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Abstract

:

Bacterial retention and organic fouling on meat preparation surfaces can be influenced by several factors. Surfaces with linear topographies and defined chemistries were used to determine how the orientation of the surface features affected cleaning efficacy. Fine polished (irregular linear) stainless steel (FPSS), titanium coated fine polished (irregular linear) stainless steel (TiFP), and topographically regular, linear titanium coated surfaces (RG) were fouled with Escherichia coli mixed with a meat exudate (which was utilised as a conditioning film). Surfaces were cleaned along or perpendicular to the linear features for one, five, or ten wipes. The bacteria were most easily removed from the titanium coated and regular featured surfaces. The direction of cleaning (along or perpendicular to the surface features) did not influence the amount of bacteria retained, but meat extract was more easily removed from the surfaces when cleaned in the direction along the linear surface features. Following ten cleans, there was no significant difference in the amount of cells or meat exudate retained on the surfaces cleaned in either direction. This study demonstrated that for the E. coli cells, the TiFP and RG surfaces were easiest to clean. However, the direction of the clean was important for the removal of the meat exudate from the surfaces.
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1. Introduction


Modern food processing and production facilities provide an environment that promotes bacterial retention due to a myriad of factors, which include the surface properties of the equipment and the matrix of the food being processed [1,2]. The removal of bacteria and/or organic material from food production surfaces is important since its build up can result in microbial contamination of food products, which can have a significant effect on consumers, food companies, and food suppliers, for example, cross-contamination of food with pathogenic bacteria can result in food-borne illnesses [3,4,5,6]. The Food Standard Agency estimates that foodborne illness in the UK alone result in a financial loss of £1.5 billion per annum [7]. As such, biofouling in the food industry is a significant problem [8]. For certain bacteria, some of which are important human pathogens, there can be contamination of raw meat due to biofouling [9]. Contamination of beef with Escherichia coli O157:H7 has been linked to outbreaks of foodborne illnesses and concerns about E. coli O157:H7 contamination have resulted in a zero tolerance towards this microorganism in the food industry [10,11].



Once a surface is introduced into an environment, it will adsorb a variety of organic and inorganic matter, resulting in the formation of a conditioning film [12,13,14]. Surface conditioning is a process which starts within seconds of the substratum becoming immersed into liquids [15]. The structure and composition of a conditioning film is ultimately dependent upon the surrounding products and the properties of the surface and can result in physicochemical, chemical, and topographical alterations, affecting both the rate and extent of bacterial retention and therefore surface contamination [16,17,18]. With regards to the meat industry, the exudate of frozen raw meat has been identified as an important source of bacterial contamination on food processing surfaces [19]. It has also been shown that sterilized chicken juice is an ideal environment for survival of Campylobacter jejuni [20] and its presence may also increase biofilm formation [21].



The method and type of physical cleaning methods used will be dependent on the food industry and the surfaces involved [22]. Product contact surfaces may typically be cleaned several times per day, while environmental surfaces such as walls and hoods may be cleaned less frequently [23]. In the meat industry, chilled beef carcasses are cut into smaller pieces, which are deboned and made into cuts; such work takes place on flat surfaces that are regularly cleaned [24]. However, it has been suggested that bacterial recontamination during this meat fabrication process results in higher numbers of E. coli on the cuts and trimmings [25,26]. Hence, a better understanding is required of the mechanisms involved in the attachment and detachment of bacteria to meat processing surfaces and their removal following cleaning. To simulate more realistic conditions, cleaning assays need to be carried out in the presence of a meat exudate (or relevant conditioning film) to increase the understanding of surface hygiene and decrease transmission and hence potential public health risks [27].



The ideal conditions for a hygienic surface have been defined as easy to clean, able to resist wear and maintain their hygienic qualities over time [28]. The hygienic quality and cleanability of a surface has been linked to the surface properties including the topography [28,29,30], chemical composition [31] and physicochemical properties [32,33]. Thermodynamics are thought to play a central role in initial bacterial: substrata interactions where it has been suggested that bacterial cells will attach preferentially to hydrophobic materials (i.e., materials with a low surface energy), when the surface energy of the bacteria is greater than the surface energy of the surrounding liquid [34]. Due to the complexity of bacterial-substratum interactions, further research is required to fully elucidate the underpinning mechanisms of bacterial attachment, adhesion, and retention [35].



