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Abstract: Assessment of risk before lung resection surgery can provide anesthesiologists with informa-
tion about whether a patient can be weaned from the ventilator immediately after surgery. However,
it is difficult for anesthesiologists to perform a complete integrated risk assessment in a time-limited
pre-anesthetic clinic. We retrospectively collected the electronic medical records of 709 patients who
underwent lung resection between 1 January 2017 and 31 July 2019. We used the obtained data to
construct an artificial intelligence (AI) prediction model with seven supervised machine learning
algorithms to predict whether patients could be weaned immediately after lung resection surgery.
The AI model with Naïve Bayes Classifier algorithm had the best testing result and was therefore
used to develop an application to evaluate risk based on patients’ previous medical data, to assist
anesthesiologists, and to predict patient outcomes in pre-anesthetic clinics. The individualization and
digitalization characteristics of this AI application could improve the effectiveness of risk explanations
and physician–patient communication to achieve better patient comprehension.

Keywords: lung resection; pulmonary function test; artificial intelligence; machine learning; pre-
anesthetic consultation; staged weaning

1. Introduction

Lung cancer has the highest mortality rate among all cancers in Taiwan [1]. The stan-
dard treatment for lung cancer is tumor resection surgery before cancer cell metastasis.
However, lung cancer is most often detected in the metastatic stage [2]. Therefore, only a
small percentage of patients with lung cancer can undergo surgery.

Lung resection is one of the riskiest major surgeries and must be performed under
general anesthesia with advanced anesthetic monitoring [3]. Patients undergoing lung
resection surgery must receive endotracheal tube intubation, which provides access to
mechanical ventilation via a machine called a ventilator. The ventilator helps patients
achieve optimal oxygenation during general anesthesia. If a patient can be weaned from
the support of the endotracheal tube and the mechanical ventilator immediately after lung
resection surgery (referred below as “wean immediately”), they can be sent back to the
general ward for postoperative care; otherwise, they should be transferred to the intensive
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care unit (ICU) for temporal support with mechanical ventilation via an endotracheal tube,
and ventilatory support should be gradually withdrawn, usually within days of surgery,
based on clinical respiratory evaluations (referred to below as “staged weaning”) [4–7].

All patients undergoing lung resection surgery routinely visit the pre-anesthetic
consulting clinic for risk evaluation, explanation, and discussion with the anesthesiologists
before general anesthesia. The possibility of transferring to the ICU postoperatively for
staged weaning and the possibility of difficult weaning is one of the most important topics
in the pre-anesthetic consulting clinic.

Well-known factors related to staged weaning for lung surgery are [6] (p. 1945–1953),
as follows: (1) postoperative residual lung function, usually estimated using the postoper-
ative forced expiratory volume in one second (ppoFEV1); the ppoFEV1 is calculated by
pre-operative FEV1% × (1 % lung volume resected during operation/100) [6] (p. 1944);
generally, ppoFEV1% >40% represents a low risk factor for respiratory complications [6]
(p. 1945) [7]. (2) Detailed history of smoking and quitting smoking; smokers who ceased
smoking for more than four weeks before thoracic surgery had a lower rate of pulmonary
complications than those who did not [6] (p. 1949) [8]. (3) Resting oxygen saturation before
surgery. (4) The maximum exercise loads patients can afford before operation, for example,
whether they can climb more than two floors without resting in between, and whether they
can walk for over six minutes. (5) Severity of coronary atherosclerosis or coronary artery
disease (CAD). The coronary arteries supply oxygen and blood to the heart muscles. Deoxy-
genation of the heart muscle can cause myocardial infarction, irregular rhythms, or heart
failure; those who have any of the above-mentioned conditions require high concentration
oxygen treatment and staged weaning in the ICU. (6) Major medical diseases such as liver
failure, renal failure, and morbid obesity (body mass index ≥ 35 kg/m2), or neuromuscular
diseases that causes weakness, such as myasthenia gravis. (7) Current age [6,9] (p. 1947)
(8) The reversal agents of the muscle relaxants allow the airway muscles to contract with full
strength and prevent postoperative residual curarization; therefore, a patient can breathe
without ventilator support after emergence from general anesthesia [10–13].

