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Abstract: Neurodevelopmental disorders (NDDs) have been suggested to lie on a gradient con-
tinuum, all resulting from common brain disturbances, but with different degrees of impairment
severity. This case-control study aimed to assess postural stability against such hypothesis in 104 chil-
dren/adolescents aged 5-17, of whom 81 had NDDs and 23 were healthy controls. Compared to
healthy controls, Autism Spectrum Disorder (ASD) resulted in the most severely impaired neurode-
velopmental condition, followed by Attention Deficit Hyperactive Disorder (ADHD) and Tourette
Syndrome (TS). In particular, while ASD children/adolescents performed worse than healthy controls
in a number of sensory conditions across all parameters, ADHD children/adolescents performed
worse than healthy controls only in the sway area for the most complex sensory conditions, when
their vision and somatosensory functions were both compromised, and performance in Tourette
Syndrome (TS) was roughly indistinguishable from that of healthy controls. Finally, differences
were also observed between clinical groups, with ASD children/adolescents, and to a much lesser
extent ADHD children/adolescents, performing worse than TS children/adolescents, especially
when sensory systems were not operationally accurate. Evidence from this study indicates that poor
postural control may be a useful biomarker for risk assessment during neurodevelopment, in line
with predictions from the gradient hypothesis.

Keywords: autism spectrum disorder; attention deficit hyperactivity disorder; Tourette disorder;
transdiagnostic approach; mental health prevention

1. Introduction

Since the 1960s, a rising prevalence of childhood disabilities has been documented,
largely because of an increase in the prevalence of mental and behavioral conditions such
as Autism Spectrum Disorder (ASD), Attention Deficit Hyperactive Disorder (ADHD), and
Tourette Syndrome (TS), whereas the prevalence of any other developmental delay such
as cerebral palsy, hearing loss, and seizures, declined over time [1]. ASD, ADHD, and TS
share common symptomatic features [2], such as impairments in the fields of general de-
velopment [3], communication and language [3,4], social inter-relatedness [3,5-7], motor
coordination [8], attention [9], activity [10,11], behavior, mood [7,12,13], and sleep [7,14-16].
However, it is also important to recognize that although symptoms may overlap, this does
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not always imply the same presentation of symptoms or the same response to treatment
efforts. Thus, from a phenotypic perspective, similar behavioral manifestations may exist
across conditions and similar behaviors may manifest differently within a condition [17].
In light of such extensive difficulties, these conditions can affect individuals’ personal
(e.g., impaired executive functions), social, and school skills (e.g., impaired learning), with
implications for future working abilities [2]. This is of paramount importance, considering
that interpersonal skills may per se be less proficient among individuals with neurode-
velopmental conditions, making it difficult to infer directionality of effects. It is plausible
that individuals with neurodevelopmental conditions may be differentially susceptible
to a variety of environmental factors with negative effects on their preexisting behavioral
difficulties [18].

Despite evidence of comorbidity [5,10,19], ASD, ADHD, and TS were previously con-
sidered different from each other [20]. Only recently have they been grouped into the single
diagnostic category of neurodevelopmental disorders (NDDs) [3] because of substantial
overlapping not only at the clinical [5,6,21,22] but also at the neurobiological level [23-27].
This has led to the hypothesis that NDDs, including those that typically emerge in late
adolescence and early adulthood such as affective and non-affective psychoses, should be
seen as lying on an etiological and neurodevelopmental gradient continuum, all resulting
from the commonality of disrupted or deviant brain development [28], but with different
degrees of neurodevelopmental impairment severity [20]. According to the neurodevelop-
mental gradient hypothesis, the earlier the age of onset and the higher the severity and
persistence of the psychopathological, cognitive, genetic, and sensorimotor impairment,
the greater the overall neurodevelopmental impairment [20]. In line with this, when such
impairments are compared across disorders, the rates are in decreasing severity from ASD
to late-onset NDD [20].

Motor abnormalities are core features of ASD (e.g., stereotypic movements), ADHD
(e.g., hyperactivity), and TS (e.g., tics), and have been suggested to represent a trans-
diagnostic domain putatively sharing neurobiological mechanisms of neurodevelopmental
origin [29]. Motor difficulties, especially in the coordination domain, have also been re-
ported in typically developing children, potentially reflecting age-dependent reversible
developmental traits [30]. However, their persistence in late childhood is suggestive of a
disrupted sensory integration, thus affecting the sequencing of complex motor acts [31,32],
and seem to be related with poor cognitive performance [8] in predicting the manifestation
of an NDD [8,29]. Further, a developmental coordination disorder, the most severe pheno-
type of coordination impairment, once defined as “dyspraxia” or “motor clumsiness”, is
frequently diagnosed in children with an NDD [33-35].

Abnormal sensory responsivity has been implicated in atypical neurodevelopment,
independently of concomitant motor difficulties [36]. Research evidence indicates that
sensory feedback and movement are intrinsically connected [37], as a variety of sensory
information from the environment needs to be integrated in order to plan and execute
movement effectively [36]. Studies conducted over the last decade have started to explore
the contribution of aberrant sensorimotor integration, defined as an impairment in the
pathway involving motor activity triggered by sensory stimuli, to the development and
maintenance of NDDs [38].

Sensorimotor integration deficits among individuals with neurodevelopmental [39,40]
and other developmental [41] conditions may affect postural control in both static and
dynamic conditions. Standing balance requires the ability to integrate sensory inputs from
visual, somatosensory, and vestibular systems [42]. Briefly, as we interact with our environ-
ment, the central vestibular system receives regular afferent fibers transmitting detailed
information about head rotations through precise spike-timing as well as irregular afferents
responding to high-frequency features exclusively through changes in the firing rate. Then,
the brain combines vestibular and extra-vestibular cues, such as visual and proprioceptive
information, at the earliest stages of central vestibular processing to construct an estimate
of self-motion. Finally, vestibular processing is shaped as a function of context during
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reflex behavior as well as more complex voluntary behaviors. Thus, disturbances in the
multisensory integration by the brain may disrupt the accurate control of behavior in every-
day life, including posture and balance [43]. Both preclinical and clinical studies converge
on the evidence that efficient multisensory integration depends on intact feedback and
feedforward neuronal loops between cortical regions, including primary sensory regions
as well as multisensory areas such as the superior temporal sulcus and motor regions, and
subcortical regions such as the thalamus. These cortico-cortical and cortico-subcortical
transmissions have been suggested to serve a central integrative mechanism where visual,
somatosensory, and vestibular inputs converge to support postural stability [44].

Experimental perturbation of sensory inputs can help in examining how individuals
suffering from different conditions utilize combinations of that sensory feedback to main-
tain an upright stance [45]. In line with the National Institute of Mental Health (NIMH)
Research Domain Criteria (RDoC) project, which promotes a framework for translational
research on functional neurobehavioral dimensions across different disorder categories,
sensorimotor systems may well represent a domain of function to be studied in neurode-
velopment [46]. However, although previous studies have examined balance performances
in developmental disorders [39-41], sensorimotor integration processes across different
NDDs have not been systematically assessed. The present study attempted to fill this
gap by performing a case-control analysis of postural stability under normal and altered
sensory conditions in NDDs (ASD, ADHD, and TS) as compared to healthy controls. We hy-
pothesized that, compared to healthy controls, children/adolescents with an NDD would
present with decreasing postural balance impairment from ASD to ADHD and TS, in line
with predictions from the gradient hypothesis.

