there are no liability labels in the vehicle collision records, it is not possible
to apply supervised analysis techniques such as logistic regression or multiple regression
models, to estimate driver liability in terms of driver offences and condition variables.
Therefore, an unsupervised analysis, which takes into account these variables, is called for.
The authors believe that patterns can be identified, in terms of driver offences and condi-
tions during collisions, which would correspond to categories in the degree of certainty
about the driver liability: very clear, clear, likely, unclear, and so forth. These patterns
would correspond to relatively homogenous clusters in terms of the collision variables
above. Moreover, given the potentially complex multivariate structure of the data, there
are patterns which would only come to light when many offence and condition data are
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analyzed together. Thus, a cluster analysis is called for as a useful tool to support and
improve the quality of liability assignment.

Therefore, the main contributions of this paper are: (1) to explore the inclusion of
more variables in the liability assignment procedure applied to the quasi-induced exposure
method, given that in the literature, mainly in recent years, only driver and speed offences
have been taken into account; and (2) to apply a powerful clustering (thus unsupervised
analysis) technique such as self-organizing maps (SOM), for expert judgment-based liability
assignment in terms of the patterns identified from the clustering. Using this clustering
and expert judgment, liability regions are identified in terms of (sometimes complex)
multivariate patterns. In addition, as an added value, the SOM also provides a better
understanding of the multivariate structure of the data. The use of an unsupervised analysis
technique, such as SOM, implies an important methodological contribution to liability
assignment, given that to date there has existed no systematic statistical methodology to
this end, and that there are potentially relevant variables which were not taken into account
in the literature and could also affect liability. Thus, this paper contributes to improving
the quality of the liability assignment applied to the quasi-induced exposure method. The
latter, as pointed out above, is key when evaluating the impact of road safety measures
because it is used to estimate relative exposure, which is essential for road collision rate
estimation, and thus it has successfully been applied to policy-making.

Therefore, SOM has been applied to a database on collisions between two passenger
cars in order to: (a) cluster the data in terms of the eight offence variables to observe how
they are grouped in accordance with their multivariate structure; (b) select the variables
which are relevant in the definition of the clusters and which should thus be considered
when identifying patterns; and (c) based on (a) and (b), undertake pattern identification
directed to liability assignment given that, as mentioned above, there are no liability labels
attached to the data and the analysis is unsupervised. In addition, the results will be
compared to driver liability assignment based only on driver and speed offences, which
are the factors most commonly used by researchers to make the assignment.

2. Materials and Methods
2.1. Database

To carry out this research, the corresponding vehicle collision database was obtained
from the General Road Crashes database provided by the Spanish Traffic General Di-
rectorate (Dirección General de Tráfico, DGT). The final database only included vehicle
collisions in interurban areas between two passenger cars that occurred in Spain from 2004
through 2013. At first, this involved a total of 836,598 drivers, whose information was
provided (gender, age, offences, injury severity, etc.), as well as on their vehicle (vehicle
defect, color, etc.) and the collision characteristics (type, location, day of the week, etc.).
Each record in the base had data on a single driver, i.e., there were two records per collision,
one for each driver. Thus, the number of drivers analyzed was equal to the number of
records and twice the number of vehicle collisions.

There were three reasons for the choice of passenger cars. First, according to the data
from the Spanish Traffic General Directorate, in the study period of this paper (2004–2013),
passenger cars account for more than 70% of vehicles. Secondly, the number of victims in
interurban road crashes is also above 70% of the grand total. Third, passenger cars are the
vehicle group where quasi-induced exposure methods have been more frequently applied.
It is thus a very important group for road safety research.

In addition, interurban areas were chosen because the number of killed and seriously
injured drivers in interurban areas is much larger than in urban ones. In particular, in the
2004–2013 period analyzed here, the figures for killed and seriously injured for interurban
areas were 4 times and twice those of the urban ones, respectively.

The period 2004–2013 was chosen because, from 2014 on, the road crashes data
have been registered by means of the online application ARENA (Accidents: information
collection and analysis). Thus, there are two road crashes databases: the first is the General
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Road Crashes database, which includes the vehicle collisions from 1993 to 2013, and the
second is the ARENA database, which includes the vehicle collisions from 2014 onwards
and so far, the two databases have had a different format and structure, mainly for fatalities.
Work is currently being carried out so that, in future research, information on the recent
years may be added, thus increasing the size and hence also the accuracy of the statistical
inference. However, a large sample size is used for the research in this paper.