Each of the above-mentioned weaning factors has its own thresholds [14], has its own
contributions to staged weaning, and has been investigated separately in previous studies.
No study has yet investigated the contribution of each risk factor for staged weaning,
the integrated risk assessment, the relevance of each potential risk factor, or their impact;
nor have any previous studies provided an appropriate comprehensive predictive model
in the context of “cannot wean immediately” after lung resection surgery.

Using individualized risk factors for risk prediction is a future trend in precision
medicine [15]. The use of artificial intelligence (AI)-supervised machine learning-based
techniques provides a feasible solution. This study aimed to use the nine factors mentioned
above to generate a computerized AI prediction model that would be useful for objective
pre-anesthetic evaluation.

It is expected that the application of this model could aid in the following: (1) esti-
mation of the potential requirements of “cannot wean immediately” after lung resection
surgery, with data that facilitates understanding by patients and their family members in
the pre-anesthetic evaluation clinic; (2) personalized and customized data, especially for
patients presenting a poor pre-operative condition, potentially helping the patient and their
family in setting realistic expectations to help prevent medical disputes; and (3) to provide
different predictive data for the use of different types of anesthesia reversal agents [16–18].

AI approaches are a promising strategy for achieving individualized digitalization of
weaning possibility prediction. A better AI-assisted prediction model can improve patients’
comprehension and physician–patient communication.

This paper consists of introduction, material and methods, results, discussion, and con-
clusion sections. The introduction section captures the purpose of this study, which was to
analyze the impact of the nine mentioned well-known factors affecting weaning possibility.
The secondary aim was to build a computerized AI prediction model application. It was
hypothesized that previous medical big data could provide accurate future predictions.
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The goal of the present study would be of particular interest to the presentation on applying
the AI application for physicians, and to obtain a better understanding of weaning possibil-
ity in patients. The material and methods section describes step by step the investigation of
the previous medical big data on lung resection surgery in Chi Mei medical center and at-
tempts to input the big data into an AI algorithm for future predictions. The results section
consists of the verified AI algorithms by model testing and shows the details of the testing
report. More specifically, we tested the AI prediction models with different AI algorithms to
obtain the best model for application. The discussion section presents the advantages of AI
prediction models, the comparisons between AI and traditional mathematical equations to
predict prognosis, the limitations, and our future goals and possibilities of future research.
The conclusion section consists of a summary and practice implications.

2. Materials and Methods

This was a retrospective study. After institutional review board approval, we collected
the data of patients who underwent thoracotomy for lung tumor resection at Chi Mei
Medical Center between 1 January 2017 and 31 July 2019. In total, 709 patients underwent
surgery, and patients under 20 years of age were excluded. We deleted the medical record
number and all types of personal identification of each patient and randomly assigned
a new code to each patient. This encryption method is used to protect patient privacy.
The present study was approved by the Institutional Review Board of the Chi Mei Medical
Center (IRB Serial No.: 10810-001).

According to the literature [6], data on the following factors were collected for each
patient as feature variables: (1) pre-operative lung-related test data, (2) previous heart-
related reports and history of cardiovascular surgery, (3) volume of lung tissue expected
to be resected during surgery, (4) maximum exercise load, (5) current balance of oxygen
supply and demand, (6) other important medical history that could affect intensive care unit
admission; (7) history of smoking and smoking cessation; (8) current age; and (9) muscle
relaxant reversal agent used (sugammadex or neostigmine) [10–13]. Pre-operative lung
function data and the volume of lung tissue expected to be resected were combined to
calculate the predicted postoperative residual lung function, which was represented by the
predicted ppoFEV1.

All data of the above-mentioned nine factors were used as feature values (X value),
and whether the patients were weaned immediately after operation was used as the out-
come value (Y value). The threshold for binary classification of the X values was set as
described in the literature, that is, the cutoff point between normal and abnormal values bi-
nary classifying the features based on the most authoritative textbook of anesthesiology [6]
(Supplementary Material—Table S1).