An approach to reduce microbial contamination, which is a prerequisite for biofilm formation, is the modification of surface topography. Microscale surface topographic features have been shown to both inhibit or promote bacterial retention depending on the size, shape, and density of the topographical features [36]. It has also been shown that surfaces with features on the same scale as bacterial cells (e.g., cocci-shaped Staphylococcus aureus; ~1 µm diameter) promote the strongest retention due to maximum binding at the cell-substrate contact areas [37,38]. In an industrial setting, the wear of the surfaces may introduce random features (i.e., scratches) of different dimensions and it has been suggested that an increase in the surface roughness may cause the entrapment of microorganisms within the surface features, which in turn will affect the cleanability and hence the hygienic status of the surface [39]. Bacteria and organic material that become entrapped in the topographical features of a surface are difficult to remove using standard cleaning procedures [40], and it has been proposed that the development of the micro-pattern materials may help in the reduction of viable bacteria on food contact surfaces [41]. However, most studies have not determined the effect of the presence of the conditioning film on surface cleaning, especially with regards to the influence of surface topographical features [20], or with regards to the direction of cleaning compared to the linear surface features.



Stainless steels are used widely throughout the food and beverage industry due to their resistance to corrosion, thermal conductivity, and their ability to be produced with a smooth surface finish [33]. Stainless steel grade 304 is most commonly used in the food industry [42]. Due to the production process of stainless steel, ‘microniches’ of heterogenous chemical composition may result in varying bacterial retention patterns [43]. Titanium has been incorporated into stainless steel alloys in the food industry to improve corrosion resistance because it forms stable carbides [44,45]. Titanium surfaces may also have a more homogenous chemical composition than stainless steel since it is comprised mainly of TiO2 [46]. This work aimed to determine how surface attributes (chemistry and topography) and the direction of cleaning affected bacteria and meat exudate removal from surfaces.




2. Materials and Methods


2.1. Equipment and Material Suppliers


The following reagents and materials were used; stainless steel sheets (Outokumpu Stainless Ltd., Helsinki, Finland), sodium hydroxide, di-potassium hydrogen phosphate, potassium di-hydrogen phosphate, tri-sodium citrate ammonium sulphate, magnesium sulphate (Merck, Darmstradt, Germany), tryptone soya agar and tryptone soya broth (Oxoid, Basingstoke, UK) rolled beef brisket (Co-op, Manchester, UK), Escherichia coli CCL410 (Agence Francaise de Securite Sanitaire des Aliments, Paris, France), cleaning clothes (WYPALL® ×80 Kimberley-Clark, West Malling, UK), Rhodamine B, DAPI and glycerol (Merck, Darmstradt, Germany). The following equipment was purchased: Atomic force microscope (Quesant Instruments, Santa Cruz, CA, USA), Crockmeter (A.A.T.C.C Crockmeter, Model CM1, NC, USA), Epifluorescence microscope (Nikon, Tokyo, Japan), F-View II camera (Soft Imaging System Ltd., Olympus, Tokyo, Japan), and Cell F Image Analysis package (Olympus, Tokyo, Japan).




2.2. Production of Surfaces


Three different surfaces were used in this study, including stainless steel 304 with a fine polished finish (FPSS), 304 fine polished finished stainless steel coated with titanium (TiFP) and a linear, regular finished (RG) titanium surface. Fine polished, grade 304, stainless steel sheets were prepared as 10 mm × 10 mm sample squares using a guillotine. To ensure that the samples were examined in a pristine “as-manufactured” state, the manufacturer’s protective plastic coating was only removed directly before experimentation.



The titanium surfaces with a regular topography were unwritten digital video discs stripped of their protective coats. The samples were cut into 10 mm × 10 mm squares using metal cutting shears and soaked overnight in 30% sodium hydroxide solution, followed by rinsing thoroughly with sterile distilled water and drying in a class 2 microbiological cabinet prior to coating with titanium.



