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Abstract: The most accurate prognostic approach for follicular lymphoma (FL), progression of
disease at 24 months (POD24), requires two years’ observation after initiating first-line therapy (L1)
to predict outcomes. We applied machine learning to structured electronic health record (EHR) data
to predict individual survival at L1 initiation. We grouped 523 observations and 1933 variables
from a nationwide cohort of FL patients diagnosed 2006–2014 in the Veterans Health Administration
into traditionally used prognostic variables (“curated”), commonly measured labs (“labs”), and
International Classification of Diseases diagnostic codes (“ICD”) sets. We compared performance of
random survival forests (RSF) vs. traditional Cox model using four datasets: curated, curated + labs,
curated + ICD, and curated + ICD + labs, also using Cox on curated + POD24. We evaluated variable
importance and partial dependence plots with area under the receiver operating characteristic
curve (AUC). RSF with curated + labs performed best, with mean AUC 0.73 (95% CI: 0.71–0.75). It
approximated, but did not surpass, Cox with POD24 (mean AUC 0.74 [95% CI: 0.71–0.77]). RSF using
EHR data achieved better performance than traditional prognostic variables, setting the foundation
for the incorporation of our algorithm into the EHR. It also provides for possible future scenarios in
which clinicians could be provided an EHR-based tool which approximates the predictive ability of
the most accurate known indicator, using information available 24 months earlier.

Keywords: machine learning; prognosis; follicular lymphoma; survival analysis; random survival
forest; predictive analytics; veterans health administration; electronic health records; healthcare;
medical and health data

1. Introduction

Follicular lymphoma (FL), the most common indolent non-Hodgkin lymphoma [1],
accounts for about 20% of non-Hodgkin lymphoma [2,3]. Patients with FL have highly
heterogeneous prognoses; some patients experience an indolent course of disease, while
others endure a more aggressive disease with a trajectory that can include frequent progres-
sion, relapse, and early demise [4–6]. FL treatments can be associated with morbidity and,
rarely, mortality [7,8]. Thus, patients and clinicians must calibrate therapy choice to the risk
posed by FL. Otherwise, treatment risks could outweigh the benefits [4,9]. In order to apply
risk-adapted treatment strategies effectively, clinicians must be able to accurately identify
high-risk patients early in the course of disease, but the methods currently available for
this task have significant drawbacks.
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Specific patient-, disease-, and environment-related variables that can serve as prog-
nostic factors in oncology play a pivotal role in understanding disease trajectory, designing
clinical trials, making treatment decisions, and providing individual patients with accurate
information about their health risks [10]. The most commonly used FL prognostic index is
the Follicular Lymphoma International Prognostic Index (FLIPI) [11], which resulted from
an international collaboration that collected clinical characteristics and associated outcomes
from a large number of lymphoma patients treated with chemotherapy on various clinical
trial protocols. The variables included in the final model were age (>60 years), disease stage
(III–IV), hemoglobin (<12 g/dL), number of nodal areas (>4), and lactate dehydrogenase
(LDH) level (>upper limit of normal). A study validating FLIPI [12] obtained a Harrell’s
concordance index (C-index) of 0.66. As with FLIPI, most traditional prognostic indices in
oncology have typically been based on human-abstracted variables collected during clinical
trials [13,14]. These indices were optimized not only for predictive performance, but also
for ease of use by clinicians at the point of care, constraining the number of variables that
could be included and the complexity of score calculations. FLIPI’s optimization for ease
of recollection and calculation in a pre-electronic health record (EHR) era makes it poorly
suited for current clinical practice in the era of near-universal EHR use.

In recent years, disease progression within two years following initiation of first-line
(L1) treatment with chemoimmunotherapy (aka progression of disease within 24 months
[POD24]) [6,15] has risen to prominence as a simple and relatively accurate way of defining
a high-risk group of patients with decreased overall survival. Patients whose response to
L1 treatment lasts beyond two years demonstrate survival rates similar to those of the age-
matched general population [15]. However, using POD24 to assess risk requires waiting
two years after the start of L1 treatment in order to identify these patients; during that time,
neither patient nor physician can be sure about the disease prognosis. Furthermore, using
POD24 does not support a risk-adapted strategy in L1 treatment, whereas, ideally, patients
and clinicians could take into account a patient’s risk status while choosing an L1 therapy.

EHR systems, now widespread, could theoretically automatically extract and calculate
prognostic indices and present the resulting risk prediction to practicing physicians. Absent
the need to provide for easy recollection and calculation by clinicians, EHR-based indices
could instead be optimized for predictive performance and ease of extraction. Such
an optimization would favor the use of structured or semi-structured information over
information presented in unstructured narratives.