2. Materials and Methods
2.1. Participants

Volunteers were enrolled in a case-control study through convenience sampling,
based on their willingness to participate, at the Veneto Autism Spectrum Disorder Regional
Centre, Integrated University Hospital of Verona, Italy. Participants aged 5 to 17 were
assessed for the presence of a neurodevelopmental disorder (NDD) and recruited if they
fulfilled the Diagnostic and Statistical Manual of Mental Disorders, fifth edition, (DSM-
5) criteria for one of the following conditions: (a) Autism Spectrum Disorder (ASD),
(b) Attention Deficit Hyperactivity Disorder (ADHD), (c) Tourette Syndrome (TS). Patients
were excluded if presenting with (a) a formal comorbid neurodevelopmental condition,
i.e., satisfying DSM-5 diagnostic criteria for more than one neurodevelopmental condition
(e.g., receiving diagnosis of both ASD and TS); (b) a formal comorbid neuropsychiatric
condition, i.e., satisfying DSM-5 diagnostic criteria for another neuropsychiatric condition
such as psychosis-related disorders, depression-related disorders, anxiety-related disorders,
and obsessive-compulsive-related disorders (e.g., receiving diagnosis of both ADHD
and major depressive disorder); (c) a clinically relevant medical condition, particularly a
neurological (receiving diagnosis of cerebral palsy, epilepsy, or otherwise-classified motor
handicap) or orthopedic (receiving diagnosis of fracture or severe injury) condition; (d) a
genetic syndrome (receiving diagnosis of chromosomal abnormalities); (e) a severe form
of atypical neurodevelopment rendering it difficult to satisfactorily perform the study (all
ASD children/adolescents included in the study had a diagnosis ranked severity level
1, which is the least severe form in terms of needed support, according to the DSM-5
three-level severity classification). Such exclusion criteria were applied in order to reduce
the implications of “spurious comorbidity”, which is the higher co-occurrence of disorders
in clinically ascertained samples than in population-based samples, possibly due to such
patients presenting with comorbid conditions being more likely to seek medical care and
receive a diagnostic evaluation.

Healthy peers were recruited outside of the hospital facility and enrolled into the study
with the support of several primary and secondary schools and the Hospital Pediatric Unit
of Verona. Children/adolescents who wanted to participate in the study were recruited
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only if presenting with good overall health. They were excluded if presenting with (a) a
neurodevelopmental condition; (b) a neuropsychiatric condition; (c) a clinically relevant
medical condition; (d) a genetic syndrome.

2.2. General Assessment

Socio-demographic information, such as age and gender, were obtained from all study
participants. All volunteers were extensively visited by expert clinicians. Assessments
included: (a) Review of clinical records, (b) in-depth physical exam, (c) medical history,
(d) rating scales. Socio-demographic and clinical characteristics of the study sample,
including cognitive performance as well as developmental motor and coordination abilities
have been extensively described before [8]. Briefly, children/adolescents with an NDD
presented with a lower range intelligence quotient, less proficient movement skills when
compared with healthy peers’ normative data, and coordination performance indicative
of potential developmental coordination difficulties [8]. The present report focuses on
stabilometric data.

2.3. Postural Control

In order to assess postural control, all participants underwent stabilometry, the meth-
ods of which have already been reported in detail [45]. Briefly, stabilometric assessments
were performed in a standing position on an electronic monoaxial platform known as the
TecnoBody® Platform (PK200WL, Prokin Tecnobody, Dalmine (BG), Italy). Participants’
age, height, and weight were entered into the software in order for results to be consistent
with such anthropometric information. The placement of each participants’ feet on the
platform was standardized with the medial malleolus at the rotation axis, as indicated by a
V-shape, keeping a distance of 3 cm between the two malleoli, and extra-rotating 12° the
medial borders of the feet.

Stabilometric performance was evaluated according to the Sensory Organization Test
(SOT) [47], a protocol whose reliability and validity have been well established, also in
pediatric populations with NDDs [48-51]. The SOT protocol allows quantifying subjects’
ability to effectively use visual, vestibular, and proprioceptive inputs, as well as suppress
inexact sensory information while standing. It consists of six sensory conditions: (i) Eyes
open and with fixed support (SOT1-EO); (ii) eyes closed and with fixed support (SOT2-
EC); (iii) sway-referenced vision and with fixed support (SOT3-SV); (iv) eyes open and
with sway-referenced support (SOT4-EOSS); (v) eyes closed and with sway-referenced
support (SOT5-ECSS); and (vi) sway-referenced vision and sway-referenced support (SOT6-
SVSS) [52] (Figure 1). For each condition, four distinct parameters were measured to
describe postural control: (i) The sway area (mm?; area), that is the space covered due to
body oscillations during the test; (ii) the length of the Center of Pressure (CoP) trajectory
(mm; perimeter), that is the length of the route recorded due to body oscillations during
the test; (iii) the mean velocity of the CoP displacement in the anteroposterior direction
(mm/s; Anterior-Posterior Average Velocity (APAV)); and (iv) the mean velocity of the
CoP displacement in the mediolateral direction (mm/s; Lateral Average Velocity (LAV)).

Two practice trials for each condition were conducted before the recording began. The
test protocol consisted of three trials of each condition. Children/adolescents stood for 30 s
for each condition.
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REGISTRATION
CONDITION SENSORY SYSTEMS DESCRIPTION
SETTING
VISUAL INPUT
This is the baseline measure of postural stability; all
SOT1-EO VESTIBULAR INPUT
three sensory systems are operationally accurate.
°‘ SOMATOSENSORY INPUT
-
%] VISUAL INPUT
-
VESTIBULAR INPUT Similar to the SOT1-EO condition, except that the child’s
SOT2-EC
eyes are closed.
:@3 SOMATOSENSORY INPUT
VISUAL INPUT
VESTIBULAR INPUT Similar to the SOT1-EO condition, except that the visual
SOT3-SV surround moves to track the child’s sway, which pro-
PN vides inaccurate visual orientation cues.
(V] SOMATOSENSORY INPUT
Q VISUAL INPUT
VESTIBULAR INPUT The child stands with his/her eyes open, the visual sur-
SOT4-EOSS round is fixed, and the platform moves in response to
the child’s sway.
SOMATOSENSORY INPUT
[x) VISUAL INPUT
VESTIBULAR INPUT Identical to the SOT4-EOSS condition, except that the
SOT5-ECSS child’s eyes are now closed such that only the vestibular
system is completely operative.
> SOMATOSENSORY INPUT
VISUAL INPUT
X Identical to the SOT4-EOSS condition, except that the
VESTIBULAR INPUT . . .
visual surround moves in response to the child’s sway,
SOT6-SVSS
such that only the vestibular system is a reliable source
SOMATOSENSORY INPUT of sensory input.

Figure 1. SOT: Sensory Organization Test; EO: Eyes Open; EC: Eyes Closed; SV: Sway-referenced Vision; EOSS: Eyes Open
Sway-referenced Support; ECSS: Eyes Closed Sway-referenced Support; SVSS: Sway-referenced Vision Sway-referenced
Support. Visual input is the sensation of any change in the visual environment. Vestibular input is the sensation of any
change in position, direction, or movement of the head. Somatosensory input is the sensation of any change in, but not

limited to, touch, temperature, posture, and limb position. @ Normal sensory input; \e absent sensory input;
sway-referenced input.

2.4. Statistical Analyses

The descriptive statistics were presented as means and standard deviations (SD) for
normally distributed continuous variables, and as medians and interquartile ranges (IQR)
for continuous variables that failed the normality test (Shapiro-Wilk tests). Frequencies
and percentages were used to describe categorical variables. To take into account the non-
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normal distributions of the data, for each of the four outcomes (area, perimeter, APAV, and
LAV) and each of the six sensory conditions (SOT1-EO, SOT2-EC, SOT3-SV, SOT4-EOSS,
SOT5-ECSS, and SOT6-SVSS), the comparison between cases and controls was performed
through quantile regression models adjusted for gender and age. The threshold level
selected for statistical significance was p < 0.05. All pairwise comparisons of adjusted
medians were conducted and Bonferroni correction was applied to account for multiple
testing. All calculated probabilities are presented as adjusted p-value after Bonferroni
correction. The statistical analyses were performed with the statistical software Stata 16.1
(https:/ /www.stata.com (accessed on 9 February 2021)).

2.5. Ethics

The research ethics committee at the Integrated University Hospital of Verona ap-
proved all protocols and procedures which led to the current study (CESC 2242 and CESC
2243). Parents and guardians of all study participants were offered an extensive description
of the study and then consented to their inclusion in the study by signing an informed writ-
ten consent. Consent was also obtained with reference to the publication of the collected
research data.

3. Results
3.1. Socio-Demographic Information and Clinical Characteristics

Data were obtained on 104 participants, 81 of whom had a neurodevelopmental disor-
der (NDD) and 23 were healthy peers. As expected, there was a male-biased representation
among children/adolescents with NDDs. Descriptive statistics of the study participants
are reported in Table 1.

Table 1. Socio-demographic and clinical characteristics of the study participants.