The screening and data cleaning process of the database (Figure 1) was carried out in
two stages: (I) in the beginning, the baseline data was screened to keep only two vehicle
crashes (head-on, off-set frontal, side and rear-end collisions) and subsequently restricted
to interurban areas (main roads and alternative ways) and two passenger cars, so that
the database was reduced to a total of 146,162 drivers; (II) next, it was necessary to carry
out a data cleaning given that errors in the data were still detected and there was a lack
of information on some drivers, etc. This process was carried out with the R program,
which is a language and environment for statistical computing and graphics [27], and with
which the final database was reduced to a total of 145,904 records of drivers involved in
road crashes.
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Figure 1. Screening and data cleaning process.

In this research, all driver behavior- and condition-related variables, which, to a
greater or less degree, have any influence over the driver liability, have been considered,
given that this research is a contribution to improve liability assignment applied to the
quasi-induced exposure method, which is in turn driver behavior-based, as pointed out
by other authors [6–8,19]. As mentioned above, the “traditional” procedures of the quasi-
induced exposure method usually only take into account driver and speed offences, but
here 8 variables were used instead, i.e., more information. In Table 1 the potentially relevant
variables and their most common or representative types, are shown.

The driver and speed offences should be included in the analysis because they are
related to hazardous driving behavior and, as such, it was expected that they were the best
to determine driver liability.

It is expected that the rest of the variables introduced in the model provide additional
information about driver liability because, although they alone are believed to be non-
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determinant in the assignment of liability, it is possible that the interactions between several
of them will be influential because the joint effect of subset of variables could be more
relevant in liability than their individual effects. Therefore, it is interesting to evaluate their
joint influence on all drivers.

Table 1. Potentially relevant (driver behavior and condition) variables.

Potentially Relevant Variables Most Representative Types (Description)

Driver offence

Distracted driving
Non compliance of the Stop signal
Partial invasion of opposing lane

Non compliance of the headway distance

Speed offence
Inadequate speed under existent conditions

Driving above the speed limits
Too slow driving disturbing traffic

Administrative offence

Invalid driver license
Expired driver license

Not passing the roadworthiness test (MOT: in Spain, it is a
test which, by law, must be made periodically on all road

vehicles that are more than 4 years old, in order to check that
they are safe to drive)

Disability
Sight

Hearing
Lower–Upper limbs

Vehicle defect

Very worn out tyres
Flat tyre

Missing tyre
Deficient front of rear—lights

Deficient brakes

Alcohol/drugs use These variables indicate: not respecting the limits of
alcohol/drug during driving

Drowsiness This variable indicates if the driver has or not drowsiness,
fatigue or concern and it has been named “Drowsiness”.

Sudden illness

Sudden illnesses may be defined as those which appeared
unexpectedly and usually cause loss of standard abilities.

Examples of sudden illnesses: Passing out, epileptic seizure,
heart attack, anxiety attack, etc.

A priori, data on basic demographics, such as gender or age, could have also been
taken into account. However, none of the corresponding variables have been mentioned
in the literature as relevant, or even potentially relevant, to liability assignment in the
quasi-induced exposure method. In addition, other variables related to the collision
characteristics or vehicle could be also considered. However, the quasi-induced exposure
method is based on the driver behavior and conditions. Therefore, only driver behavior-
and condition-related variables are considered.

In addition, as some researchers pointed out [6,19,28], the original databases have
usually some problems such as incomplete or non-valid information, unknown values,
under-reporting problems mainly in no-injury or less severe-injuries collisions, etc., it is
thus important to use the maximum amount of information possible to analyze vehicle
collisions. Therefore, in this work, all the variables that have unknown values in the records
have been taken into account.

2.2. Methodology

The methodology applied through this research is cluster analysis, namely SOM. The
self-organizing map was developed by Kohonen (1990) and is one of the most popular
neural networks and a well-known technique for clustering and visualization, which
can be included within the machine learning techniques. It belongs to the competitive
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learning networks category, where the different nodes (clusters) in the map compete for
the data assignment [29,30].