For survival analysis in oncology, the traditional Cox proportional hazard model
investigates the relationship between survival time and one or more variables. Although
well established and easily interpretable, the Cox model carries key limitations. It must
satisfy linearity and proportional hazards assumptions and can be applied only to a
restricted number of predictors, thus limiting its ability to account for interactions between
variables. Compared with the Cox model, machine learning can better manage large
numbers of predictors—even handling cases with more predictors than observations—and
can account for both non-linearity and variable interactions [16]. The random survival
forest (RSF) method, a flexible, non-parametric ensemble tree machine learning approach
extended from Breiman’s [17] random forest method in order to analyze right-censored
survival data [18], shows promise as a way to use high-dimensional, structured EHR data
to identify factors for predicting patient risk [19]. RSF’s reliance on only the data in seeking
a predictive model offers real advantages: it does not require model assumptions, and it
can be applied in exploratory investigations, allowing the discovery of unexpected risk
factors even with a paucity of prior survival data [18,20]. RSF avoids overfitting [21],
while effectively handling outliers [22]. Its out-of-bag prediction also provides reliable
inferences for training data, and it can measure relative contributions of different variables
(i.e., variable importance) to the survival prediction [20].

Machine learning techniques have been widely used in cancer research [23–25]. How-
ever, to our knowledge, no prior study has used RSF to predict patients’ prognoses in FL
and investigated how structured and semi-structured EHR data could benefit prediction.
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In this study, we applied RSF to predict FL patients’ survival and risks using EHR
data from a cohort of patients treated within the Veterans Health Administration (VHA).
Our findings supported our hypothesis that this method would outperform traditional
approaches and achieve predictive performance similar to that of POD24. Our results
provide clinicians with insights into the relative importance of traditional and new variables
in predicting FL patients’ risk.

2. Materials and Methods

This research was approved by the University of Utah Institutional Review Board
(#00083982) and the VA Salt Lake City Human Research Protection Program.

2.1. Cohort Selection

Using data from the Veterans Affairs (VA) Cancer Registry System and pharmacy
dispensation records from the VA Corporate Data Warehouse, we identified a nationwide
cohort of patients with grade 1–3a, stage II–IV FL diagnosed from 1 January 2006 to 31
December 2014 in the VHA, who received any of three widely used L1 therapies—rituximab
combined with cyclophosphamide, doxorubicin, vincristine, and prednisone; rituximab
combined with cyclophosphamide, vincristine, and prednisone; or bendamustine combined
with rituximab [26]. Table 1 shows patients’ characteristics by treatment. We excluded
patients who received maintenance therapy (see Appendix A for rationale), as well as
patients without a hematology/oncology visit within 6 months of diagnosis, as these latter
patients likely received treatment outside the VHA which we would have limited ability to
identify. Patients with a VA Cancer Registry System record of another malignancy prior to
FL diagnosis were also excluded. The final cohort included 523 patients. Figure 1 shows
the study flow diagram.
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2 illustrates cohort distribution for POD24 and reference groups. 

Figure 1. Study cohort attrition. 1L: first-line treatment; BR: bendamustine and rituximab; MR:
maintenance rituximab; RCHOP: rituximab, cyclophosphamide, doxorubicin, vincristine, and pred-
nisone; RCVP: rituximab, cyclophosphamide, vincristine, and prednisone; VHA: Veterans Health
Administration.
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Table 1. Baseline characteristics of patients by first-line treatment regimen.

BR RCHOP RCVP p-Value

N 120 235 168

Sex = male * (%) 113 (94.2) 220 (93.6) 165 (98.2) 0.085

Race (%) 0.177

Hispanic 3 (2.5) 10 (4.3) 3 (1.8)

Non-Hispanic Black 6 (5.0) 26 (11.1) 9 (5.4)

Non-Hispanic White 109 (90.8) 194 (82.6) 153 (91.1)

Other 2 (1.7) 5 (2.1) 3 (1.8)

Disease stage (%) 0.254

II 12 (10.0) 42 (17.9) 20 (11.9)

III 54 (45.0) 97 (41.3) 78 (46.4)

IV 54 (45.0) 96 (40.9) 70 (41.7)

Disease grade (%) <0.001

1 38 (31.7) 55 (23.4) 70 (41.7)

1–2 11 (9.2) 7 (3.0) 11 (6.5)

2 58 (48.3) 76 (32.3) 69 (41.1)

3 8 (6.7) 63 (26.8) 12 (7.1)

3a 5 (4.2) 34 (14.5) 6 (3.6)

Region of residence (%) 0.110

Midwest 33 (27.5) 60 (25.5) 38 (22.6)

Northwest 17 (14.2) 26 (11.1) 36 (21.4)

South 46 (38.3) 86 (36.6) 53 (31.5)

West 24 (20.0) 63 (26.8) 41 (24.4)

Pre-L1 CCI (mean [SD]) 2.36 (2.56) 2.51 (2.58) 2.03 (2.33) 0.161

Age > 60 years at L1 (%) 85 (70.8) 149 (63.4) 117 (69.6) 0.259

Hemoglobin at L1 < 12 g/dL (%) 32 (26.7) 76 (32.3) 52 (31.0) 0.544

LDH at L1 > upper limit of normal 39 (32.5) 91 (38.7) 48 (28.6) 0.097

Days from diagnosis to L1 (mean [SD]) 227.47 (321.72) 116.53 (314.30) 168.35 (328.04) 0.008

* The high percentage of male patients reflects the demographics of the Veterans Health Administration’s patient
population. BR: bendamustine and rituximab; CCI: modified Charlson comorbidity index; L1: first-line; LDH:
lactate dehydrogenase; RCHOP: rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone; RCVP:
rituximab, cyclophosphamide, vincristine, and prednisone; SD: standard deviation.