ASD ADHD TS Healthy
Controls
N (%)
Participants 20 (19.2) 31 (29.8) 30 (28.9) 23 (22.1)
Gender (male) 16 (80.0) 26 (83.9) 27 (90.0) 10 (43.5)
M (SD)
Age (years) 10.7 (2.0) 10.0 (2.4) 104 (2.2) 12.3 (2.6)
[range] [7.2-14.6] [5.7-15] [7.4-16] [8.3-16.9]
Total IQ 94.1(15.9)" 97.0 (16.5) 93.9 (16.7) 105.2 (15.5) *
[range] [65-115] [60-141] [45-120] [65-132]

ASD, Autism Spectrum Disorder; ADHD, Attention Deficit Hyperactivity Disorder; TS, Tourette Syndrome; M,
mean; SD, standard deviation; IQ, Intelligence Quotient; *, 1 missing value; ™, 2 missing values.

3.2. Postural Control

Medians of raw data for NDD as a whole group (ASD+ADHD+TS) and for each neu-
rodevelopmental condition as well as for healthy controls are reported in Supplementary
Tables 51-S5.

3.2.1. Area

Medians adjusted for gender and age for the four groups (ASD, ADHD, TS, and
healthy controls) are reported in Table 2. A graphical representation of such data is
also presented in Supplementary Figure S1. After Bonferroni correction for multiple
comparisons, there were statistically significant differences in the median area for the SOT1-
EO (p = 0.025) and SOT6-SVSS (p = 0.003) conditions as well as a difference approaching
significance for the SOT2-EC condition (p = 0.057) between ASD children/adolescents and
healthy controls. Moreover, the median area for the SOT6-SVSS condition was significantly
larger in ADHD children/adolescents as compared to healthy controls (p = 0.009).
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Table 2. Performance in the area parameter among neurodevelopmental disorder (NDD) conditions
and controls.

Conditions ASD ADHD TS Controls
Adjusted Median * (95% CI)
SOT1-EO 115 (82-147) 80 (53-106) 63 (36-90) 44 (11-78)
SOT2-EC 234 (163-306) 148 (89-207) 94 (34-154) 93 (18-168)
SOT3-SV 204 (130-279) 202 (141-264) 143 (80-205) 85 (7-163)
SOT4-EOSS 148 (92-204) 132 (86-178) 118 (71-165) 90 (31-149)
SOT5-ECSS 423 (288-559) 429 (318-541) 268 (156-381) 232 (90-373)
SOT6-SVSS 573 (442-704) 521 (413-629) 331 (222-440) 216 (79-354)

NDD, Neurodevelopmental Disorder; ASD, Autism Spectrum Disorder; ADHD, Attention Deficit Hyperactivity
Disorder; TS, Tourette Syndrome; *, adjusted for gender and age; CI, Confidence Interval; SOT, Sensory Organi-
zation Test; EO, Eyes Open; EC, Eyes Closed; SV, Sway-referenced Vision; EOSS, Eyes Open Sway-referenced
Support; ECSS, Eyes Closed Sway-referenced Support; SVSS, Sway-referenced Vision Sway-referenced Support.

Further, there was a difference approaching significance in the median area for the
SOT1-EO condition (p = 0.099) as well as statistically significant differences for the SOT2-EC
(p = 0.023) and SOT6-SVSS (p = 0.037) conditions between ASD children/adolescents and
TS children/adolescents. Finally, there was a difference approaching significance in the
median area for the SOT6-SVSS condition between ADHD and TS children/adolescents
(p =0.090).

3.2.2. Perimeter

Medians adjusted for gender and age for the four groups (ASD, ADHD, TS, and
healthy controls) are reported in Table 3. A graphical representation of such data is
also presented in Supplementary Figure S2. After Bonferroni correction for multiple
comparisons, the median Perimeter for the SOT2-EC condition was significantly longer in
ASD children/adolescents as compared to healthy controls (p = 0.017).

Table 3. Performance in the perimeter parameter among NDD conditions and controls.

Conditions ASD ADHD TS Controls
Adjusted Median * (95% CI)
SOT1-EO 178 (152-204) 146 (125-167)  145(123-166) 134 (107-161)
SOT2-EC 276 (234-318) 224 (190-258) 207 (172-241) 181 (137-225)
SOT3-SV 240 (196-283) 215 (179-251) 178 (142-215) 181 (135-227)
SOT4-EOSS 236 (199-273) 245 (214-275) 207 (176-238) 219 (180-258)
SOT5-ECSS 433 (369-496) 426 (374-478) 351 (298-403) 359 (293-425)
SOT6-SVSS 429 (352-506) 392 (328-455) 339 (275-404) 354 (273-435)

NDD, Neurodevelopmental Disorder; ASD, Autism Spectrum Disorder; ADHD, Attention Deficit Hyperactivity
Disorder; TS, Tourette Syndrome; *, adjusted for gender and age; CI, Confidence Interval; SOT, Sensory Organi-
zation Test; EO, Eyes Open; EC, Eyes Closed; SV, Sway-referenced Vision; EOSS, Eyes Open Sway-referenced
Support; ECSS, Eyes Closed Sway-referenced Support; SVSS, Sway-referenced Vision Sway-referenced Support.

Further, there was a difference approaching significance in the median Perimeter for
the SOT2-EC condition between ASD and TS children/adolescents (p = 0.078).

3.2.3. Anterior-Posterior Average Velocity

Medians adjusted for gender and age for the four groups (ASD, ADHD, TS, and
healthy controls) are reported in Table 4. A graphical representation of such data is
also presented in Supplementary Figure S3. After Bonferroni correction for multiple
comparisons, the median Anterior-Posterior Average Velocity (APAV) for the SOT2-EC
condition was significantly higher in ASD children/adolescents as compared to healthy
controls (p = 0.003).
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Table 4. Performance in the Anterior—Posterior Average Velocity (APAV) parameter among NDD
conditions and controls.

Conditions ASD ADHD TS Controls
Adjusted Median * (95% CI)
SOT1-EO 5 (4-6) 4 (3-5) 4 (3-5) 4 (4-5)
SOT2-EC 9 (7-10) 7 (5-8) 6 (5-7) 5 (4-7)
SOT3-SV 6 (5-8) 6 (5-7) 5 (4-6) 5 (4-6)
SOT4-EOSS 6 (5-7) 7 (6-8) 5 (4-6) 6 (5-7)
SOT5-ECSS 12 (11-14) 12 (10-13) 9 (8-11) 11 (9-12)
SOT6-SVSS 11 (9-13) 11 (10-13) 9 (7-10) 10 (8-12)

APAV, Anterior-Posterior Average Velocity; NDD, Neurodevelopmental Disorder; ASD, Autism Spectrum
Disorder; ADHD, Attention Deficit Hyperactivity Disorder; TS, Tourette Syndrome; *, adjusted for gender and
age; CI, Confidence Interval; SOT, Sensory Organization Test; EO, Eyes Open; EC, Eyes Closed; SV, Sway-
referenced Vision; EOSS, Eyes Open Sway-referenced Support; ECSS, Eyes Closed Sway-referenced Support;
SVSS, Sway-referenced Vision Sway-referenced Support.

Further, there were differences approaching the significance in the median APAV for
the SOT1-EO (p = 0.065) and SOT2-EC conditions (p = 0.086) between ASD and ADHD
children/adolescents. Moreover, there were statistically significant differences for the SOT2-
EC (p = 0.007) and SOT5-ECSS (p = 0.041) conditions between ASD children/adolescents
and TS children/adolescents. Finally, there was a difference approaching significance in the
median APAV for the SOT5-ECSS condition between ADHD and TS children/adolescents
(p =0.061).

3.2.4. Lateral Average Velocity

Medians adjusted for gender and age for the four groups (ASD, ADHD, TS, and
healthy controls) are reported in Table 5. A graphical representation of such data is
also presented in Supplementary Figure S4. After Bonferroni correction for multiple
comparisons, the median Lateral Average Velocity (LAV) for the SOT1-EO (p = 0.019) and
SOT2-EC (p = 0.036) conditions was significantly higher in ASD children/adolescents as
compared to healthy controls.

Table 5. Performance in the Lateral Average Velocity (LAV) parameter among NDD conditions
and controls.