The purpose of SOM is to represent and cluster multidimensional data in a space
of smaller dimension, typically 2D, so that the clustering can be visualized in a so-called
map, while maintaining the topological structure, i.e., in such a way that sample points
which are close in the original space will still be so in the reduced one. This dimensionality
reduction feature is a great advantage of SOM because, as mentioned above, the 2D map
will provide a visible and thus very rapidly analyzable clustering [31–34].

The SOM algorithm is fundamentally developed in four stages: initialization, compe-
tition, cooperation and adaptation [33,35]. It proceeds sequentially, i.e., each sample point
is assigned in turn to the nearest node in the map, and subsequently both the weights of
the winner node and the neighboring ones are updated. This update of the neighboring
nodes is called the cooperative learning stage. It is what provides the aforementioned
preservation of topology.

The final result of SOM is thus a map of a finite number of nodes, indexed by pairs
of integer numbers, where every sample point of the original (high dimensional) space is
assigned to a single node of the 2D map. The nodes in the map also have a representation
in the original high dimensional space, which are named their weights.

A certain limitation of SOM is that, since it performs multicriteria optimization (on
both cluster homogeneity and conservation of topology), then if one just wanted to optimize
on the first criterion, it (SOM) would be suboptimal and one should use traditional (non-
projected) cluster techniques (e.g., K-means) instead.

Moreover, the number of variables in a SOM is limited by its main advantage with
respect to other clustering techniques: visibility (and hence quickness of understanding
of the clustering structure). One may thus pay a price for this advantage in terms of
information. More information regarding the SOM methodology can be found in [33,35].

The choice of SOM is justified because the absence of liability labels in the data calls
for the use of unsupervised learning techniques, such as cluster analysis. Within clustering
tools, SOM has, with respect to other clustering techniques, the advantage of visibility.
Therefore, it is a powerful visualization tool for data analysis which provides a better
understanding of the multivariate data, whose joint dependence structure is taken into
account in the liability assignment process. Thus, with the SOM methodology, driver
behavior pattern identification regarding driver impairments or offences can be carried out.
The joint analysis of all the offence variables can shed light on driver liability by assigning
expert judgment-assessed liability labels to the SOM clusters.

3. Categorization of the Variables: Sensitivity Analysis of Self-Organizing Maps
(SOM) with Sample Selection

To be able to work with the variables in Table 1 applying the SOM methodology, it has
been necessary to transform the categorical variables into numerical ones. In this section,
the process of variable categorization will be described.

The 0 value has been used to indicate that this offence or unfavorable condition is not
present, while the 2 value has been used if it is. Given that all variables used in the SOM
have been transformed from their original categorical values to discrete values between 0
and 2, their range is irrelevant or, in other words, their ranges are “standardized”.

The problem of coding is mainly found in the cases in which the values of one or more
of the variables analyzed are unknown. There has been a tendency to believe that if the
value of a given variable is unknown, the value to be assigned to it should be the average
of those associated to lack (0) and to the presence (2) of these offences or impairments, that
it to say, in our case it will have to take the value 1. However, it is considered here that the
problem is more complex and, to choose this value the starting point is the two following
hypotheses: (a) it should lie between 0 and 2, given that it is an intermediate category, and
(b) if there is an “unknown” value or a datum which is not registered by the police, it is
more likely that this could be due to no offence, so it should be assigned a value closer to 0
than to 2, but it is difficult to establish a specific one. Thus, to assess this question from



Int. J. Environ. Res. Public Health 2021, 18, 1475 7 of 18

the point of view of its effect on the SOM, in this section a SOM-based sensitivity analysis
using a sample of the database is carried out and compared with three different values: (A)
the value 0.25 is taken to represent the unknown values of the variables; (B) likewise for
0.5; and (C) likewise for 1. To obtain these maps, the SOM’s seed has been held fixed so
that the random initialization of the algorithm affects equally all the maps.

Two SOMs are exactly the same if the relative positions of the data are the same for
both maps [36,37]. Therefore, if two SOMs are equal, the distance between pairs of drivers
located in the clusters of the first SOM should be equal to the respective distances between
the nodes which contain that same couple of drivers in the second SOM [37].