Samples of the fine polished stainless steel surfaces and the stripped digital video discs were coated using titanium. The substrata were coated with titanium via magnetron sputtering in a modified Edwards E306A coating system rig using a single 150 mm diameter × 10 mm thick, 99.5% pure titanium target attached to an unbalanced magnetron (argon gas at a working pressure of 0.15 Pa; magnetron power of 0.5 kW; base pressure 10−4 Pa; time 15 min; substrate biased at −50 V) [47].




2.3. Atomic Force Microscopy (AFM)


The shape and depth of the surface features was determined using atomic force microscopy. The analysis was carried out in in contact mode using triangular shaped silicon nitride tips, with a spring constant of 0.12 N m−2. The height and shape of the features were determined from five areas taken from different replicate surfaces.




2.4. Sample Organisms


This study was conducted with Escherichia coli strain CCL410. This strain was recovered by the laboratory of Dr C. Vernozy-Rozand (Unité de Microbiologie alimentaire et prévisionnelle, Ecole vétérinaire de Lyon, France) from heifers fecal samples. This strain was selected due to it being a non-pathogenic variant of E. coli O157:H7 (wild type strain). The pathogenicity of the bacteria was reduced due to the loss of stx1 and stx2 [48].




2.5. Bacterial Stock and Working Cultures


Stock cultures of E. coli were stored at −80 °C in a freezer mix, which was composed of a sterilised salt solution containing a mixture of autoclaved 12.6 g L−1 di-potassium hydrogen phosphate, 3.6 g L−1, potassium di-hydrogen phosphate, 0.9 g L−1, tri-sodium citrate 1.8 g L−1 ammonium sulphate and 300 g L−1 glycerol combined with a litre sterilised solution of 1.8 g L−1 magnesium sulphate [49]. In preparation for the cleaning assays, cultures of E. coli were prepared by inoculating E. coli onto Tryptone soya agar (TSA), at 37 °C overnight. A single colony of E. coli was inoculated into 10 mL of Tryptone soya broth (TSB) and incubated at 37 °C overnight. One hundred microlitres of overnight culture was inoculated into 100 mL TSB and incubated at 37 °C for 18 h with shaking (200 rpm). Following incubation, the bacterial cells were harvested by centrifuging at 1721× g for 10 min, washed once, and re-suspended in sterile distilled water using a vortex mixer for 30 s. The suspension was centrifuged at 1721× g for 10 min and the cells were resuspended to an optical density (OD) of 1.0 (±0.1) at 540 nm in sterile distilled water. This corresponded to ca. 1.88 ± 0.22 × 108 CFU mL−1.




2.6. Meat Exudates


The production of meat exudates was adapted [50]. Commercially available, fresh rolled beef brisket was cut into 10 mm × 10 mm pieces, placed in a stainless steel tray and covered in aluminium foil. The meat was covered by another stainless steel tray and weighed down with 8.4 kg of stainless steel sheets and frozen at −20 °C for 24 h. The diced meat pieces were defrosted at room temperature, and the meat exudate produced was collected and stored at −20 °C until use.




2.7. Cleaning Assays


The substrata were inoculated with a bacterial/meat exudate mixture and dried in a microbiological class 2 cabinet. For the bacterial/meat exudate mixture, 100 µL of bacteria and 100 µL of meat exudate was placed into an Eppendorf tube, vortexed for 5 s and 10 µL of the preparation was pipetted onto the substratum, spread across the surface with a sterile plastic spreader, and dried in a class 2 flow hood at room temperature. A crockmeter was used for the wipe clean method to ensure that each wipe across the stainless steel surface was standardised. The substrata were placed on the steel specimen stage and a 45 mm × 45 mm piece of blue wipe cloth was folded and attached to the 16 mm diameter test finger. Sterile distilled water (1 mL) was pipetted onto the cloth and the hand crank was turned to simulate one wipe. The wipe cycles compromised one, five, or ten repeats. Following each cleaning cycle, the substrata were dried for 2 h in a class 2 microbiological cabinet. Three replicates were taken at each cleaning cycle point for each surface, and for each direction of clean (along or perpendicular to the linear features).