Conditions ASD ADHD TS Controls
Adjusted Median * (95% CI)
SOT1-EO 4 (4-5) 3(34) 3 (3-4) 3(2-3)
SOT2-EC 6 (5-6) 5 (5-6) 4 (3-5) 4 (3-5)
SOT3-SV 5 (4-6) 5 (4-6) 4 (3-4) 4 (3-4)
SOT4-EOSS 5 (5-6) 5 (5-6) 5 (5-6) 5 (4-6)
SOT5-ECSS 10 (8-11) 10 (8-11) 8 (7-10) 9 (7-10)
SOT6-SVSS 10 (8-12) 9 (8-11) 8 (6-9) 7 (6-9)

LAV, Lateral Average Velocity; NDD, Neurodevelopmental Disorder; ASD, Autism Spectrum Disorder; ADHD,
Attention Deficit Hyperactivity Disorder; TS, Tourette Syndrome; *, adjusted for gender and age; CI, Confidence
Interval; SOT, Sensory Organization Test; EO, Eyes Open; EC, Eyes Closed; SV, Sway-referenced Vision; EOSS,
Eyes Open Sway-referenced Support; ECSS, Eyes Closed Sway-referenced Support; SVSS, Sway-referenced Vision

Sway-referenced Support.

Further, the median LAV for the SOT2-EC condition was significantly higher in ASD
children/adolescents as compared to TS children/adolescents (p = 0.013) as well as in
ADHD children/adolescents as compared to TS children/adolescents (p = 0.042).

4. Discussion

To the best of our knowledge, this is the first case-control study to examine whether
children/adolescents with neurodevelopmental disorders (NDDs) and healthy controls
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differ in terms of postural control, also examining whether NDD children/adolescents
present with a different degree of impairment depending on the specific neurodevelopmen-
tal condition, in line with the neurodevelopmental gradient hypothesis. Results indicate
that, as for any other impairment observed in atypical neurodevelopment [20], postural
instability severity could be seen as lying on a neurodevelopmental gradient continuum,
with decreasing severity from Autism Spectrum Disorder (ASD) to late-onset NDD. More
specifically, four patterns of postural balance were observed in this study. First, ASD
children/adolescents performed worse than healthy controls in a number of sensory con-
ditions across all parameters. Second, Attention Deficit Hyperactive Disorder (ADHD)
children/adolescents performed worse than healthy controls only for the most complex
sensory condition (SOT6-SVSS) in the area parameter, when their vision and somatosensory
functions were both compromised. Third, differences between Tourette syndrome (TS)
children/adolescents and healthy controls in the performance across all parameters and
conditions investigated failed to reach statistical significance. Fourth, differences were
also observed between clinical groups. Specifically, ASD children/adolescents performed
worse than TS children/adolescents in a number of conditions across all parameters, es-
pecially when sensory systems were not operationally accurate. To a much lesser extent,
when receiving inaccurate sensory orientation cues, ADHD children/adolescents also
tended to perform or performed worse than TS children/adolescents. Finally, ASD chil-
dren/adolescents tended to perform worse than ADHD children/adolescents during the
baseline condition (SOT1-EO) and when the visual input was absent (SOT2-EC) for the
Anterior-Posterior Average Velocity (APAV) parameter. Therefore, in terms of postural con-
trol, ASD resulted in the most severely impaired neurodevelopmental condition, followed
by ADHD and TS.

To date, while neuromotor symptoms are recognized as a core feature of most neu-
rodevelopmental conditions, from those with childhood onset (e.g., stereotypic movements
in ASD) to disorders with early adulthood onset (e.g., catatonia in psychosis) [3], norma-
tive motor development throughout a child’s early life is not clearly defined [53]. As a
consequence, it is still not completely clear when to consider motor difficulties of patho-
logical relevance rather than part of the child’s physiological brain maturation [53,54].
Moreover, at a research level, focusing on predefined motor characteristics of atypical
neurodevelopment (e.g., stereotypic movements for ASD, hyperactivity for ADHD, tics
for TS) [29] has offered limited support to our ability to differentiate pathognomonic from
non-specific or benign motor phenomena [55]. Most research evidence agrees that motor
difficulties in childhood do not necessarily imply a neuropsychiatric disorder, especially if
not corroborated by additional evidence of brain lesions or abnormalities [30]. However, if
such motor difficulties do persist in late childhood, they may require clinical attention as a
potential sentinel of an underlying maturational delay, with implications for the child’s abil-
ity to integrate sensorimotor stimuli to perform complex motor acts, including maintaining
postural balance [31,32].

A further level of complexity affecting our ability to completely understand neuro-
motor functioning in the context of neuropsychiatric conditions is reflected in the debate
whether poor sensorimotor integration would be specific to psychosis symptom formation,
as historically assumed, or independent of such diagnosis [56,57]. More recent research
evidence of psychomotor dysfunction in major psychiatric conditions including depres-
sion [58,59], anxiety [60], and schizophrenia [61,62], seems to support the hypothesis that
such dysfunction might reflect a generalized deficit of neural integration, which is not
related to a single condition. However, psychomotor dysfunction would present with
specific characteristics to each condition, possibly depending on the severity, timing, and
predominant pattern of brain aberrances and resulting neuropsychological manifestations.

The conceptualization of NDDs in a neurodevelopmental continuum results from evi-
dence for pleiotropy between ASD, ADHD, and TS, which refers to shared neurobiological
risk explaining correlations among NDDs [63,64]. Findings from the present study are in
line with such conceptual framework and seem to point toward a trans-diagnostic role
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of poor sensorimotor integration in atypical neurodevelopment, rather than lying on the
discrete etiological pathway to a specific neurodevelopmental condition. Further, in line
with the neurodevelopmental gradient hypothesis [20], poor postural control may be a use-
ful biomarker for patient stratification across diagnostic boundaries in neurodevelopment,
where the higher the sensorimotor severity, the greater the neurodevelopmental impairment.

Converging research evidence indicates that individuals with NDD present with both
functional and structural brain abnormalities [65-70]. Interestingly, more limited evidence
suggests both shared [71] and disorder-specific [72] structural brain alterations that vary
over time and differently depending on the specific neurodevelopmental condition [73].
Distinct functional abnormalities have also been described, being more pronounced in ASD
compared to other NDDs [74]. Further, differential alterations in functional connectivity
between primary and supplementary motor cortex, and regions involved in brain motor cir-
cuitry such as putamen, thalamus, and cerebellum, have been suggested depending on the
severity of the clinical presentation of atypical neurodevelopment [75]. Such evidence raises
the question of a possible resulting impairment in the process of sensorimotor integration,
that is the brain process allowing, by complex neural operations, the connection of the sen-
sory and motor domains [76]. Deficiencies in sensorimotor integration would then present
as difficulties in effectively utilizing sensory feedback to correct movements, resulting in
the coordination difficulties and sensory reactivity abnormalities phenotypically observed
among individuals with an NDD [77]. Altogether, the findings suggest a combination of
shared and age-specific patterns of brain abnormalities reflecting overlapping and unique
symptom presentations occupying a gradient of neurodevelopmental impairment.

While results seem to suggest that the impairment in sensorimotor integration can
be graded according to the severity of the neurodevelopmental impairment putatively
attributed to each NDD, with ASD being the most severe condition, we must beware of
the risk of oversimplifying the diagnostic conundrum. Future studies will need to im-
prove our understanding of the mechanisms underlying the co-occurrence of symptomatic
manifestations such as deficits in sensorimotor integration among individuals with neu-
rodevelopmental conditions. Such knowledge acquisition will help disentangle whether
deficits in sensorimotor integration among NDDs reflect distinct dysfunctions or could
imply different degrees of impairment on a common underlying neurodevelopmental
continuum. Moreover, whether the degree of impairment in sensorimotor integration can
make clear predictions about the outcome of NDDs, in line with the neurodevelopmen-
tal gradient hypothesis, is currently unclear. In addition, while motor impairments are
described in both ASD and ADHD, evidence for specificity of motor impairment within dif-
ferent NDDs remains unclear. For instance, some studies indicate specific ASD-associated
impairments in tasks requiring rapid integration of visual feedback, suggesting that indi-
viduals with ASD are less likely to rely on visual feedback when learning a novel movement
pattern, instead showing a bias towards reliance on proprioceptive feedback [78,79]. In
contrast, neither individuals with ADHD nor TS would present with such atypical bias in
sensory-motor integration. Further, poor performance on manual dexterity tasks would
be more strongly related to ADHD group membership, possibly as a consequence of
ADHD-associated inefficient response selection negatively impacting motor control [80].