We used Spearman correlation analysis (heat map) [19] to investigate the contribution
of each feature to the outcome. All the differences between groups were calculated using T-
test and predetermined analysis with a significance level of p < 0.001 (two-sided) using SPSS
(Statistical Product and Service Solutions) software (version 19.0, Chicago II., IBM Corp,
Armonk, NY, USA).

After encryption, the data were imported into a machine-learning prediction model
programmed in Python. Various predictive models were constructed using Python pro-
grams, hereinafter referred to as model construction.

For model construction, a random selection method was used, in which 70% of the
patient data were randomly selected for AI model training, and 30% of the patient data
were used for model testing. To balance the dataset with an imbalanced outcome class,
the synthetic minority over-sampling technique (SMOTE) [20–27] was applied. SMOTE is
an oversampling technique in which the minority class is oversampled by creating “syn-
thetic” examples along the line segments joining any or all of the minority class nearest
neighbors. The SMOTE technique was adopted only for the training dataset.

We used multiple supervised machine learning AI algorithms, including logistic re-
gression, random forest, support vector machine (SVM) [28,29], light gradient boosting
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machine (light GBM) [30], multilayer perceptron (MLP) [31], extreme gradient boost-
ing (XGBoost) [31], and Naïve Bayes Classifier [32–35]. We used Python version 3.7.6,
scikit.learn version 0.22.2.post1, Tensorflow:version 2.1.0, conda: version 4.8.3, Keras 2.3.1,
Numpy 1.18.1, Pandas 1.0.3, imbalanced-learn 0.6.2, Light GBM 2.3.1, XGBoost 1.1.1,
and matplotlib 3.1.3 in our development platform. The full details of the selected hyperpa-
rameters for each algorithm are listed in tabular form (Supplementary Material—Table S2).
The modeling results were measured by accuracy, sensitivity, specificity, positive predictive
value, negative predictive value, receiver operating characteristic curve (ROC), and area un-
der the receiver operating characteristic curve (AUC) [36]. We compared the performance
of the seven AUCs between algorithms [28,32,37–40].

3. Results
3.1. Study Period and Case Number

A total of 709 patients who underwent lung resection surgery at Chi Mei Medical
Center between 1 January 2017 and 31 July 2019 were recruited for the present study.

3.1.1. Patient Grouping According to Outcome

Patients were divided into two groups according to whether they underwent stage
weaning or not: 555 patients were weaned from the endotracheal tube immediately after
the operation, and 154 patients failed to wean immediately and were transferred to the
ICU for stage weaning.

3.1.2. Detailed Baseline Characteristics

The detailed baseline characteristics and grouping according to the outcome are shown
in Table 1.

The Spearman correlation analysis (heat map) (Figure 1) presents the contribution
of each feature to the outcome. Estimated post-OP lung function and exercise loading
had the strongest positive correlation with outcome. The outcome correlation from the
strongest to the weakest was as follows: estimated post-OP lung function > exercise loading
> resting oxygen saturation before operation/desaturation or not > major diseases > severe
CAD > reversal agent > quit smoking or not before operation > presence of smoking
history > advanced age. In heat map, absolute value is much more important than positive
value or negative. The negative value of reversal agent feature is because of our study
settings, we set all the abnormal data as 1, and the normal, healthier data as 0, only except
for reversal agent medication: the usage of sugammadex, which is better medication for
preventing postoperative residual curarization, as 1. Detail of binary classifying settings
please see Table S1.

3.2. AI Intervention
3.2.1. AI Algorithms

We used seven AI machine learning algorithms–logistic regression, random forest,
SVM, light GBM, MLP, XGBoost, and Naïve Bayes Classifier to build prediction models.
Grid search with 5-fold cross-validation for hyper-parameters tuning for each algorithm
was conducted to obtain the optimal model (the hyper-parameters are summarized in Table
S2, Hyper-parameters range for experiments). In total, 709 cases were used for outcome
modeling with 70% as training dataset and 30% as testing dataset.

3.2.2. Testing Results of Prediction Models

The prediction models were tested and measured by accuracy, sensitivity, specificity,
positive predictive value, negative predictive value, and AUC (Table 2). Compared with
other algorithms, the Naïve Bayes Classifier algorithm had the best testing result (Table 2)
and the best performance in the ROC curve. Validation of the AI prediction model with
new patients also showed good accuracy (Figure 2).
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Table 1. Baseline characteristics of lung resection patients used in machine learning modeling.