Since 3 different maps have been obtained (for 0.25, 0.5 and 1), pairwise comparisons
have been carried out. For each of these maps, the distance matrices between the sample’s
drivers have been calculated. However, since comparing distance matrices for the full
database of 145,904 drivers is unfeasible, a subsample (M) of size n has been drawn and
distance matrices of size n × n have been compared. This matrix has zeros in all the
elements of the diagonal and is symmetric, given that, in a same SOM map, the distance
between a driver and him/her self is zero and the one between drivers A and B is the same
as the one between B and A. Thus, a distance matrix is obtained between the n drivers for
each one of the SOM maps, which were compared as set out in Figure 2.
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To choose the sample size of n drivers for distance matrix comparisons, it should be
taken into account that there are, as far as the authors now, no theoretical results on sample
representativeness for similarity between SOMs, i.e., results on the sampling distributions
of these similarity measures between distance matrices.
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However, there do exist analytical results for estimates of proportions which could
provide an insightful reference [38]. For a 0.05 maximum estimation error for the proportion
p under random sampling, since the width of the corresponding confidence interval is:

1.96 ∗
√

p(1 − p)
n

, (1)

where n is the sample size, if one chooses the most unfavorable case to be conservative,
that would be p = 0.5, that is:

1.96 ∗
√

0.5 ∗ (1 − 0.5)
n

= 0.05; n = 384 (2)

Therefore, a sample size of 384 drivers is taken as a reasonable value for distance
matrix comparisons.

When carrying out these distance matrix comparisons in R, the results which are
obtained are those shown in Figure 3.
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A priori, it is uncertain if these differences can be significant or not. They should thus
be standardized or compared with any type of internal “reference” error of the algorithm.
Namely, the error or variability due to initialization has been chosen as reference.

To this end, a total of eight SOMs with all the drivers of the database have been
obtained with different initializations but holding a value of 0.25 fixed for the cases in which
the value of a variable is unknown. It is assumed that the variability due to initialization
will be similar for 0.5 and 1. As outlined above, a sample of size n = 384 is taken again
for the distance matrix comparisons. This would provide potentially 28 pairwise distance
matrix comparisons, but only 14 randomly selected comparisons have been actually carried
out. The results of 4 of these 14 comparisons are shown in Figure 4.

The average percentage difference of all comparisons, i.e., the internal variability of
SOM due exclusively to different initialization, is approximately 16%. This value is only
slightly higher than the aforementioned variability due to using 0.25, 0.5 or 1, i.e., the latter
is not really significant.

Given that the choice of 0.25, 0.5 or 1 is not that significant, the analysis has been
carried out taking 0.25 which is considered nonetheless by expert opinion as the most
suitable for these situations.

Thus, the final variables and their categorization are shown in Table 2.
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Table 2. Final variables and their categorization.

Variables Categories Values

Driver offence No driver offence 0
Driver offence 2

Speed offence No speed offence 0
Unknown 0.25

Speed offence 2
Administrative offence No administrative offence 0

Unknown 0.25
Administrative offence 2

Disability No disability 0
Unknown 0.25
Disability 2

Vehicle defect No vehicle defect 0
Unknown 0.25

Vehicle defect 2
Psychophysical Circumstances

Alcohol/Drug use No alcohol/drug use 0
Unknown 0.25

Alcohol/drug use 2
Sudden illness No sudden illness 0

Unknown 0.25
Sudden illness 2

Drowsiness No drowsiness 0
Unknown 0.25

Drowsiness 2
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4. Results and Discussion

This section has been divided in four subsections. In the first one, the offences and
conditions SOM is shown. In the second one, it is assessed which are the variables that
define the SOM clusters. In the third subsection, pattern identification is carried out in
terms of these variables, in order to help in the liability assignment process. Finally, in the
last subsection, the results with SOM are compared with those of the traditional liability
assignment process.

4.1. SOM Division of the Multivariate Structure

In this subsection it is explained how the drivers are allotted along the SOM map so
that the drivers’ data with similar multivariate characteristics are included in the same
node or in close ones of the map.