Results presented here need be seen in the light of some strengths and limitations. On
the one hand, strengths include the implementation of rigorous inclusion criteria for each
diagnostic group, as well as the investigation of postural control by instrumental assess-
ment. As a consequence, the study design allows excluding that the observed postural
instability would be due to the copresence of other physical of neuropsychiatric conditions
or a poorly reliable postural assessment. On the other, the main limitations of the current
research are that the sample size and gender imbalance did not allow to fully investigate
the contribution of age and gender in the manifestation of NDD-related postural instability,
though controlling for the confounding effects of such variables. Moreover, the study
design did not contemplate a longitudinal evaluation of the phenomenon, thus requiring
prospective studies to assess the evolution of postural control over time. Finally, future
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studies will need to explore the impact of sensorimotor difficulties on the development
and maintenance of NDD core symptom severity as well as specific predominant sub-
type (e.g., ASD severity level, ADHD inattentive /hyperactive-impulsive presentation, TS
motor/vocal tic presentation).

5. Conclusions

In conclusion, while requiring replication in larger samples, evidence from this study
indicates that poor postural control may be a useful biomarker for risk assessment in indi-
viduals suspected of having an atypical neurodevelopment. Moreover, such impairment
seems to answer to the neurodevelopmental gradient hypothesis, with autism spectrum
disorder children/adolescents presenting with the most severe postural instability, fol-
lowed by children/adolescents with attention deficit hyperactive disorder and Tourette
syndrome. Altogether, findings from this study add to the growing evidence stressing
the importance of orienting public-health decisions in the direction of improving atypical
neurodevelopment detection by also including the evaluation of sensorimotor skills. In
the presence of such difficulties, interventions aimed at enhancing motor abilities should
be supported along with preexisting therapies targeting psychological, behavioral, and
cognitive difficulties.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/1660-460
1/18/4/1693/s1, Table S1: Performance among NDD children/adolescents as a whole group and
controls; Table S2: Performance in the Area parameter among NDD and controls; Table S3: Perfor-
mance in the Perimeter parameter among NDD and controls; Table S4: Performance in the APAV
parameter among NDD and controls; Table S5: Performance in the LAV parameter among NDD and
controls; Figure S1: The figure shows performance in the Area parameter among neurodevelopmental
disorders and controls and bars show medians adjusted for gender and age; Figure S2. The figure
shows performance in the Perimeter parameter among neurodevelopmental disorders and controls
and bars show medians adjusted for gender and age; Figure S3. The figure shows performance in the
Anterior-Posterior Average Velocity parameter among neurodevelopmental disorders and controls
and bars show medians adjusted for gender and age; Figure S4. The figure shows performance in
the Lateral Average Velocity parameter among neurodevelopmental disorders and controls and bars
show medians adjusted for gender and age.

Author Contributions: Conceptualisation, L.Z., M.L.C., L.C. (Liliya Chamitava), G.D.G., L.C. (Lucia
Cazzoletti), M.E.Z., ED, and M.C.; methodology, L.Z., M.L.C., and M.C,; validation, L.Z.,, M.L.C,,
L.C. (Liliya Chamitava), G.D.G., L.C. (Lucia Cazzoletti), M.E.Z., ED. and M.C.; formal analysis,
L.C. (Liliya Chamitava), G.D.G., L.C. (Lucia Cazzoletti), and M.E.Z.; investigation, L.Z. and M.L.C.;
resources, L.Z.,, M.L.C,, L.C. (Liliya Chamitava), G.D.G., L.C. (Lucia Cazzoletti), M.E.Z., ED. and
M.C,; data curation, L.Z.,, M.L.C., L.C. (Liliya Chamitava), G.D.G., L.C. (Lucia Cazzoletti), M.E.Z. and
M.C.; writing—original draft preparation, L.Z., L.C. (Liliya Chamitava), and M.C.; writing—review
and editing, L.Z., M.L.C., L.C. (Liliya Chamitava), G.D.G., L.C. (Lucia Cazzoletti), M.E.Z., ED. and
M.C,; visualisation, L.Z., M.L.C., L.C. (Liliya Chamitava), G.D.G., L.C. (Lucia Cazzoletti), M.E.Z., FD.
and M.C; supervision, L.Z. and M.C.; project administration, L.Z. and M.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the “Fondazione Cattolica Assicurazioni”.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the research ethics committee at the Integrated University
Hospital of Verona (CESC 2242 and CESC 2243).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to thank Federico Antonini, Beatrice Morari, Alessandra
Inglese, Marialuisa Gandolfi, and Nicola Smania for their help with data acquisition and the partici-
pants and their families for their cooperation and commitment as well as acknowledge infrastructure
from the Integrated University Hospital of Verona and the University of Verona.


https://www.mdpi.com/1660-4601/18/4/1693/s1
https://www.mdpi.com/1660-4601/18/4/1693/s1

Int. J. Environ. Res. Public Health 2021, 18, 1693 12 of 14

Conflicts of Interest: M.C. has been a consultant/advisor to GW Pharma Limited, outside of this
work. All the other authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

Zablotsky, B.; Black, L.I,; Maenner, M.].; Schieve, L.A.; Danielson, M.L.; Bitsko, R.H.; Blumberg, S.J.; Kogan, M.D.; Boyle, C.A.
Prevalence and Trends of Developmental Disabilities among Children in the United States: 2009-2017. Pediatrics 2019, 144,
€20190811. [CrossRef]

Gillberg, C. The ESSENCE in child psychiatry: Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examina-
tions. Res. Dev. Disabil. 2010, 31, 1543-1551. [CrossRef]

First, M.B.; Williams, ].B.W.; Karg, R.S.; Spitzer, R.L. Structured Clinical Interview for DSM-5 Disorders, Clinician Version (SCID-5-CV);
American Psychiatric Association: Arlington, VA, USA, 2015.

Hill, E.L. Non-specific nature of specific language impairment: A review of the literature with regard to concomitant motor
impairments. Int. |. Lang. Commun. Disord. 2001, 36, 149-171. [CrossRef]

Hattori, J.; Ogino, T.; Abiru, K.; Nakano, K.; Oka, M.; Ohtsuka, Y. Are pervasive developmental disorders and attention-
deficit/hyperactivity disorder distinct disorders? Brain Dev. 2006, 28, 371-374. [CrossRef]

Grzadzinski, R.; Di Martino, A.; Brady, E.; Mairena, M.A.; O'Neale, M.; Petkova, E.; Lord, C.; Castellanos, F.X. Examining autistic
traits in children with ADHD: Does the autism spectrum extend to ADHD? J. Autism Dev. Disord. 2011, 41, 1178-1191. [CrossRef]
Taurines, R.; Schmitt, J.; Renner, T.; Conner, A.C.; Warnke, A.; Romanos, M. Developmental comorbidity in attention-
deficit/hyperactivity disorder. Atten. Defic. Hyperact. Disord. 2010, 2, 267-289. [CrossRef] [PubMed]

Colizzi, M.; Ciceri, M.L.; Di Gennaro, G.; Morari, B.; Inglese, A.; Gandolfi, M.; Smania, N.; Zoccante, L. Investigating Gait,
Movement, and Coordination in Children with Neurodevelopmental Disorders: Is There a Role for Motor Abnormalities in
Atypical Neurodevelopment? Brain Sci. 2020, 10, 601. [CrossRef] [PubMed]

Tye, C.; Asherson, P.; Ashwood, K.L.; Azadi, B.; Bolton, P.; McLoughlin, G. Attention and inhibition in children with ASD, ADHD
and co-morbid ASD + ADHD: An event-related potential study. Psychol. Med. 2014, 44, 1101-1116. [CrossRef] [PubMed]
Cobhen, S.C.; Leckman, J.E; Bloch, M.H. Clinical assessment of Tourette syndrome and tic disorders. Neurosci. Biobehav. Rev. 2013,
37,997-1007. [CrossRef] [PubMed]

Banaschewski, T.; Poustka, L.; Holtmann, M. Autism and ADHD across the life span Differential diagnoses or comorbidity?
Nervenarzt 2011, 82, 573-580. [CrossRef] [PubMed]