The dataset included 523 patients, with 1933 variables. Median follow-up time was
5.03 years, and median survival time 9.32 years. At five years, 150 (28.68%) patients had
died, 111 (21.22%) patients had been administratively censored at the end of the study
observation period, and 262 (50.10%) patients were alive. Within two years, 99 patients
(22.81%) experienced progression of disease (POD24). As in Casulo et al. [15], we excluded
from our POD24 analysis 89 patients who were administratively censored (n = 28) or
died (n = 61) from causes unrelated to their disease relapse, to the best of our knowledge.
Figure 2 illustrates cohort distribution for POD24 and reference groups.
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2.2. Feature Extractions

We grouped covariates into three groups:

• A curated clinical set (“curated”) comprised patient demographics and disease-specific
characteristics commonly recognized to be associated with survival, which were
available in structured form in the VA Cancer Registry System or Corporate Data
Warehouse (Table ??). Patient characteristics included age, sex, and modified Charlson
comorbidity index; disease-specific characteristics included stage, grade, and lactate
dehydrogenase at L1 initiation. We also included treatment used for L1.

• The second group (“labs”) included results of 33 lab values typically obtained prior
to initiation of L1, extracted from the EHR lab domain. These data included most
of the labs (available in 70% or more of patients) in the complete blood count and
comprehensive metabolic panels (Table ??). We included medians and ranges of
lab results for the period starting three months prior to start of L1 and ending just
prior to start of L1. RSF handles missing data itself; for the Cox model, missing data
were imputed by random forest imputation algorithm [27] using randomForestSRC R
package [28].

• Finally, a larger group of variables (“ICD”) included any International Classification
of Diseases (ICD) diagnostic codes present from one year prior to L1 initiation to three
months prior to L1, with information indicating presence or absence of ICD codes as
well as how many times each individual code was present during this nine-month
period. There were 1841 ICD codes overall.

2.3. Outcomes

Vital status and date of death for patients who died before the end of observation
period on 31 December 2018 were obtained from the Corporate Data Warehouse, which
aggregates vital status from multiple sources. Survival was measured from first dispensa-
tion of L1 to date of death as recorded in Corporate Data Warehouse records. Patients were
censored if they were recorded to have another cancer in the VA Cancer Registry System,
or at the end of observation period. Five-year overall survival is an established clinical
milestone in FL studies [29–31] and POD24 predicts a high-risk group with a median sur-
vival of five years; we compared Cox and RSF methods’ relative ability to predict five-year
survival. We defined as belonging to the high-risk group any patient who died within five
years after L1 initiation, with the low-risk group defined as patients who lived beyond the
five-year time point.

2.4. Models

The Cox model estimates the hazard function h(t), which gives instantaneous risk of
event, by a linear function (i.e., the log risk of failure is a linear combination of covariates
[see (2) below]). Given the hazard function, survival function in terms of time, the prob-
ability that an observation survives beyond a specific time, can be obtained. The model
parameters are estimated through optimization of the cox partial likelihood.

The hazard at time t given covariates x = (x0, x1, . . . , xp) is defined as

h( t|x) = h0(t) exp (
p

∑
j

xjβ j) (1)

From (1), we can also obtain

ln(h( t|x)) = ln(h0(t)) + (
p

∑
j

xjβ j). (2)
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where h0(t) is the baseline hazard function and does not need to be specified while esti-
mating the parameters β = (β0, β1, . . . , β2)

T through maximizing the partial likelihood
defined as the following formula:

L(β) = ∏
f∈F

exp
(

βTxj f
)

∑j∈R exp
(

βTxj
) (3)

where F is the set of indices of failures, R is the set of indices of individuals at risk at time t,
and j f is the index of failure at time t.

For individual risk prediction in Cox model, the estimated hazard for individual i,
with covariate vector xi follows:

ĥi(t) = ĥ0(t) exp
(

x′i β̂
)

, (4)

where β̂ is the estimated coefficients by maximizing partial likelihood, ĥi(t) is the estimated
hazard for individual i and ĥ0(t) is the estimated baseline hazard.

Similarly, the survival function of individual i at time t is then is calculated with the
following formula:

Ŝi(t) = Ŝ0(t) exp
(

x′i β̂
)

, (5)

with Ŝ0(t) = exp
(
−Λ̂0(t)

)
and Λ̂0(t) is the cumulated hazard until time t [32].