The distribution of the 145,904 drivers along the offences SOM is shown in Figure 5.
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In the map, drivers are distributed in 25 clusters and the driver topology characteristics
can be visualized in the 2D space when, originally, it was eight-dimensional (one for each
offence variable). The proportion of drivers in each cluster is shown below (within each
cluster). The cluster numbers are indicated in red. There exist quantitative criteria for
selecting the number of clusters. For example, in probabilistic mixture model-based
clustering, the EM (Expectation Maximization) algorithm may be applied. Here, the choice
of 25 nodes was made empirically by trial and error: SOMs with different map sizes have
been obtained, starting with the smallest ones. 25 nodes were considered a reasonable
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choice, given the trade-off sought between properly identifying patterns (clarity/visibility)
and sample size per cluster: with an excessively small map size, clusters could be too
heterogeneous and, therefore, adequate patterns would not be extracted; the same would
occur with a very large map size, resulting in too small cluster sample sizes [39]. Also,
25 clusters is an adequate number to provide a better understanding of the multivariate
structure of the data.

In this map, the average values of each variable in each cell (the circular sectors within
a cluster) are shown with different colors. This representation helps to visualize the joint
(multivariate) structure in the original data space. Each circular sector radius within a
cluster will be smaller or larger (the angle is the same for all variables, 360/number of
variables) depending on the average value (over all the drivers in the cluster) of the variable
it represents. The radius will be maximum when either (a) the value of the variable in
question for all drivers is 2, which means that all the drivers in the cluster have this offence
or impairment or (b) the average of the variable in this cluster is larger than any other
one (cluster), whereas it will be minimal when the average is 0 (the circular sector is not
represented for that variable) and, therefore, no driver in the cluster will have committed
that offence or present the impairment that the variable indicates [39].

The weights of the different clusters are shown in Table 3. Clusters 10, 13, 17 and 23
have not been taken into account, given that there are zero drivers assigned to them, they
are thus transition clusters, necessary to preserve/reflect distance and for this reason, they
are maintained in the map, but will not affect the rest of analysis.

Table 3. Average value (weight) of each variable in the different clusters.

Number of
Drivers Disability Alcohol

or Drug
Sudden
Illness Drowsiness Speed

Offence
Administr.
Offence

Driver
Offence

Vehicle
Defect

Cluster 1 906 (0.62%) 2 0.02 0.02 0.02 0 0.09 0 0
Cluster 2 194 (0.13%) 0.10 0.10 0.05 0.06 0.25 0.33 0 2
Cluster 3 16,306 (11.17%) 0.22 0 0 0 0 0.25 0 0
Cluster 4 7980 (5.47%) 0 0 0 0 0.25 0.03 0 0
Cluster 5 45,006 (30.85%) 0 0 0 0 0 0 0 0
Cluster 6 2321 (1.59%) 0.09 0.02 0.02 0.02 2 0.07 0 0
Cluster 7 1007 (0.69%) 0.02 0.03 0.03 0.07 0 2 0 0
Cluster 8 4850 (3.32%) 0.10 0.24 0.27 0.29 0 0.03 0 0
Cluster 9 925 (0.63%) 0.17 2 0 0 0.32 0.18 0 0
Cluster 11 413 (0.28%) 0.07 0.07 0.07 0.08 2 2 2 0.07
Cluster 12 1389 (0.95%) 0.13 0.05 0.06 0.08 0 2 2 0.05
Cluster 14 4048 (2.77%) 0.09 0.25 0.26 0.25 0 0.04 2 0
Cluster 15 30,729 (21.06%) 0 0 0 0 0 0 2 0
Cluster 16 8031 (5.5%) 0.02 0.04 0.04 0.04 2 0.03 2 0.03
Cluster 18 497 (0.34%) 0.05 2 0 0 0.52 2 2 0.04
Cluster 19 809 (0.55%) 0.07 0 0 2 0.36 0.02 2 0.02
Cluster 20 9001 (6.17%) 0 0 0 0 0.25 0.02 2 0
Cluster 21 1021 (0.7%) 0.09 2 0 0 2 0.03 2 0.02
Cluster 22 3940 (2.7%) 0.03 2 0 0 0 0.04 2 0.03
Cluster 24 5450 (3.74%) 0.25 0 0 0 0 0.24 2 0.12
Cluster 25 1081 (0.74%) 2 0.17 0.04 0.02 0.25 0.02 2 0

Table 3 is important because, although the weights are already illustrated in Figure 5,
their exact values are given therein. Therefore, the SOM and its corresponding weight table
have to be analyzed together.