Ozsivadjian, A.; Hibberd, C.; Hollocks, M.]. Brief report: The use of self-report measures in young people with autism spectrum
disorder to access symptoms of anxiety, depression and negative thoughts. J. Autism Dev. Disord. 2014, 44, 969-974. [CrossRef]
Yiice, M.; Zoroglu, S.S.; Ceylan, M.F,; Kandemir, H.; Karabekiroglu, K. Psychiatric comorbidity distribution and diversities in
children and adolescents with attention deficit/hyperactivity disorder: A study from Turkey. Neuropsychiatr. Dis. Treat. 2013, 9,
1791-1799. [CrossRef]

Hodge, D.; Carollo, T.M.; Lewin, M.; Hoffman, C.D.; Sweeney, D.P. Sleep patterns in children with and without autism spectrum
disorders: Developmental comparisons. Res. Dev. Disabil. 2014, 35, 1631-1638. [CrossRef]

Hvolby, A. Associations of sleep disturbance with ADHD: Implications for treatment. Atten. Defic. Hyperact. Disord. 2015, 7, 1-18.
[CrossRef]

Ghosh, D.; Rajan, P.V; Das, D.; Datta, P; Rothner, A.D.; Erenberg, G. Sleep disorders in children with Tourette syndrome. Pediatr.
Neurol. 2014, 51, 31-35. [CrossRef] [PubMed]

Taurines, R.; Schwenck, C.; Westerwald, E.; Sachse, M.; Siniatchkin, M.; Freitag, C. ADHD and autism: Differential diagnosis or
overlapping traits? A selective review. Atten. Defic. Hyperact. Disord. 2012, 4, 115-139. [CrossRef] [PubMed]

Hill, M.M.; Gangi, D.; Miller, M.; Rafi, S.M.; Ozonoff, S. Screen time in 36-month-olds at increased likelihood for ASD and ADHD.
Infant Behav. Dev. 2020, 61, 101484. [CrossRef] [PubMed]

Sokolova, E.; Oerlemans, A.M.; Rommelse, N.N.; Groot, P.; Hartman, C.A.; Glennon, J.C.; Claassen, T.; Heskes, T.; Buitelaar, J.K.
A Causal and Mediation Analysis of the Comorbidity between Attention Deficit Hyperactivity Disorder (ADHD) and Autism
Spectrum Disorder (ASD). J. Autism Dev. Disord. 2017, 47, 1595-1604. [CrossRef]

Morris-Rosendahl, D.; Crocq, M. Neurodevelopmental disorders-the history and future of a diagnostic concept. Dialogues Clin.
Neurosci. 2020, 22, 65-72.

Terband, H.; Maassen, B.; Guenther, FH.; Brumberg, J. Auditory-motor interactions in pediatric motor speech disorders:
Neurocomputational modeling of disordered development. J. Commun. Disord. 2014, 47, 17-33. [CrossRef]

Taylor, E. Sleep and tics: Problems associated with ADHD. |. Am. Acad. Child Adolesc. Psychiatry 2009, 48, 877-878. [CrossRef]
[PubMed]

Tomasi, D.; Volkow, N.D. Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol.
Psychiatry 2012, 71, 443-450. [CrossRef]

Wass, S. Distortions and disconnections: Disrupted brain connectivity in autism. Brain Cogn. 2011, 75, 18-28. [CrossRef]
Church, J.A ; Fair, D.A.; Dosenbach, N.U.; Cohen, A.L.; Miezin, EM.; Petersen, S.E.; Schlaggar, B.L. Control networks in paediatric
Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain 2009, 132, 225-238. [CrossRef]
Bradstreet, ].].; Smith, S.; Baral, M.; Rossignol, D.A. Biomarker-guided interventions of clinically relevant conditions associated
with autism spectrum disorders and attention deficit hyperactivity disorder. Altern. Med. Rev. 2010, 15, 15-32.


http://doi.org/10.1542/peds.2019-0811
http://doi.org/10.1016/j.ridd.2010.06.002
http://doi.org/10.1080/13682820010019874
http://doi.org/10.1016/j.braindev.2005.11.009
http://doi.org/10.1007/s10803-010-1135-3
http://doi.org/10.1007/s12402-010-0040-0
http://www.ncbi.nlm.nih.gov/pubmed/21432612
http://doi.org/10.3390/brainsci10090601
http://www.ncbi.nlm.nih.gov/pubmed/32887253
http://doi.org/10.1017/S0033291713001049
http://www.ncbi.nlm.nih.gov/pubmed/23673307
http://doi.org/10.1016/j.neubiorev.2012.11.013
http://www.ncbi.nlm.nih.gov/pubmed/23206664
http://doi.org/10.1007/s00115-010-3239-6
http://www.ncbi.nlm.nih.gov/pubmed/21484168
http://doi.org/10.1007/s10803-013-1937-1
http://doi.org/10.2147/NDT.S54283
http://doi.org/10.1016/j.ridd.2014.03.037
http://doi.org/10.1007/s12402-014-0151-0
http://doi.org/10.1016/j.pediatrneurol.2014.03.017
http://www.ncbi.nlm.nih.gov/pubmed/24938137
http://doi.org/10.1007/s12402-012-0086-2
http://www.ncbi.nlm.nih.gov/pubmed/22851255
http://doi.org/10.1016/j.infbeh.2020.101484
http://www.ncbi.nlm.nih.gov/pubmed/32871326
http://doi.org/10.1007/s10803-017-3083-7
http://doi.org/10.1016/j.jcomdis.2014.01.001
http://doi.org/10.1097/CHI.0b013e3181af825a
http://www.ncbi.nlm.nih.gov/pubmed/19692853
http://doi.org/10.1016/j.biopsych.2011.11.003
http://doi.org/10.1016/j.bandc.2010.10.005
http://doi.org/10.1093/brain/awn223

Int. J. Environ. Res. Public Health 2021, 18, 1693 13 of 14

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Kern, ] K.; Geier, D.A.; King, P.G.; Sykes, L.K.; Mehta, J.A.; Geier, M.R. Shared Brain Connectivity Issues, Symptoms, and
Comorbidities in Autism Spectrum Disorder, Attention Deficit/Hyperactivity Disorder, and Tourette Syndrome. Brain Connect.
2015, 5, 321-335. [CrossRef] [PubMed]

Owen, M.].; O'Donovan, M.C. Schizophrenia and the neurodevelopmental continuum: Evidence from genomics. World Psychiatry
2017, 16, 227-235. [CrossRef]

Peralta, V.; Cuesta, M.J. Motor Abnormalities: From Neurodevelopmental to Neurodegenerative Through “Functional”
(Neuro)Psychiatric Disorders. Schizophr. Bull. 2017, 43, 956-971. [CrossRef]

Larson, J.C.; Mostofsky, S.H.; Goldberg, M.C.; Cutting, L.E.; Denckla, M.B.; Mahone, E.M. Effects of gender and age on motor
exam in typically developing children. Dev. Neuropsychol. 2007, 32, 543-562. [CrossRef] [PubMed]

Largo, R.; Caflisch, ].; Hug, F; Muggli, K.; Molnar, A.; Molinari, L.; Sheehy, A.; Gasser, T. Neuromotor development from 5 to 18
years. Part 1: Timed performance. Dev. Med. Child Neurol. 2001, 43, 436-443. [CrossRef]

Largo, R.; Caflisch, J.; Hug, E; Muggli, K.; Molnar, A.; Molinari, L. Neuromotor development from 5 to 18 years. Part 2: Associated
movements. Dev. Med. Child Neurol. 2001, 43, 444-453. [CrossRef] [PubMed]

Poletti, M.; Gebhardt, E.; Raballo, A. Developmental Coordination Disorder Plus Oculomotor and Visuospatial Impairment as
Neurodevelopmental Heralds of Psychosis Proneness. Clin. Schizophr. Relat. Psychoses 2016. [CrossRef] [PubMed]

Gomez, A.; Sirigu, A. Developmental coordination disorder: Core sensori-motor deficits, neurobiology and etiology. Neuropsy-
chologia 2015, 79, 272-287. [CrossRef]

Gillberg, C.; Rasmussen, P.; Carlstrom, G.; Svenson, B.; Waldenstrom, E. Perceptual, motor and attentional deficits in six-year-old
children. Epidemiological aspects. J. Child Psychol. Psychiatry 1982, 23, 131-144. [CrossRef]

Hannant, P.,; Tavassoli, T.; Cassidy, S. The role of sensorimotor difficulties in autism spectrum conditions. Front. Neurol. 2016, 7,
124. [CrossRef]