However, the Cox model assumes that the data have linear proportional hazard,
which assumption, in many cases—especially for high dimensional data with non-linear
interactions—is not satisfied. Therefore, a more complicated non-linear model, such as a
regularized Cox model or a machine learning model, is needed.

We used a regularized Cox model with lasso approach when the dimensionality of
the data increases. The lasso regularization method is a variable selection and shrinkage
method in Cox model, where the log partial likelihood is minimized subject to the sum
of the absolute values of the parameter bounded by a given constant [33]. The constraint
shrinks the coefficients; some are shrunk to zero, thus reducing the estimation variance [33].
We used a five-fold cross-validation approach to obtain the optimal penalty parameter [34].

Among machine learning approaches, RSF is a flexible non-parametric ensemble tree
method, extended from Breiman’s [17] random forest method for analyzing right-censored
survival data [18]. Random forest is a popular tree-based ensemble method and each tree
is built on randomly selected variables [35]. Bootstrap samples of the data are selected to
build the trees. Each node of the tree is split using a randomly selected set of variables.
The randomization decorrelates the trees and keeps the variance relatively small, since
combining the predictions of all these uncorrelated trees built with different samples and
subsets of features leads to lower variance [17]. The trees are grown to the full extent,
which reduces bias. The forest prediction is based on the majority of votes, with each
tree receiving one vote for the observation that is not in the bootstrap sample (out-of-bag
observation).

RSF is extended from the random forest method. For the RSF approach,

1. Bootstrap samples of the training data are selected to build the trees. For each
bootstrap sample, about 2/3 of the observations are selected and 1/3 are left out.

2. In each bootstrap sample, a survival tree is constructed. Each node, p candidate
variables are randomly selected to build the tree. The split of the nodes maximizes
the survival difference between daughter nodes; in this study, a log-rank splitting
rule is used to determine the split of the nodes [18].

3. The tree is grown to full size under the constraint that there should be at least one
event with unique survival times at each terminal node.

4. Survival curves are estimated for the out-of-bag observations and the average survival
curves are calculated as the survival curve for each subject. The cumulative hazard
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functions in terminal nodes are time-dependent. Performance is assessed based on
the testing set using the RSF model obtained from the training and parameter tuning
process.

The nodes of the trees are split using a survival criterion considering survival time
and censoring status information [18]. The cumulative hazard function is an ensemble
estimate of all the trees.

To train each model, patients were randomly split into a training set (80%) for model
training with five-fold cross-validation approach and a testing set (20%) for performance
evaluation. Optimal parameters for RSF were selected using grid search [36] with the cross-
validation process. The details of parameter tuning process are provided in Appendix B.
To calculate average performance and 95% confidence intervals (CI), we repeated this
process 30 times. The mean AUC is the mean of the 30 C-indices and AUCs. The baseline
characteristic summarization, as well as variable importance and partial dependence plots,
are shown based on the split with performance closest to the average of 30 splits [37].

For each approach, we fit models with four different sets of input variables with
increasing granularity: curated set, curated+ labs set, curated + ICD set, and curated + labs
+ ICD set. Only the curated set satisfied proportional hazard and linearity assumptions,
i.e., had survival curves for two strata with hazard functions are roughly proportional
over time for each categorical covariate, and the relationship between the ln(hazard of
death) and each of the continuous variables in the model were close to linear after adjusting
other covariates. No interactions were fit or tested. A traditional Cox model is unable to
model the curated + ICD and curated + labs + ICD sets due to the high dimensionality, so a
“regularized” Cox model with lasso approach [34] was used for these two sets. We also used
the regularized Cox model for the curated + labs set where the Cox model assumptions
were violated.

2.5. Use of RSF to Predict High or Low Risk

We set the survival function S(t) as the probability that a patient would survive beyond
five years after the start of L1. We used predictSurvProb function in the pec R package [38]
for the survival probability calculation [39]. When S(t) < an optimal cut-off point, where the
optimal cut-off point was identified using Youden’s index (J), defined as J = max{sensitivity
+ specificity − 1} [40], we classified a patient as belonging to the high-risk group; otherwise,
we categorized the patient as being at low risk.

We used training data to “grow” the RSF, in which each patient in the test set was
passed down the trees. Individual survival functions for each patient were extracted by
evaluating the obtained cumulative hazard functions over a five-year time interval. High-
and low-risk groups were then determined by the individual survival functions with the
optimal cut-off point.

2.6. Model Performance Measures

We evaluated the predictive performance of the models using area under the re-
ceiver operating characteristic curve (AUC), which is also referred to as a ‘C-statistic’ or
C-index [41], a rank-order statistic for assessing predictions against true outcomes (defined
as the ratio of the concordant pairs to the total comparable pairs [42]), served as a standard
performance measure for model assessment in survival analysis. AUC provides informa-
tion about how well a model can distinguish between classifications, where a higher AUC
reflects a better model.