Following the cleaning assays, the percentage coverage of the bacteria and meat extract retained on the surfaces per field of view was analysed following differential staining and epifluorescence microscopy.




2.8. Preparation of Stains


[9-(2-carboxyphenyl)-6-diethylamino-3-xanthenylidene]-diethylammonium chloride (Rhodamine B) was prepared as a stock solution of 0.1 g mL−1 in ethanol (absolute) and used at a working concentration of 0.1 mg mL−1. 4′, 6-diamidino-2-phenylindole (DAPI) was prepared as a stock solution of 0.3 g mL−1 in sterile distilled water and used at a working concentration of 0.1 mg mL−1. Prior to use, the stains were refrigerated (4 °C) and stored in a dark environment.




2.9. Differential Staining of Meat Exudate and E. coli


A dual staining procedure was conducted as described previously [51]. Ten microlitres of DAPI was added to the samples and spread across the surface using a sterile plastic spreader to detect the bacteria and then 10 µL of Rhodamine B was applied to the substrate in the same manner to detect the retained meat extract [51]. Following staining, the samples were dried in the dark at room temperature in a microbiological class 2 flow hood.



The samples were viewed, and images obtained using an epifluorescence microscope with black and white digital camera and a Cell F Image Analysis package to measure the percentage coverage of the area of the stained material and to determine the percentage surface coverage of the bacteria and organic material. A filter wavelength of 330–380 nm was used to detect the DAPI stained cells, and a 590–650 nm filter was used to detect the Rhodamine B stained organic material. The retained material on the surfaces was measured using percentage coverage of the field size for randomly selected areas across the test substratum. Each of the three samples had 15 areas independently selected and analysed for the percentage coverage of bacteria and meat extract (n = 45).




2.10. Statistical Analysis


Statistical analysis was conducted by performing two-way ANOVA coupled with Tukey’s multiple comparison tests for post hoc analysis using GraphPad Prism (version 8.4.2; GraphPad Software, San Diego, CA, USA) to determine significant differences at a confidence level of 95% (p < 0.05). Error bars represent the standard error of the mean. Asterisks denote significance, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, and **** p ≤ 0.0001.





3. Results


Three surfaces were prepared to determine the effect of a linear surface topography (irregular and regular), and defined surface chemistry (stainless steel and titanium) on the removal of bacterial and meat exudate using a wipe clean assay. Atomic force microscopy (AFM) of the fine polished stainless steel (FPSS), titanium coated fine polished stainless steel (TiFP), and the regular linear featured titanium coated surface (RG) revealed that the surface features of the FPSS and TIFP surfaces demonstrated irregular, linear topographies. The Z height of the TiFP surface (Figure 1b) was higher than the FPSS surface (0.338 ± 0.017 µm and 0.284 ± 0.014 µm, respectively) (Figure 1a). Regular linear features were evident on the titanium coated surface (RG) and the z height of the titanium coated regular surface was 0.420 ± 0.021 µm. The FPSS demonstrated valley widths of ~1 µm to 5 µm, whilst the TiFP demonstrated valley demonstrated valley widths of ~0.5 µm to 5 µm. The RG surface demonstrated valley widths of 1.02 µm. The contact angles of the three surfaces were 82 ± 3°, 84 ± 4.5°, and 91 ± 3.7° for the FPSS, TiFP and RG surfaces, respectively, and this indicated that the FPSS and TiFP were marginally more wettable than the RG surface.



The percentage coverage of the bacteria on the surfaces following initial fouling of the substrata before cleaning demonstrated that cells were retained in significantly higher amounts of bacteria on the FPSS (15.86%) or TiFP (18.52%) compared to the linear finished RG surface (0.81%) (p < 0.0001) (Figure 2).