Brooks, V.B. Motor control how posture and movements are governed. Phys. Ther. 1983, 63, 664—673. [CrossRef] [PubMed]
Gowen, E.; Hamilton, A. Motor abilities in autism: A review using a computational context. J. Autism Dev. Disord. 2013, 43,
323-344. [CrossRef]

Siaperas, P; Ring, H.A.; McAllister, C.J.; Henderson, S.; Barnett, A.; Watson, P; Holland, A.]. Atypical movement performance
and sensory integration in Asperger’s syndrome. J. Autism Dev. Disord. 2012, 42, 718-725. [CrossRef] [PubMed]

Fong, S.S.; Ng, S.S.; Chung, L.M.; Ki, W.Y.; Chow, L.P; Macfarlane, D.J. Direction-specific impairment of stability limits and falls
in children with developmental coordination disorder: Implications for rehabilitation. Gait Posture 2016, 43, 60-64. [CrossRef]
Pavao, S.L.; Rocha, N.A.C.E. Sensory processing disorders in children with cerebral palsy. Infant Behav. Dev. 2017, 46, 1-6.
[CrossRef]

Kuo, A.D. An optimal state estimation model of sensory integration in human postural balance. . Neural Eng. 2005, 2, S235-5249.
[CrossRef]

Cullen, K.E. The vestibular system: Multimodal integration and encoding of self-motion for motor control. Trends Neurosci. 2012,
35, 185-196. [CrossRef] [PubMed]

Mabhoney, J.R.; Cotton, K.; Verghese, J. Multisensory integration predicts balance and falls in older adults. . Gerontol. A Biol. Sci.
Med. Sci. 2019, 74, 1429-1435. [CrossRef] [PubMed]

Tezza, G.; Paiola, G.; Zoccante, L.; Gandolfi, M.; Smania, N.; Ciceri, M.L.; Boner, A.; Piacentini, G.; Banzato, C. Gut-Brain Axis
Exploration: Stabilometric Platform Performances in Children Affected by Functional Gastrointestinal Disorders. ]. Pediatr.
Gastroenterol. Nutr. 2020. [CrossRef]

Cuthbert, B.N. The role of RDoC in future classification of mental disorders. Dialogues Clin. Neurosci. 2020, 22, 81-85.
Verbecque, E.; Vereeck, L.; Hallemans, A. Postural sway in children: A literature review. Gait Posture 2016, 49, 402—410. [CrossRef]
Shum, S.B.; Pang, M.Y. Children with attention deficit hyperactivity disorder have impaired balance function: Involvement of
somatosensory, visual, and vestibular systems. J. Pediatr. 2009, 155, 245-249. [CrossRef]

Fong, S.S.; Tsang, W.W.; Ng, G.Y. Altered postural control strategies and sensory organization in children with developmental
coordination disorder. Hum. Mov. Sci. 2012, 31, 1317-1327. [CrossRef]

Poblano, A.; Ishiwara, K.; de Lourdes Arias, M.; Garcia-Pedroza, F.; Marin, H.; Trujillo, M. Motor control alteration in posturogra-
phy in learning-disabled children. Arch. Med. Res. 2002, 33, 485—488. [CrossRef]

Christy, J.B.; Payne, ]J.; Azuero, A.; Formby, C. Reliability and diagnostic accuracy of clinical tests of vestibular function for
children. Pediatr. Phys. Ther. 2014, 26, 180-189. [CrossRef] [PubMed]

Nashner, L.M.; Peters, J.F. Dynamic posturography in the diagnosis and management of dizziness and balance disorders. Neurol.
Clin. 1990, 8, 331-349. [CrossRef]

Ungvari, G.S. Catatonia in DSM 5: Controversies regarding its psychopathology, clinical presentation and treatment response.
Neuropsychopharmacol. Hung. 2014, 16, 189-194. [PubMed]

Tang, V.M.; Duffin, J. Catatonia in the History of Psychiatry: Construction and Deconstruction of a Disease Concept. Perspect. Biol.
Med. 2014, 57, 524-537. [CrossRef]

Rapoport, J.L.; Giedd, J.N.; Gogtay, N. Neurodevelopmental model of schizophrenia: Update 2012. Mol. Psychiatry 2012, 17,
1228-1238. [CrossRef] [PubMed]


http://doi.org/10.1089/brain.2014.0324
http://www.ncbi.nlm.nih.gov/pubmed/25602622
http://doi.org/10.1002/wps.20440
http://doi.org/10.1093/schbul/sbx089
http://doi.org/10.1080/87565640701361013
http://www.ncbi.nlm.nih.gov/pubmed/17650993
http://doi.org/10.1017/S0012162201000810
http://doi.org/10.1017/S0012162201000822
http://www.ncbi.nlm.nih.gov/pubmed/11463174
http://doi.org/10.3371/CSRP.POGE.112316
http://www.ncbi.nlm.nih.gov/pubmed/27996316
http://doi.org/10.1016/j.neuropsychologia.2015.09.032
http://doi.org/10.1111/j.1469-7610.1982.tb00058.x
http://doi.org/10.3389/fneur.2016.00124
http://doi.org/10.1093/ptj/63.5.664
http://www.ncbi.nlm.nih.gov/pubmed/6844412
http://doi.org/10.1007/s10803-012-1574-0
http://doi.org/10.1007/s10803-011-1301-2
http://www.ncbi.nlm.nih.gov/pubmed/21643861
http://doi.org/10.1016/j.gaitpost.2015.10.026
http://doi.org/10.1016/j.infbeh.2016.10.007
http://doi.org/10.1088/1741-2560/2/3/S07
http://doi.org/10.1016/j.tins.2011.12.001
http://www.ncbi.nlm.nih.gov/pubmed/22245372
http://doi.org/10.1093/gerona/gly245
http://www.ncbi.nlm.nih.gov/pubmed/30357320
http://doi.org/10.1097/MPG.0000000000002968
http://doi.org/10.1016/j.gaitpost.2016.08.003
http://doi.org/10.1016/j.jpeds.2009.02.032
http://doi.org/10.1016/j.humov.2011.11.003
http://doi.org/10.1016/S0188-4409(02)00397-1
http://doi.org/10.1097/PEP.0000000000000039
http://www.ncbi.nlm.nih.gov/pubmed/24675116
http://doi.org/10.1016/S0733-8619(18)30359-1
http://www.ncbi.nlm.nih.gov/pubmed/25577482
http://doi.org/10.1353/pbm.2014.0033
http://doi.org/10.1038/mp.2012.23
http://www.ncbi.nlm.nih.gov/pubmed/22488257

Int. J. Environ. Res. Public Health 2021, 18, 1693 14 of 14

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Carter, O.; Bennett, D.; Nash, T.; Arnold, S.; Brown, L.; Cai, R.Y.; Allan, Z.; Dluzniak, A.; McAnally, K.; Burr, D.; et al. Sensory
integration deficits support a dimensional view of psychosis and are not limited to schizophrenia. Transl. Psychiatry 2017, 7, e1118.
[CrossRef] [PubMed]

Fountoulakis, K.N.; Panagiotidis, P.; Kimiskidis, V.; Nimatoudis, I.; Gonda, X. Prevalence and correlates of neurological soft signs
in healthy controls without family history of any mental disorder: A neurodevelopmental variation rather than a specific risk
factor? Int. J. Dev. Neurosci. 2018, 68, 59-65. [CrossRef] [PubMed]

Michalak, J.; Troje, N.F,; Fischer, J.; Vollmar, P.; Heidenreich, T.; Schulte, D. Embodiment of sadness and depression-gait patterns
associated with dysphoric mood. Psychosom. Med. 2009, 71, 580-587. [CrossRef] [PubMed]

Sanders, J.B.; Bremmer, M.A.; Comijs, H.C.; Deeg, D.].; Beekman, A.T. Gait speed and the natural course of depressive symptoms
in late life; an independent association with chronicity? J. Am. Med. Dir. Assoc. 2016, 17, 331-335. [CrossRef]

Brown, L.A.; Doan, J.B.; McKenzie, N.C.; Cooper, S.A. Anxiety-mediated gait adaptations reduce errors of obstacle negotiation
among younger and older adults: Implications for fall risk. Gait Posture 2006, 24, 418—423. [CrossRef]