2.7. Model Interpretation

We used variable importance and partial dependence plots to explain the best-performing
models, measuring a given variable’s importance by increase or decrease in prediction
error after dropping the predictor variable at RSF nodes. Friedman 2001 [43] proposed
the partial dependence plot to interpret machine learning algorithms; the plot illustrates
the average change of the predicted value when the variable changes over its marginal
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distribution. The partial dependence plot serves as a useful tool in understanding the
relationship between predictors and predictions in various predictive settings [44].

3. Results

We used R [45] to perform the analyses. Model performances on four datasets are
shown in Tables 2 and 3. Using the curated clinical variable set, the baseline Cox model
yielded a mean AUC of 0.64 (95% CI: 0.61–0.67), while the RSF model achieved a mean AUC
of 0.67 (95% CI: 0.65–0.70). The addition of lab results had little effect on the performance
of the Cox model, with a mean AUC of 0.62 (95% CI: 0.60–0.64). Using a regularized Cox
model for curated + labs set boosted AUC to 0.71 (95% CI: 0.69–0.73). With more variables
available (ICD codes), a regularized Cox model achieved comparable performance to RSF.
The variables retained in the regularized Cox model are reported in Appendix C. The RSF
model showed marked improvement in prediction performance on the curated + labs
set, with a mean AUC of 0.73 (95% CI: 0.71–0.75). The curated + labs set with RSF model
turned out to be the best-performing combination of dataset and approach. We found no
significant difference between RSF performance on the curated + labs set (95% CI for AUC:
0.71–0.75) and curated + ICD + labs set (95% CI for AUC: 0.65–0.73). RSF performance on
curated + ICD + labs showed much higher variance than performance on the curated +
labs dataset. The best-performing combination of approach and dataset—the RSF model
with curated + labs set—achieved a performance that was close to but unable to beat that
of a Cox model based on POD24 (mean AUC 0.74 [95% CI: 0.71–0.77]).

Table 2. Cox and RSF model performance with different predictor datasets.

Model (AUC) Curated (95% CI) Curated + Labs
(95% CI)

Curated + ICD
(95% CI)

Curated + ICD +
Labs (95% CI)

Cox (regularized Cox
denoted by *) 0.64 (0.61–0.67) 0.61 (0.59–0.64)

* 0.71 (0.69–0.73) * 0.69 (0.67–0.71) * 0.73 (0.70–0.75)

RSF 0.68 (0.65–0.70) 0.73 (0.71–0.75) 0.63 (0.61–0.65) 0.71 (0.63–0.79)

* Normal Cox model cannot handle high-dimensional data such as ICD codes; we provide performance measures
of both normal and regularized Cox models for the curated + labs dataset for comparison. AUC: area under
the receiver operating characteristic curve; CI: confidence interval; ICD: International Classification of Diseases
diagnostic codes; RSF: random survival forest.

Table 3. Cox model performance with curated set and POD24.

Model (AUC) Curated + POD24 (95% CI)

Cox 0.74 (0.71–0.77)
AUC: area under the receiver operating characteristic curve; CI: confidence interval; POD24: progression of
disease within 24 months of starting first-line treatment.

Receiver operating characteristic (ROC) curves are presented in Figure 3 for the Cox
model applied to curated set, RSF model applied to the curated + labs set, and Cox model
applied to the curated + POD24 dataset. The ROC curves show the tradeoff between
sensitivities and specificities for each model.

Figure 4 provides variable importance plots for the RSF model applied to the curated
+ labs set. The nine most influential predictors were examined with partial dependence
plots to explore their relationship with predicted survival probabilities. These nine most
important variables, in order of decreasing influence, were albumin, age at L1 initia-
tion, erythrocytes, urea nitrogen, bilirubin, protein, aspartate aminotransferase, alanine
aminotransferase, and calcium. Figure 5 provides partial dependence plots for these nine
variables. The vertical axis shows the predicted survival probability, and the horizontal
axis indicates change in predictor values. The partial dependence plots illustrate that the
predicted survival probabilities decrease with age above 60 years, dropping faster with age
over 70 years. Similarly, survival decreased as albumin and erythrocytes decreased and
urea nitrogen, bilirubin, protein, aspartate aminotransferase, alanine aminotransferase, and
calcium increased beyond their respective normal ranges, indicating worsening renal (urea
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nitrogen), liver (albumin, bilirubin, alanine aminotransferase), and marrow (erythrocyte,
hemoglobin) functions.
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Our best-performing model and data set, RSF with curated + labs set, identified patients
at elevated risk of death within five years (hazard ratio: 4.39 [95% CI: 2.11–9.14]) (Table 4)
and with greater likelihood to show factors traditionally considered indicative of high
risk (hemoglobin, lactate dehydrogenase), even though these variables were not among
the top variables used by the RSF algorithm to predict risk. Lactate dehydrogenase and
hemoglobin were the only traditional indicators found to be statistically significant risk
factors (p-value < 0.05). Table 5 provides baseline characteristics of predicted high- and low-
risk groups. Table 4 shows how the high-/low-risk classifications for RSF at the beginning
of L1 compared to the classifications for POD24 two years later. The estimated hazard ratio
for high risk is slightly (but not significantly) higher with POD24 compared to RSF.
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Table 4. Relative risk for the predicted high- and low-risk groups.