In accordance with the information presented in Figure 5 and Table 3, there are
two important SOM clusters, number 5 and number 15, which include more than 50%
of the total driver sample. Cluster 5 is formed by all drivers who committed no offences
and presented no unfavorable conditions for driving, this is thus why it includes so many
drivers. On the other hand, cluster 15 includes all drivers who have committed some driver
offence. There are 22 types of such offences and, additionally, some of them are relatively
frequent (e.g., distractions). Thus, this cluster also contains many drivers.
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4.2. Most Influential Variables on Driver Liability

SOM will be now used to provide an auxiliary tool to determine which variables are
more relevant to the liability assignment applied to the quasi-induced exposure method.
This will be done by selecting the variables which play a significant role in defining the
SOM clusters, while also leaning on prior knowledge on vehicle collision liability.

This issue is important given that, as mentioned above, it has been observed that,
so far, the procedure for such assignment to date mainly takes into account only driver
and speed offences and, in addition, it is not clear which additional explanatory variables
regarding driver behavior or condition should or should not be introduced in this process.

In any research on the liability assignment in terms of the variables of the vehicle
collision database, driver and speed offence have to be taken into account. In addition, it is
reasonable to assume that the more clearly a variable divides the SOM, the more relevant
to driver liability it will be. In Figure 5 and Table 3, it can be observed that the variable
which best divides the SOM is driver offence, given that, within all clusters, it only takes
the values 0 or 2 (Table 3) and it is the one that clearly divides the map into two halves.
Therefore, it would potentially be the variable which best defines driver liability.

In addition, in the SOM the “Disability” and “Vehicle defect” variables appear isolated
in a few clusters (1 and 2, respectively), i.e., with negligible mean values for the remaining
ones. Therefore, these variables should perhaps not be taken into account in the liability
assignment process. However, disability is mainly related with the age of the drivers [39]
and elderly drivers are more likely than younger ones to be at-fault in a crash [15]. Thus it
could be useful to include this variable in order to obtain more information about driver
behavior patterns. More studies should be carried out to evaluate the disability variable
influence over the driver liability.

As for administrative offences, the only one which could be more relevant for liability
assignment is not passing the roadworthiness test (MOT) when it appears jointly with a
vehicle defect. However, no clusters have been found in which both offences coexist. This
is why this variable is considered not very important in liability assignment.

A similar situation is found with “Drowsiness”, which is usually absent. In addition,
in the SOM no node has been identified in which only that situation appears, given that it
happens together with driver offence, whose weight to determine liability is clearer. This
suggests that this variable should not be considered.

As for the “Sudden illness” variable, the type of sudden illness suffered by drivers
is not specified in the collision database, but if available would facilitate its use. It could
include those conditions that appear without being expected and usually cause loss of
the normal condition of drivers, for instance: fainting, brain injury, heart attack, anxiety
and so on. Therefore, they can affect the likelihood of being or not at-fault in the collision,
given their influence on driver ability. However, in general, there are only a few drivers
who suffer sudden illness and are usually spread out in the SOM and their influence in the
liability assignment is thus usually low. Therefore it is not clear if this variable should be
taken into account in the liability assignment process. The use of intelligent devices, which
provide information about the driver state, would be useful in order to evaluate properly
the relevance of sudden illness on the liability assignment.

The variable types classified by their level of influence on the liability assignment
using SOM, are shown in Table 4.

Table 4. Categories for variable influence on the liability assignment process.

Most Influential Variables in
the Assignment of Liability

Less Influential Variables in
the Assignment of Liability

Unknown Relevance in the
Liability Assignment Process

Driver offence Administrative offence Disability
Speed offence Drowsiness Sudden illness

Alcohol/drugs use Vehicle defect
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4.3. Pattern Identification for the Liability Assignment Process

In this subsection, by using the results of the previous steps of SOM clustering and
relevant cluster variable selection, pattern identification in terms of the selected variables
is carried out in order to help with the liability assignment process.

In the SOM there are two areas which are clearly identified subjectively: liable (at-fault
driver) and Presumed non-liable (not-at-fault driver) (Figure 6-the less relevant variables
are also maintained). This boundary was established, given that SOM is an unsupervised
technique, by expert criteria, based on the characteristics of the offences which drivers have
committed or not in both map subsets i.e., the boundary in the map has been estimated
depending on the “subset of offences committed by drivers” pattern in each cluster.
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At the top of the map (68,730 at-fault drivers), the labeling errors should be minimal,
given their profile of offences because this area includes all drivers who have commit-
ted offences which, in accordance to the literature reviewed, carry very large weights
when establishing liability, e.g., speed offences. For this reason, the top of the map is
named “Liable”.