Feature Overall
(n = 709)

Wean from Ventilator
Immediately (n = 555)

Cannot Wean
Immediately (n = 154) p-Value

Postoperative lung function, n (%)
ppoDLCO > 40 and ppoFEV1 > 40 603 (85.05) 523 (94.23) 80 (51.95) <0.001
ppoDLCO ≤ 40 or ppoFEV1 ≤ 40 106 (14.95) 32 (5.77) 74 (48.05)

Smoker *, n (%)
Never smoke 468 (66.01) 388 (69.91) 80 (51.95) <0.001

Had history of smoking 241 (33.99) 167 (30.09) 74 (48.05)
Desaturation, n (%)

Resting oxygen saturation > 94% 608 (85.75) 505 (90.99) 103 (66.88) <0.001
Resting oxygen saturation ≤ 94% 101 (14.25) 50 (9.01) 51 (33.12)

Exercise loading, n (%)
Patient can climb more than 2 floors without resting

in between, or can walk for over 6 min 627 (88.43) 526 (94.77) 101 (65.58) <0.001

Patient can nether climb more than 2 floors without
resting in between nor walk for over 6 min 82 (11.57) 29 (5.23) 53 (34.42)

Severe CAD #, n (%)
No history 623 (87.87) 511 (92.07) 112 (72.73) <0.001

History of severe CAD 86 (12.13) 44 (7.93) 42 (27.27)
Major diseases ˆ, n (%)

No 620 (87.45) 511 (92.07) 109 (70.78) <0.001
Yes 89 (12.55) 44 (7.93) 45 (29.22)

Quit smoking before operation, n (%)
Still smoking 573 (80.82) 468 (84.32) 105 (68.18) <0.001

Quit smoking (cease smoking for more than 4
weeks before lung resection surgery) 136 (19.18) 87 (15.68) 49 (31.82)

Advanced age, n (%)
<70 years 581 (81.95) 470 (84.68) 111 (72.08) 0.001
≥70 years 128 (18.05) 85 (15.32) 43 (27.92)

Reversal agent, n (%)
neostigmine 471 (66.43) 341 (61.44) 130 (84.42) <0.001

sugammadex 238 (33.57) 214 (38.56) 24 (15.58)

ppoFEV1: Postoperative forced expiratory volume in one second, ppoDLCO: Postoperative diffusing capacity for carbon monoxide;
* Smoker: Smoking or not according to the document in the pre-anesthetic risk assessment form, which is recorded by the patient. # Severe
CAD (Coronary artery disease): Patients who had received multiple coronary stent implantation or coronary artery bypass graft surgery,
patients who had unstable angina, thallium scan or treadmill showed positive coronary ischemia, or congestive heart failure (left ventricular
ejection fraction < 50%). ˆ Liver failure, renal failure, morbid obesity (body mass index ≥ 35 Kg/m2), or neuromuscular disease that
causes weakness such as myasthenia gravis, All the differences between groups were calculated using t-test and predetermined analysis
with a significance level of p < 0.001 (two-sided) using SPSS (Statistical Product and Service Solutions) software (version 19.0, Chicago II.,
IBM Corp, Armonk, NY, USA).

Table 2. Testing results of the predictive models constructed by AI machine learning.

Outcomes and Predictive Models Accuracy Sensitivity Specificity PPV NPV AUC

Wean immediately or not *
Logistic regression 0.822 0.848 0.814 0.557 0.951 0.908

Random forest 0.779 0.804 0.772 0.493 0.935 0.890
SVM 0.822 0.848 0.814 0.557 0.951 0.856

LightGBM 0.822 0.804 0.826 0.561 0.939 0.908
XGBoost 0.817 0.826 0.814 0.551 0.944 0.909

MLPClassifier 0.831 0.826 0.832 0.576 0.946 0.911
Naive Bayes Classifier 0.845 0.870 0.838 0.597 0.959 0.912