Risk Group N Hazard Ratio (95% CI) 5-Year Overall Survival (95% CI)

RSF Model

Low 62 1 0.83 (0.73–0.94)

High 43 4.39 (2.11–9.14) 0.44 (0.30–0.63)

POD24 Model

Low 61 1 0.87 (0.78–0.98)

High 25 5.55 (3.27–9.35) 0.41 (0.26–0.68)

CI: confidence interval; POD24: progression of disease within 24 months of starting first-line treatment; RSF:
random survival forest.

Table 5. Baseline characteristics of predicted high- and low-risk groups.

Low-Risk High-Risk p-Value

N 62 43

Sex = male * (%) 59 (95.2) 40 (93.0) 0.971

Race (%) 0.520

Hispanic 1 (1.6) 1 (2.3)

Non-Hispanic Black 5 (8.1) 1 (2.3)

Non-Hispanic White 52 (83.9) 40 (93.0)

Other 2 (3.2) 0

Unknown 2 (3.2) 1 (2.3)

Disease stage (%) 0.503

II 8 (12.9) 5 (11.6)

III 26 (41.9) 13 (30.2)

IV 24 (38.7) 23 (53.5)

Unknown 4 (6.5) 2 (4.7)

Disease grade (%) 0.208

1 13 (21.0) 12 (27.9)

1–2 3 (4.8) 0

2 18 (29.0) 7 (16.3)

3 8 (12.9) 7 (16.3)

3a 8 (12.9) 3 (7.0)

Unknown 12 (19.4) 14 (32.6)

L1 treatment regimen (%) 0.483

BR 13 (21.0) 6 (14.0)

RCHOP 25 (40.3) 22 (51.2)

RCVP 24 (38.7) 15 (34.9)

Region of residence (%) 0.789

Midwest 11 (17.7) 10 (23.3)

Northwest 6 (9.7) 6 (14.0)

South 17 (27.4) 8 (18.6)

West 13 (21.0) 8 (18.6)

Unknown 15 (24.2) 11 (25.6)

Pre-L1 CCI (mean [SD]) 2.37 (2.42) 2.93 (2.81) 0.284

Days from diagnosis to L1 (mean [SD]) 135.31 (310.77) 102.49 (200.15) 0.543

Age > 60 years at L1 (%) 37 (59.7) 32 (79.1) 0.061

Hemoglobin at L1 (%) <0.001

<12 g/dL 3 (4.8) 26 (60.5)

≥12 g/dL 58 (93.5) 17 (39.5)

Unknown 1 (1.6) 0

LDH at L1 (%) 0.009

≤Upper limit of normal 47 (75.8) 21 (48.8)

>Upper limit of normal 9 (14.5) 17 (39.5)

Unknown 6 (9.7) 5 (11.6)

* The high percentage of male patients reflects the demographics of the Veterans Health Administration’s patient
population. BR: bendamustine and rituximab; CCI: modified Charlson comorbidity index; L1: first-line; LDH:
lactate dehydrogenase; RCHOP: rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone; RCVP:
rituximab, cyclophosphamide, vincristine, and prednisone; SD: standard deviation.
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4. Discussion

In this study, we sought to compare the predictive performance of an RSF model versus
a Cox model on datasets including traditional curated variables (i.e., patient demographics
and disease-specific characteristics) along with higher-dimensional data (i.e., lab values
and/or ICD diagnostic codes) from the EHRs of a population of patients with FL. We also
compared performance of the RSF model against the most accurate known indicator of
FL risk, POD24. Note that this comparison is inherently biased towards POD24 since our
model considered information available at the time of L1 treatment initiation, while POD24,
based on progression-free survival in the 24 months following L1 treatment initiation,
incorporates information about the disease course a full two years after our model’s
prediction is made.

We demonstrate that a limited set of EHR-extractable variables can provide similar
performance to those generated from clinical trials [12]. While these limited EHR-derived
variables would not necessarily provide a predictive gain over established clinical indices,
they offer the advantage of being automatically extractable and computable, such that a
modern EHR could simply provide them to the clinician without the need for the clinician
to recall them, calculate them manually, and then include them in the chart. These prog-
nostic factors would also be identifiable in the EHR from discrete structured data without
needing to deploy information extraction or natural language processing approaches on
unstructured data.