The bottom of the map (77,174 drivers) is composed of all drivers who have com-
mitted an offence or have an impairment which increases the chance that a driver was
at-fault, but does not per-se determine it. For this reason, the bottom of the map is named
“Presumed non-liable”.

The 5th cluster, at the bottom of the map (presumed non-liable) should be highlighted.
It consists entirely of not-at-fault drivers (45,006 drivers). However, in the remaining nodes
in this area, as mentioned above, there is less clarity in driver liability, given that many less
important variables in the liability assignment coexist and there are more variables whose
values are unknown.
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Therefore, to carry out driver classification for all nodes of the map, a joint analysis
about drivers in these clusters and the data on their opposing driver in the collision was
necessary. This analysis was carried out with the R software and the following cases are
considered: (1) if both drivers at the same collision were assigned to any cluster at the
top of the map, it would be a collision where both drivers can be considered as at-fault
(7626 drivers); (2) if one of the two drivers involved in a collision is in the lower zone of
the map (presumed non-liable), but the other one belongs to a cluster at the top of the
map (liable), then the former could be considered not-at-fault or vice versa. There are
122,208 drivers in this category (61,104 at-fault drivers and 61,104 not-at-fault drivers);
(3) if both drivers were in the 5th cluster (2014 drivers), then both should be labeled as
not-at-fault; (4) if both drivers were assigned to two different clusters in the presumed
non-liable zone, additional analyses about these drivers should be carried out to assess
if it is possible to classify them or not, even though, in general, their classification is not
possible with just the available data. The analysis for (4) has not been carried out in this
research, therefore 14,056 drivers who meet this case criterion were rejected in the study.

In Table 5, the casuistry of classifying drivers, which has been detailed in the analysis
above, is summarized. In it can be seen that, of the total drivers evaluated, 83.76% of them
could be classified as part of a clean collision.

Table 5. Driver classification by SOM methodology.

Liability Categories Number of Drivers %

Fault/Not-at-fault 122,208 83.76%
Fault/Fault 7626 5.23%

Not-at-fault/Not-at-fault 2014 1.38%
Other drivers to analyze 14,056 9.63%

TOTAL 145,904 100%

In Table 5, “Fault / Fault” and “Not-at-fault/Not-at-fault” categories are not taken into
account because they are not clean collisions, an essential requirement in the quasi-induced
exposure method. Therefore, only the drivers which are involved in clean collisions are
considered (122,208 drivers).

4.4. Comparison of Results with the Traditional Liability Assignment Process

To support the validity of the results obtained, the liability assignment has been also
carried out for comparison (reference) based only on driver and speed offences, which are
the most commonly used by researchers to make the assignment, given that, as pointed
above, they measure hazardous driving behavior. Thus, a driver is considered at-fault if
he/she has committed a driver or speed offence and not-at-fault if that is not the case.

With this second criterion, a characterization in useful cases of 72.47% of the records is
achieved for the quasi-induced exposure, as shown in Table 6. This is 11.29% below the
83.76% achieved with the new procedure of this paper.

Table 6. Driver classification by driver and speed offences.

Liability Categories Number of Drivers %

Fault/Not-at-fault 105,736 72.47%
Fault/Fault 7706 5.28%

Not-at-fault/Not-at-fault 13,098 8.98%
Other drivers to analyze 19,364 13.27%

TOTAL 145,904 100%

In liability assignment based exclusively on driver and speed offences, the number
of “Not-at-fault/Not-at-fault” cases will be significantly increased because the procedure
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considers that any drivers who have not committed such offences are not at fault. There-
fore, cases in which, for instance, one of the drivers has a disability and the other driver
has alcohol/drug use will be classified as not-at-fault/not-at-fault, while with the SOM
methodology these drivers are in the “Other drivers to analyze” category.

In addition, when liability is based only on driver and speed offences, the number
of cases of the “Other drivers to analyze” category is also increased, given what occurs
in liability assignment through SOMs. This is because the assignment process based on
these two variables does not take into account the cases in which some data are unknown.
In other words, with the SOM methodology many cases in the “Other drivers to analyze”
category (uncertain) are now assigned to fault/not-at-fault.