Table 2 lists the testing results of the seven models—logistic regression, random forest, support vector machine [28], Light Gradient Boosting
Machine [30], Multilayer Perceptron, Extreme Gradient Boosting, and Naïve Bayes Classifier [32], Wean immediately or not *: whether
the patient can wean from the ventilator immediately after lung resection surgery or not. PPV: positive predictive value. NPV: negative
predictive value, AUC: Area under receiver operating characteristic curve.
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3.3. Clinical Application
Embedment of the above AI Prediction Model in the Pre-Anesthetic Clinic

The Naïve Bayes Classifier prediction model showed the best testing results among
all the AI-assisted prediction models and was therefore selected for subsequent clinical
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applications. We also assessed whether each naive Bayes classifier prediction had suffi-
cient reproducibility, that is, whether the constructed model was stable enough that the
prediction results did not differ too much each time. After confirming that the prediction
had sufficient reproducibility, the comprehensive machine learning prediction constructed
using NB was considered to have achieved a certain level of accuracy, and the model
was deemed stable, reliable, and capable of providing anesthesiologists with a clinical
predictive reference to support clinical services.

After a stable and reliable model of NB was constructed, we cooperated with the
AI center and computer engineers to embed the above AI prediction model in the pre-
anesthetic evaluation computer screen. We implemented the best model as a friendly
application (app) to assist physicians in clinical decision-making and communication with
patients (Figure 3).
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3.4. Satisfaction Score, before and after AI Application

We also calculated the satisfaction score and compared the scores between the tradi-
tional and AI groups.
For Anesthesiologists

The anesthesiologists were divided into two groups based on their working seniority:

• Junior anesthesiologists (with less than 10 years of experience)
• Senior anesthesiologists (who had more than 10 years of clinical experience)

3.4.1. The Subjective Benefit Scores

Anesthesiologists were given the question: “Does the AI system help you in the con-
sulting clinic?”, and they answered with a score based on the following five-point ordered
response scale: 1 = strongly disagree, 2 = disagree, 3 = neither agree nor disagree, 4 = agree,
and 5 = strongly agree, which was viewed as a subjective benefit score. The subjective
benefit score can be used as a presentation of user satisfaction to some degree.

The subjective benefit scores of the anesthesiologists were high. Both junior and senior
anesthesiologists recorded high benefit scores for this AI system (average subjective benefit
score: junior vs. senior anesthesiologists, 5 vs. 4.57, p = 0.0537).

3.4.2. Subjective Perception of Time-Saving Percentage

Anesthesiologists recorded the percentage of time saved after AI system implantation,
compared to that before AI assistance. The entire circle (360 ◦, 100%, Figure 4) indicates
the time spent on each consultation. The blue area represents the percentage of time saved
due to AI assistance for each consultation. Both junior and senior anesthesiologists felt that
the AI predictive system provided some degree of support in saving time (24% for junior
anesthesiologists and 26% for senior anesthesiologists; p = 0.4363) (Figure 4).
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3.4.3. Patient Satisfaction Scores

Patient satisfaction scores were routinely evaluated in our pre-anesthetic clinic for
several years. Patients or their key family were given the question, “Are you satisfied
with the risk explanation in the consulting clinic? Do you understand the anesthetic
explanation?”, and they answered with a score based on the following five-point ordered
response scale: 1 = strongly disagree, 2 = disagree, 3 = neither agree nor disagree, 4 =
agree, and 5 = strongly agree, which was viewed as the satisfaction score. We compared the
patient satisfaction scores before and after AI system implantation, as the “original group”
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and the “after AI system application group” We labeled the scores in different colors in
Figure 5. The decrease of scoring less than 5 after AI system application can be used as a
representation of higher satisfaction.

In the AI system application group, 50% of patients strongly agreed (5 points) and 50%
agreed (4 points) that digitalization improved their understanding of their risk of inability
to wean immediately, the demand for high concentration oxygenation from the ventilator,
and the related anesthetic risk.
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4. Discussion

The comprehensive digitalization of medical data has been a trend in recent years [41].
Digitization helps clinicians quickly access a large amount of historical medical data.
After digitalization is completed, it provides a platform for further investigation [42], that is,
trying to use medical big data to provide accurate future predictions. The more accurate
the prediction, the more clinicians can put resources into key areas for better resource
allocation. Without performing more invasive medical interventions, making predictions
using past data alone requires the introduction of new computer technology [43]. AI can
be the best helper in such areas and can lead to better efficiency.