Our findings show that a broader set of data extracted from the EHR can improve
prediction performance. However, not all data achieved such an effect. ICD codes added
relatively little to prediction performance. On the other hand, lab values, available in
EHRs but not other claims-based healthcare databases, substantially improved prediction.
These results suggest that studies of the utility of EHR data in predicting clinical endpoints
should emphasize EHR information that reflects the biology of patient and disease and
deemphasize administrative data.

In addition, while our model included disease-specific variables commonly consid-
ered a reflection of disease risk (e.g., stage and grade), the variable importance analysis
identified none of these variables as being among the most useful variables for prediction.
Instead, the top variables reflected age, along with kidney, liver, and marrow function.
This finding suggests that change in these variables may serve as the best indicator of
disease risk, host fitness, and the host’s ability to tolerate the stresses introduced by the
disease and its associated treatments. The correlation between age and survival proba-
bility in our model corroborates findings that a model including age in three categories
(≤60 years old/61–70 years old/>70 years old) improves the predictive performance of
FLIPI [12].

The best-performing combination of model and data we found, RSF applied to the
curated + labs dataset, could not outperform POD24, although we found no significant
difference between the AUCs of the two models. We report a relative risk for the predicted
high- vs. low-risk groups using our best model of 4.39, lower than the previously reported
risk ratio of POD24 vs. reference group of 6.44 [15]. However, our model offers the distinct
advantage of using information available at the time of L1 treatment initiation, without the
need to wait for two years while patients are observed for progression. An earlier prognosis
would not only provide more information to patients about the potential impact of their
disease on survival, it would also lead to significant differences in their management.
Patients with high risk could be monitored more closely and would likely receive imaging
surveillance more promptly if they developed symptoms that could indicate a recurrence.
In addition, identification of high risk at the time of L1 initiation allows for adapting L1
to the disease risk, either by choosing a more aggressive treatment regimen and/or by
adopting maintenance treatment (additional immunotherapy) following the completion of
L1 treatment.
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Limitations

There are several limitations in this study. First, the majority of VHA patients are male,
limiting generalizability of our results to a subset of the population of patients with FL.
However, we implemented our methods in a nationwide cohort using structured EHR data
commonly available in any EHR system, making it feasible to widely adopt our methods to
automatically predict individual patient risk at the beginning of L1. Secondly, we limited
our analysis to variables available in structured format; we did not include unstructured
data in radiology reports, which might improve prognostic ability. With advances in
precision medicine, genetic profiling and deep sequencing of tumors could likely become a
widely adopted standard of care. Such information would probably improve prognosis as
well. Lastly, we did not include deep learning approaches in our preliminary comparison
of machine learning methods due to their computational cost and the need for specialized
hardware.

5. Conclusions

RSF using EHR data achieved better performance than traditional prognostic variables.
Our method sets the foundation for the incorporation of our algorithm into the EHR. It
also allows for possible future scenarios to provide clinicians with an EHR-based tool
which approximates the predictive ability of the most accurate known indicator, using
information available 24 months earlier in the disease trajectory.
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Appendix A. Clinical Rationale for Inclusion and Exclusion Criteria

Patients with Grade 3B and Stage I disease are treated differently: Stage I patients
mostly receive radiation, while Grade 3B is thought to be a different clinical and biolog-
ical entity whose treatments are more aligned with diffuse large B-cell lymphoma than
FL. We excluded patients who receive single-agent rituximab since this therapy is less
efficacious than the other three treatments and is typically given either in patients who do
not meet treatment indication criteria or are too fragile to receive a more aggressive stan-
dard treatment. We also excluded maintenance rituximab since this is shown to prolong
progression-free survival and would not allow for POD24 calculation, the latter reported
mainly in patients who did not receive maintenance rituximab. Prior malignancy is a com-
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mon exclusion criteria as a prior malignancy recurrence could lead to increased mortality
independent from FL.

Appendix B. RSF Parameter Tuning

In the training process, we used a grid search in order to find the optimal parameters;,
i.e., an extensive grid search is performed with 5-fold cross-validation of each split. The
parameters we tuned are: average number of observations in terminal nodes (nodesize),
number of trees in the forest (ntree), and the maximum number of splits for continuous
variables (nsplit). The tuning process is based on the C-index of cross-validation test results.

The parameters we specified using R code with the grid search are:

Nodesize: seq(100, 1000, by = 50)
Ntree: seq(1, ncol(train_data), length.out = 100)
Nsplit: c(1:9, seq(10, 100, by = 5))

Appendix C. Tables and Figure

Table A1. Variables included in “labs” and “curated” datasets.

Labs Set

Alanine aminotransferase

Albumin

Alkaline phosphatase

Basophils

Basophils per 100 leukocytes

Bilirubin

Calcium

Carbon dioxide

Chloride

Creatinine

Eosinophils

Eosinophils per 100 leukocytes

Erythrocyte distribution width

Erythrocyte mean corpuscular hemoglobin

Erythrocyte mean corpuscular hemoglobin concentration

Erythrocyte mean corpuscular volume

Erythrocytes

Glomerular filtration rate per 1.73 square meters predicted

Glucose

Hematocrit

Lymphocytes

Lymphocytes per 100 leukocytes

Monocytes

Monocytes per 100 leukocytes

Neutrophils

Platelet mean volume

Platelets

Potassium

Protein

Sodium

Urea nitrogen
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Table A1. Cont.