Following one clean, fouling of the surfaces with different features and chemistries (FPSS, TiFP, RG), the amount of bacteria when cleaned along the linear features was significantly reduced (FPSS 6.98%; TiFP 1.91%; RG 0.17%) (p < 0.0001) (Figure 2a), whereas following one clean in the direction perpendicular to the linear features, there was only a significant difference in the amount of cells removed from the FPSS and RG surfaces (FPSS 5.49%; TiFP 1.51%; RG 0.21%) (p > 0.05) (Figure 2b). After five or 10 cleans, there was no significant difference in the amount of bacteria retained when the surfaces was cleaned along or perpendicular to the surface features (FPSS 6.98%, 5.49%; TiFP 1.91%, 1.51%; RG 0.17%, 0.21%) (p > 0.05). Overall removal of the cells from the surfaces in the direction of the linear features or perpendicular to the linear features demonstrated the same trend whereby the FPSS surface retained more bacteria than the TiFP surface, and the lowest amounts of bacteria was retained on the RG surface (Figure 2a,b).



Detection of the meat exudate on the surfaces following the initial application demonstrated no significant differences in the amount of conditioning film retained on the different surfaces (FPSS, 76.2%; TiFP, 76.67% and RG, 83.20%) (p > 0.05) (Figure 3). The meat exudate was increasingly removed from the surfaces with increased number of cleans and this was evident for all surface types (Figure 3a,b). Following one and five cleans, there was a significant difference in the amount of meat exudate removed from the surfaces when cleaned along the linear features (p < 0.0001) and perpendicular to the linear features (p > 0.05). There was no significant difference in the amount of meat exudate retained on the different surfaces after ten cleans along (FPSS 1.4%, TiFP 0.7%, RG 0.9%), or perpendicular to (FPSS 3.6%, TiFP 1.5%, RG, 1.6%) the linear features (p > 0.05). However, when cleaned along the linear surface features, the overall trend was that most of the meat exudate was retained on the FPSS > TiFP > RG surface demonstrating the same trend as the removal of cells. When cleaned in the direction perpendicular to the linear features, the amount of meat exudate retained on the surfaces did not follow the same trend (one clean, FPSS > TiFP > RG; five cleans, TiFP > FPSS > RG; ten cleans, FPSS > RG > TiFP).



The amount of bacteria and meat exudate removed from the surfaces following cleaning along linear features compared to cleaning in a perpendicular direction to the linear features, demonstrated that there was no significant difference (p > 0.05) in the removal of cells (with the exception five cleans on the FPTi). However, the meat exudate demonstrated a different trend whereby by ten cleans, the meat exudate was significantly more removed when the surfaces were cleaned in the direction along the surface features (p < 0.05). This result may have occurred due to the size of the bacterial cells and organic components of the meat exudate with respect to the size of the surface features (Figure 4).
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Figure 4. Meat exudate (red) and E. coli cells (blue) remaining on titanium coated fine polished stainless steel surface (TiFP) following (a) pre-cleaning procedure, (b) one wipe clean along, (c) five wipe cleans along, (d) ten wipe cleans along and (e) one wipe clean across, (f) five wipe cleans across and (g) ten wipe cleans across. Scale bar: 20 µm. Differential staining was conducted to visualise bacterial cells and the meat exudate on the surfaces and an example of the images on the TiFP surfaces is demonstrated (Figure 5). Prior to the cleaning procedure, the meat exudate (red) and bacterial cells (blue) can be observed in abundance (Figure 5a). The concentration of organic material and E. coli declined as the number of wipe cleans increased, both in the direction of, and perpendicular to the linear surface features (Figure 5). 
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A schematic representation of the bacteria retained, and the effect of the surface topography was produced. The bacteria were initially retained in higher amounts on the irregularly polished surfaces (FPSS and TiSS) being entrapped in the irregular surface features (Figure 6a). However, on the surfaces with regular surface features, the bacteria sat on the top, rather than inside the surface features (Figure 6b). This resulted in a lower binding of the bacteria on the surfaces and less bacterial retention.




4. Discussion


Product contact surfaces may contaminate meat products directly with microbial or organic material contaminants [23]. The properties of a surface play a pivotal role in bacterial and organic material retention, but nevertheless, the way in which the substrata can mediate such binding remains unclear [28,52,53].