AI prediction models can help in performing overall integrated risk assessment [19].
If the prediction model has sufficient accuracy, predictive power, and high reproducibility
for each prediction, it can assist clinical physicians in providing individualized risk evalua-
tions based on previous medical records. Anesthesiologists are responsible for providing
patients and their families with operative risk evaluation in the pre-anesthetic clinic. How-
ever, the weight of each possible factor has not been clearly defined in previous studies.
Moreover, patients diagnosed with lung cancer often have comorbid diseases. Factors
that independently influence muscle power, such as neuromuscular disorders or muscular
reversal agents, should be considered simultaneously. Our AI system can link the historical
data of the Chi Mei Medical Center and maintain manual input by the clinician to adapt
to the patient’s medical records from other hospitals that are not captured in the Chi Mei
medical center. Because the input can be adjusted manually at any time, the prediction
result can be updated immediately, for example when the patient’s blood oxygen changes
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to respond to the patient’s current blood oxygen state. Maintaining manual input for
adjustments makes our prediction system flexible and convenient for users. According to a
questionnaire survey of users, both anesthesiologists and patients were satisfied with the
AI-assisted prediction system. Our AI-based prediction system can help anesthesiologists
in integrated risk assessment for all risks in a pre-anesthetic clinic. Our results show that
digitalization by an AI-assisted prediction system increases the efficiency of pre-anesthetic
consultation. Anesthesiologists feel that they have benefits in improving the consultation.
It can also save anesthesiologists’ time in pre-anesthetic consulting clinics. Digitalization
by the prediction system also improves the understanding of patient risk. Our results
also showed that the more patients understood, the more satisfied they were with the
information gained in the pre-anesthetic counseling clinic.

Individualized medicine and precision medicine are trends that will dominate in the
future. Individualization can enhance shared decision-making quality before patients make
major medical decisions [16,17,44,45]. Since our prediction system is personalized based on
pre-operative data, it may improve the acceptance and comprehension of patients and their
families. Understanding and acceptance will eliminate the potential disparity between
patient expectations and reality and might reduce medical disputes.

The use of previous medical big data, AI, and medical technology to construct medical
predictive models is important for the future of medicine [19,41,46,47]. Most previous
studies have calculated each risk as an independent variable in mathematical equations,
trying to use these to predict prognosis. Unfortunately, processing data using mathematical
equations, without the assistance of artificial intelligence, poses three major problems [41]:
first, the more variables in a mathematical equation and the more complex the formula,
and the more difficult it is to quickly calculate with the human brain [15]. Second, once the
equation is completed, any modification, even the expansion of more data, may destroy
the original structure. Modifications will require too much time, such that mathematical
equations are considered unsuitable for dynamic adjustments. Third, the prognostic
outcome of previous studies is often present as risk stratification, which is not intuitive
enough for patients and their family members. The advantage of big data and AI is that,
after the model is completed, new data can be used as a test of the previous model, and at
the same time as an expansion for the database [15]. The longer the AI program runs,
the more accurate the prediction, and the remaining real-time output of results.

Among our training algorithms, the Naïve Bayes Classifier is the best, with the highest
AUC and a more balanced sensitivity and specificity. The Naïve Bayes Classifier is one
of the most efficient and effective inductive algorithms for classification, in which all
attributes are independent, given the value of the class variable. It can be understood that
the Naïve Bayes Classifier method obtains the optimal performance in our AI modeling.
Naïve Bayes Classifier is frequently used for model building in healthcare and can have an
optimal performance [32,40,48]. Finally, we implemented the Naïve Bayes Classifier model
in practice.