Labs Set

Curated Set

Sex

Race

Disease stage

Disease grade

Modified Charlson comorbidity index prior to first-line treatment

First-line treatment regimen

Age at first-line treatment initiation

Hemoglobin at first-line treatment initiation

Lactate dehydrogenase

Region of residence

Days from diagnosis to starting first-line treatment

Table A2. Cox model performance (AUC) using “curated” dataset with two-way interactions and
restricted cubic spline.

Model Curated (95% CI)

Cox 0.59 (0.56–0.61)
AUC: area under the receiver operating characteristic curve; CI: confidence interval.

Table A3. Cox model performance (AUC) on different datasets using multiple imputation instead of
a random forest imputation algorithm.

Model Curated (95% CI) Curated + Labs (95%
CI) POD24 (95% CI)

Cox 0.64 (0.61–0.66) 0.64 (0.62–0.67) 0.75 (0.73–0.78)
AUC: area under the receiver operating characteristic curve; CI: confidence interval; POD24: progression of
disease within 24 months of starting first-line treatment.

Table A4. Cox model performance (AUC) with two-way interactions using a stepwise variable
selection approach with different datasets.

Model Curated + Labs (95%
CI)

Curated + ICD (95%
CI)

Curated + ICD +
Labs (95% CI)

Cox 0.64 (0.62–0.67) 0.57 (0.55–0.59) 0.59 (0.55–0.63)
AUC: area under the receiver operating characteristic curve; CI: confidence interval; ICD: International Classifica-
tion of Diseases diagnostic codes.

Table A5. Number of times (out of 30 splits) that different variables were retained in the regularized
Cox model after lasso regularization, with different datasets.

Labs ICD Labs + ICD

Variable Times Retained Variable Times Retained Variable Times Retained

Urea nitrogen 30 Age at L1 30 Age at L1 30

Age at L1 initiation 30 Hemoglobin * 30 Albumin * 30

Albumin 30 424.1 19 Urea nitrogen * 29

Erythrocytes 30 v45.81 19 Erythrocytes * 27

Chloride 16 362.02 18 v45.81 24

Protein 11 414.01 14 424.1 23

Calcium 10 250.80 13 v81.1 14

Lymphocytes 6 782.3 13 305.03 13

Carbon dioxide 5 v58.61 13 v58.61 13
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Table A5. Cont.

Labs ICD Labs + ICD

Variable Times Retained Variable Times Retained Variable Times Retained

Aspartate
aminotransferase 4 v68.89 11 216.5 12

Potassium 4 305.03 10 414.01 12

Northeast US
residence 4 443.9 7 v68.89 12

LDH 3 366.15 4 Potassium * 11

Sodium 3 523.42 4 285.8 10

Alanine
aminotransferase 2 v58.83 3 362.02 10

Alkaline phosphatase 1 v76.43 3 250.80 9

Basophils 1 173.9 2 782.3 9

Bilirubin 1 244.9 2 362.05 6

Eosinophils 1 427.31 2 443.9 6

Hematocrit 1 721.3 2 Protein * 6

Neutrophils 1 v58.66 2 366.15 5

Platelets 1 250.00 1 427.31 5

RCVP as L1 1 295.32 1 v15.82 4

Male sex 1 300.02 1 v49.89 4

— — 427.89 1 340. 3

— — 428.0 1 371.5 3

— — 715.00 1 785.2 3

— — 721.2 1 v43.1 3

— — 722.0 1 295.32 2

— — 724.3 1 362.01 2

— — 785.2 1 726.73 2

— — 998.83 1 v16.1 2

— — LDH* 1 v58.83 2

— — v15.82 1 v76.43 2

— — v43.1 1 244.9 1

— — v65.19 1 266.2 1

— — v72.31 1 362.04 1

— — v72.6 1 366.16 1

— — — — 369.9 1

— — — — 427.9 1

— — — — 523.42 1

— — — — 586. 1

— — — — 702.19 1

— — — — 713.5 1

— — — — 721.2 1

— — — — 721.3 1

— — — — 726.32 1

— — — — 786.9 1

— — — — 793.99 1

— — — — 998.83 1

— — — —
Aspartate

aminotransferase
*

1

— — — — Chloride * 1

— — — — E878.2 1

— — — — Glucose * 1

— — — — v43.3 1

— — — — v65.19 1

— — — — 72.31 1

* denotes imputed result. ICD: International Classification of Diseases diagnostic codes. L1: first-line treatment;
LDH: lactate dehydrogenase; RCVP: rituximab, cyclophosphamide, vincristine, and prednisone.
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