Jeon, H.J.; Cho, M.].; Cho, S.J.; Kim, S.U,; Park, S.K.; Kwon, J.S,; Jeon, J.Y.; Hahm, B.]. Quantitative analysis of ataxic gait in
patients with schizophrenia: The influence of age and visual control. Psychiatry Res. 2007, 152, 155-164. [CrossRef]
Putzhammer, A ; Perfahl, M.; Pfeiff, L.; Hajak, G. Gait disturbances in patients with schizophrenia and adaptation to treadmill
walking. Psychiatry Clin. Neurosci. 2005, 59, 303-310. [CrossRef]

O’Donovan, M.C.; Owen, M.]. The implications of the shared genetics of psychiatric disorders. Nat. Med. 2016, 22, 1214-1219.
[CrossRef] [PubMed]

Owen, M.]J.; O’Donovan, M.C.; Thapar, A.; Craddock, N. Neurodevelopmental hypothesis of schizophrenia. Br. |. Psychiatry 2011,
198, 173-175. [CrossRef]

Langevin, L.M.; MacMaster, EP,; Crawford, S.; Lebel, C.; Dewey, D. Common white matter microstructure alterations in pediatric
motor and attention disorders. J. Pediatr. 2014, 164, 1157-1164.e1. [CrossRef] [PubMed]

Langevin, L.M.; MacMaster, E.P.; Dewey, D. Distinct patterns of cortical thinning in concurrent motor and attention disorders.
Dev. Med. Child Neurol. 2015, 57, 257-264. [CrossRef]

McLeod, K.R.; Langevin, L.M.; Goodyear, B.G.; Dewey, D. Functional connectivity of neural motor networks is disrupted in
children with developmental coordination disorder and attention-deficit/hyperactivity disorder. Neuroimage Clin. 2014, 4,
566-575. [CrossRef] [PubMed]

McLeod, K.R; Langevin, L.M.; Dewey, D.; Goodyear, B.G. Atypical within- and between-hemisphere motor network functional
connections in children with developmental coordination disorder and attention-deficit/hyperactivity disorder. Neuroimage Clin.
2016, 12, 157-164. [CrossRef] [PubMed]

Zeng, K.; Kang, ].; Ouyang, G.; Li, J.; Han, J.; Wang, Y.; Sokhadze, E.M.; Casanova, M.E; Li, X. Disrupted Brain Network in
Children with Autism Spectrum Disorder. Sci. Rep. 2017, 7, 16253. [CrossRef]

Dehue, T.; Bijl, D.; de Winter, M.; Scheepers, F.; Vanheule, S.; van Os, J.; Verhaeghe, P.; Verhoeff, B. Subcortical brain volume
differences in participants with attention deficit hyperactivity disorder in children and adults. Lancet Psychiatry 2017, 4, 438-439.
[CrossRef]

Goodkind, M.; Eickhoff, S.B.; Oathes, D.J.; Jiang, Y.; Chang, A.; Jones-Hagata, L.B.; Ortega, B.N.; Zaiko, Y.V.; Roach, E.L,;
Korgaonkar, M.S.; et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 2015, 72,
305-315. [CrossRef]

Boedhoe, P.S.W.; van Rooij, D.; Hoogman, M.; Twisk, ].W.R.; Schmaal, L.; Abe, Y.; Alonso, P.; Ameis, S.H.; Anikin, A.; Anticevic,
A.; et al. Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: Findings from the
ENIGMA ADHD, ASD, and OCD working groups. Am. J. Psychiatry 2020, 177, 834-843. [CrossRef] [PubMed]

Fairchild, G. Shared or distinct alterations in brain structure in disorders across the impulsivity-compulsivity spectrum: What can
we learn from cross-disorder comparisons of ADHD, ASD, and OCD? Am. ]. Psychiatry 2020, 177, 799-801. [CrossRef] [PubMed]
Lukito, S.; Norman, L.; Carlisi, C.; Radua, J.; Hart, H.; Simonoff, E.; Rubia, K. Comparative meta-analyses of brain structural
and functional abnormalities during cognitive control in attention-deficit/hyperactivity disorder and autism spectrum disorder.
Pychol. Med. 2020, 50, 894-919. [CrossRef]

Dewey, D. What is comorbidity and why does it matter in neurodevelopmental disorders? Curr. Dev. Disord. Rep. 2018, 5, 235-242.
[CrossRef]

Machado, S.; Cunha, M.; Velasques, B.; Minc, D.; Teixeira, S.; Domingues, C.A; Silva, ].G.; Bastos, V.H.; Budde, H.; Cagy, M.;
et al. Sensorimotor integration: Basic concepts, abnormalities related to movement disorders and sensorimotor training-induced
cortical reorganization. Rev. Neurol. 2010, 51, 427-436. [PubMed]

Brisson, J.; Warreyn, P.; Serres, J.; Foussier, S.; Adrien-Louis, J. Motor anticipation failure in infants with autism: A retrospective
analysis of feeding situations. Autism 2012, 16, 420-429. [CrossRef] [PubMed]

Haswell, C.C.; Izawa, J.; Dowell, L.R.; Mostofsky, S.H.; Shadmehr, R. Representation of internal models of action in the autistic
brain. Nat. Neurosci. 2009, 12, 970-972. [CrossRef]

Izawa, J.; Pekny, S.E.; Marko, M.K.; Haswell, C.C.; Shadmehr, R.; Mostofsky, S.H. Motor learning relies on integrated sensory
inputs in ADHD, but over-selectively on proprioception in autism spectrum conditions. Autism Res. 2012, 5, 124-136. [CrossRef]
Ament, K.; Mejia, A.; Buhlman, R.; Erklin, S.; Caffo, B.; Mostofsky, S.; Wodka, E. Evidence for specificity of motor impairments in
catching and balance in children with autism. J. Autism Dev. Disord. 2015, 45, 742-751. [CrossRef]


http://doi.org/10.1038/tp.2017.69
http://www.ncbi.nlm.nih.gov/pubmed/28485725
http://doi.org/10.1016/j.ijdevneu.2018.04.006
http://www.ncbi.nlm.nih.gov/pubmed/29705589
http://doi.org/10.1097/PSY.0b013e3181a2515c
http://www.ncbi.nlm.nih.gov/pubmed/19414617
http://doi.org/10.1016/j.jamda.2015.11.016
http://doi.org/10.1016/j.gaitpost.2005.09.013
http://doi.org/10.1016/j.psychres.2006.09.001
http://doi.org/10.1111/j.1440-1819.2005.01375.x
http://doi.org/10.1038/nm.4196
http://www.ncbi.nlm.nih.gov/pubmed/27783064
http://doi.org/10.1192/bjp.bp.110.084384
http://doi.org/10.1016/j.jpeds.2014.01.018
http://www.ncbi.nlm.nih.gov/pubmed/24576693
http://doi.org/10.1111/dmcn.12561
http://doi.org/10.1016/j.nicl.2014.03.010
http://www.ncbi.nlm.nih.gov/pubmed/24818082
http://doi.org/10.1016/j.nicl.2016.06.019
http://www.ncbi.nlm.nih.gov/pubmed/27419066
http://doi.org/10.1038/s41598-017-16440-z
http://doi.org/10.1016/S2215-0366(17)30158-X
http://doi.org/10.1001/jamapsychiatry.2014.2206
http://doi.org/10.1176/appi.ajp.2020.19030331
http://www.ncbi.nlm.nih.gov/pubmed/32539527
http://doi.org/10.1176/appi.ajp.2020.20071031
http://www.ncbi.nlm.nih.gov/pubmed/32867517
http://doi.org/10.1017/S0033291720000574
http://doi.org/10.1007/s40474-018-0152-3
http://www.ncbi.nlm.nih.gov/pubmed/20859923
http://doi.org/10.1177/1362361311423385
http://www.ncbi.nlm.nih.gov/pubmed/22250193
http://doi.org/10.1038/nn.2356
http://doi.org/10.1002/aur.1222
http://doi.org/10.1007/s10803-014-2229-0

	Introduction 
	Materials and Methods 
	Participants 
	General Assessment 
	Postural Control 
	Statistical Analyses 
	Ethics 

	Results 
	Socio-Demographic Information and Clinical Characteristics 
	Postural Control 
	Area 
	Perimeter 
	Anterior–Posterior Average Velocity 
	Lateral Average Velocity 


	Discussion 
	Conclusions 
	References