To the best of our knowledge, this is the first AI research aimed at lung resection
surgery. Previous studies have provided encouraging information for the development of
AI techniques used for medicinal prediction, such as the prediction of postoperative out-
comes, mortality rate for mechanically ventilated patients, and the possibility of extubation
in intensive care units [28,38,49]. AI approaches were introduced for faster risk evaluation
than traditional approaches and were more effective via digitalization. A better prediction
model may help improve physician-patient communication and medical settings.

5. Limitations

First, since this was a single-hospital study, our results might not be generalizable to
other hospitals. Second, the new reversal agent for muscle relaxants used in this study is
a self-paid medication in Taiwan, and not all patients are willing to pay for this. Third,
according to anesthesia textbooks, ppoFEV1 and ppoDLCO have been established to be
positively correlated with the ability to wean immediately after lung surgery. We used
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ppoFEV1 and ppoDLCO from the Chi Mei Medical Center’s big data to set up the mod-
els. However, in actual applications, post-OP data are not available before surgery in the
pre-anesthetic clinic, because the actual resection lung volume must be determined by
the thoracic surgeon at the time of the operation. Fortunately, anesthesiologists can esti-
mate ppoFEV1 and ppoDLCO, using pre-operative FEV1, pre-operative DLCO, and chest
computed tomography reports, which were available in the pre-anesthetic clinic. Anesthe-
siologists can also immediately consult chest surgeons via phone calls for more information
about complex cases.

Future Research Directions

Although Figures 4 and 5 show that the AI system can improve the communication
between anesthesiologists and patients from limited interview questionnaires, a detailed
survey of satisfaction requires further research, including analysis of the patients’ age, edu-
cation level, and previous experience of anesthesia, operation, and mechanical ventilation.

6. Conclusions

Pre-anesthetic consultation is a critical step in the pre-operative period, especially
for risk assessment if patients cannot wean immediately, requiring high concentration
oxygenation and stage weaning in the ICU. Explaining the indication of stage weaning
before surgery can greatly reduce the worry of family members and the tension between
physicians and patients. Many factors must be considered before weaning the endotracheal
tube immediately after the lung resection surgery. We built an AI-assisted prediction system
for weaning possibility based on big data and AI algorithms. The NB model performed
well according to the model testing report and patient acceptance investigation. We applied
the AI-assisted prediction system in our pre-anesthetic evaluation clinic, and continuously
collected feedback from physicians and patients for system improvement. We called
patients for follow-up studies considering other possible risk factors for model building,
including medical image and pre-operation data, as well as extending a variety of other
major surgeries that have a high probability of stage weaning of ventilation. A detailed
interview questionnaire should be arranged to present the degree of improvement in
satisfaction and understanding after AI system application in future studies.

AI is undoubtedly an important technological innovation in medical care today;
however, opening the “black box” [50] and strengthening its interpretability is expected to
increase acceptance by medical staff to continue.

Practice Implications

We built an NB algorithm-assisted prediction system for weaning possibility, based on
big data of lung resection surgery from Chi Mei Medical Center, and applied the prediction
system in our pre-anesthetic evaluation clinic. All of the patients agreed (50% strongly
agreed and 50% agreed) that digitalization improved their understanding of the risk of
inability to wean immediately, and the demand for high concentration oxygenation and
ICU care. Anesthesiologists, both the junior and senior groups, felt that the AI predictive
system improved the efficiency of explaining and communicating to patients and the family
members, as well as their understanding, during the pre-anesthetic consultation.
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Abbreviations

AI artificial intelligence
AUC area under receiver operating characteristic curve
CAD coronary artery disease
CT computed tomography
FEV1 forced expiratory volume in one second
ICU intensive care unit
Light GBM Light Gradient Boosting Machine
MLP Multilayer Perceptron
ppoDLCO postoperative diffusing capacity for carbon monoxide
ppoFEV1 postoperative forced expiratory volume in one second
ROC curve receiver operating characteristic curve
SVM Support Vector Machine
XGBoost Extreme Gradient Boosting

Cannot wean immediately, or staged weaning: wean the endotracheal tube and mechanical
ventilator support after a patient has been transferred to the intensive care unit postoperatively.
Wean immediately: wean the endotracheal tube and mechanical ventilator support immediately after
the lung resection surgery was completed, which means the patient could receive postoperative care
in the general ward.
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