The surfaces with regular surface topographies demonstrated clearly defined features or regular size, shape, depth, and periodicity. However, surfaces with irregular topographies, such at the fine polished stainless steel (FPSS) and the titanium coated fine polished stainless steel (TiFP), contained features of different sizes with irregular frequencies, which dependent on their size may contribute to increased or decreased bacterial binding. In this study, more cells were retained initially on the topographically irregular surfaces, which suggests that these irregular features enhanced the bacterial cell: surface interaction. The amount of bacteria retained on the irregular surface features was higher following the initial inoculation and cleans. In agreement with these findings, micropatterned topography films were utilised to determine the attachment and survival of Escherichia coli and Listeria innocua and it was demonstrated that initial bacteria attachment to the micro-pattern topography films were significantly lower in the short term [41]. In addition, after incubation with a methicillin-resistant Staphylococcus pseudintermedius, it was determined that bacterial biofilms tended to form in crevices [54]. However, such findings were carried out using retention and biofilm assays and were not subject to cleaning or physical forces.



Throughout this study, bacterial retention and meat exudate (e.g., the conditioning film) was quantified via differential staining and epifluorescence microscopy. The samples were prepared by adding DAPI and Rhodamine B directly to the surface and spread across the surface and dried. Although it may be considered that the methodology used in the staining method may affect the distribution of the retained material, previous studies in our laboratories have demonstrated that this is not the case since the material retained is dried onto the surface and is extremely well retained [51]. In addition, all the samples in this study were prepared using the same method; any effect which may be due to the staining process is negligible. In order for epifluorescence microscopy to be utilised effectively, samples must be prepared in a consistent manner, as was the case in this study [55].



Surfaces with features of microbial dimensions similar to those of microbial cells have been shown to promote bacterial binding, whilst the morphology of the bacterial cell can also influence such mechanisms [37,38]. All the surfaces used in this study contained surface topographies with microbial dimensions. The findings in this research demonstrated that surfaces with periodically regular dimensions decreased bacterial retention regardless of the direction of clean and removed the greatest amount of meat exudate following cleaning along the linear surface features. Although features of microbial decisions may readily retain bacteria, when a physical force is applied, it may be that the shape of the topographical feature is of importance, with the periodic regularity of the surface combined with the cell size enabling the bacteria to be easily rolled across the surface. Thus, in the context of cleaning, surface with regular topographies may enhance surface hygiene following cleaning procedures.



In addition to the surface topography, the surface chemistry may affect bacterial retention. The results demonstrated that the bacteria and meat exudate were retained in lower amounts and coverage on the titanium surfaces. In agreement with our findings, Jeyachandran et al. (2007) demonstrated that a titanium oxide film retained fewer bacteria than other materials [56]. Furthermore, Ma et al. (2008) demonstrated that the heterogeneous chemistry of a surface may provide specific contact points for bacterial retention; such points may be found on stainless steel surfaces [43]. Hence, the more homogeneous surface chemistry of the titanium coating may have resulted in a reduced number of chemically different sites, resulting in lowered bacterial and meat exudate retention. Surface wettability can interact with other surface parameters, resulting in preferential or disadvantageous bacterial retention [57,58]. In the current study, the FPSS and the TiFP surfaces were more wettable than the RG surfaces. However, the bacteria and meat extract were deposited directly onto the surfaces and hence the physicochemical effects may have been negated.



The processing of meat products results in high level of organic material remaining on food contact surfaces which conditions the underlying substrata, and it is onto the proteinaceous conditioning film to which the bacteria become retained [9,27]. It has been demonstrated that the attachment of Pseudomonas fragi to beef resulted in the bacteria becoming entrapped within the collagen fibres of the raw meat [59]. It has been suggested that contamination of the meat product by bacteria could be transferred to a surface, therefore thorough cleaning of surfaces and meat residues during meat production is critical to reduce the bacterial load [60]. The results from this study demonstrated that all the surfaces retained similar levels of meat extract initially, but following cleaning, the meat exudate was more difficult to remove from the surfaces with the irregular topographies. When the surfaces were cleaned in the direction along the surface features, the meat exudate was also easier to remove from the titanium coated regular surface (RG) than the titanium coated irregular surface (TiFP) or the stainless steel (FPSS). However, a clear trend on the effect of the surface properties, on the amount of meat exudate removal was not demonstrated when the surfaces were cleaned perpendicular to the linear features. Although only small amounts of organic material were retained, the difference in the trends in the effects of the surfaces properties on meat exudate retention may be due to the composition of the meat exudate, which will consist of much smaller molecules than the bacterial cells. It may be that although the bacteria can be removed by the physical force due to their larger size, the smaller organic molecules can only be pushed out of the linear features when cleaned in the direction along the linear features, as this will offer little resistance. In contrast, when the cleaning action is perpendicular to the surface features, the organic material is pushed against the wall of the surface feature where it becomes retained. This may explain the differences observed in the results.