To summarize, the application of SOM to driver data provides identification, based on
their offences, of patterns that can help in the liability assessment process.

5. Conclusions

The main contributions of this research are the following:

- A better understanding of the complex multivariate structure of the data.
- To provide a tool (SOM) to help identify driver liability patterns applied to the quasi-

induced exposure method based on the database information.
- Improvement of the quantity and quality of the data for future application of the quasi-

induced exposure method, which is necessary to estimate the relative exposure level of
the different driver groups. This is an important contribution to road safety research.

Given that no liability labels exist in many databases, the analysis is based on an
unsupervised machine learning tool. This research has proposed an alternative methodol-
ogy (self-organizing maps, SOM) to carry out a joint analysis of the variables which are
considered relevant in assignment of liability in order to identify patterns which help to
determine the most and the less influential variables on the driver liability and help to
carry out the liability assignment itself in collisions between two passenger cars in interur-
ban areas. This methodology has been applied given that it has been observed that the
procedure for liability assignment mainly takes into account only driver and speed offences
and a discussion has existed about which other variables best determine liability. Thus,
the potential of this methodology was to take advantage of the opportunity of obtaining
additional information based on more variables, by means of a better understanding of
the multivariate structure of the data. Multivariate analysis is considered a more thorough
solution than univariate or bivariate, given that some complex behaviors may only unfold
when all variables are analyzed jointly. In addition, with this research, additional infor-
mation about the characteristics of drivers involved in vehicle collisions as well as of the
collisions themselves is extracted.

The analysis suggests that the most important variables for driver liability are: driver
offence, speed offence and alcohol/drug use, although the two first ones are the most
important. The relevance of the variables disability and sudden illness regarding the driver
liability is not clear and administrative offence, drowsiness and vehicle defect are clearly
the less-relevant ones, in such way that, when carrying out the liability assignment, not
taking them into account would not be influential, thus simplifying the process (with
respect to considering the eight initial offence variables). However, the patterns and thus
the boundaries identified by SOM are more complex than those which would result from
just taking into account driver and speed offences and alcohol/drug use. Some of the
remaining variables may not be very relevant marginally, but could be so jointly with
others. Thus, although the three first variables are the most relevant, some information is
still contained in the two following ones.

Finally, liability assignment carried out based on the patterns identified through the
SOM, by assigning, from expert opinion a label to each cluster, allows for potentially
classifying 83.76% of the drivers, which means a higher proportion of driver assignments
to at-fault or not-at fault status than with the standard procedure (72.47%). The quality of
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this classification was improved given that, with the methodology proposed in this paper,
complex multivariate structure is taken into account.

The main limitations of the study are: (a) it is very important to choose properly the
SOM variables because their number is limited by its visibility (because it is a projected
clustering), which is, at the same time, the main advantage of this clustering technique
with respect to other ones. SOM thus provides a very quick assimilation/description of
the cluster structure of the data. One may thus pay a (small) price for this advantage in
terms of information; (b) quasi-induced exposure is a method based on driver behavior
and condition. Therefore, to assign driver liability, traditionally only driver behavior- and
condition-related variables have been used. However, there are other variables related
to vehicle collision circumstances, such as weather or pavement conditions, which could
also affect, to a lesser degree, driver liability. Therefore, this issue should be explored in
future research; and (c) as mentioned in the paper, more studies should be carried out
with disability and sudden illness variables in order to evaluate their relevance on driver
liability in depth.

From the point of view of the added value of this paper, this research includes im-
portant quantitative results. The paper thus goes clearly far beyond a purely binary or
qualitative statement on whether given variables are influential or not on liability. This
quantification includes the numbers (proportions) of drivers in each cluster/node as well as
the SOM topology and neighbor structure. A complete description of the patterns identified
necessarily includes this information. Moreover, the borders between clear, non-clear and
intermediate liability assignments are also only fully specified if quantification is given.

Therefore, with the SOM methodology an improvement of the quality of estimated
relative exposure based on quasi-induced exposure is expected. This is the result of taking
into account more variables and data (also variables whose values are unknown have
been considered). It will thus be possible to better understand a phenomenon as complex
as vehicle collisions, as well as to establish different driving-related measures to reduce
collisions, minimize their impact and improve road safety.
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