By ten cleans, the surfaces demonstrated similar amounts of bacteria and meat exudate retained on the surfaces. One of the reasons for this is that a key component of the meat exudate is protein [50]. Protein adsorption on surfaces is a major issue in the food industry and the adsorption of proteins onto surfaces is a complex phenomenon influenced by many factors [61,62]. Protein adsorption to a surface occurs due to a range of forces and will continue until a state of equilibrium occurs [63]. It may be that as the number of cleans increased a state of equilibrium of the protein binding that occurred on the surfaces, masking the original surface properties, albeit at levels of concentrations below the detection limits of the analyses used in this study. This would effectively make the surfaces similar in terms of their characteristics.



The fouling of surfaces with proteins derived from organic foulants such as meat exudates can change the properties of a surface. A recent study conducted by Slate et al. (2019) demonstrated that the surface properties of Ti-ZrN/Ag became more hydrophilic with greater anti-adhesive properties following the introduction of a conditioning film [15]. Furthermore, the presence of a conditioning film may alter the properties of the bacterial cells themselves. When Staphylococcus spp. was exposed to a 10% solution of bovine serum albumin (BSA), the bacteria were demonstrated to have a reduction in their hydrophobicity and their propensity to donate electrons [64]. A linear correlation between the negative charge on the bacterial cell surface and the initial attachment to beef lean muscle and fat tissue has also been reported [65]. Such differences in the surface and bacterial properties will influence the interactions between the cell:organic material and the interface.



Standard operating procedures, which include regular cleaning, are used in the food industry to eliminate foodborne pathogens and to reduce contamination, yet despite such measures, surface contamination in food processing facilities still occurs [65]. A fundamental understanding of bacterial attachment to meat surfaces should be the basis for the development of procedures for physical removal of microorganisms that contaminate meat surfaces [11]. The determination of the removal of bacteria in the presence of meat exudate is important since although pathogens have been demonstrated to be easily destroyed by commercial sanitizers in water, the presence of organic matter may significantly affect the function of sanitizers [27,66]. A key aspect of this work is the uneven distribution of fouling across the surface. When surfaces are tested in pristine condition, this allows for easily comparative data between laboratories. However, such methodology although comparable, does not reflect a true environmental situation. The uneven distribution of the conditioning film across the surface demonstrates that the surface in a real environment will be subjected to very different material-biological interface interactions than occur when a pristine surface is used in such studies. Hence, the use of such organic material in surface-biological interactions is imperative to understand such systems.



The results from our work demonstrated that repeated cleaning of the surfaces resulted in residual organic fouling. When meat processing plants were sampled for biofilms by placing stainless steel and cast iron chips in or on floor drains and food contact areas, it was found that biofilms were formed on the drain samples but were not formed on chips placed on food contact surfaces [67]. Gibson et al. (1999) found that bacterial attachment to surfaces in the food processing environment readily occurred; however, extensive surface colonization and biofilm formation only occurred on environmental surfaces that were not regularly cleaned [23]. In addition, surfaces that were not cleaned daily, resulted in the occurrence of biofilm formation; the bacteria established in a biofilm could not be eradicated by using one single treatment or one single detergent or disinfectant, and the most effective cleaning methods were shown to require scrubbing of the surfaces [68]. With specific regards to a wipe clean, Lopez et al. (2015) showed that using a disinfectant-wipe intervention to clean a contaminated work area that was used in the preparation of chicken fillets decreased the exposure to Campylobacter jejuni by 2 to 3 orders of magnitude [69]. Hence, understanding the physical actions of cleaning systems is an important factor in the maintenance of hygienic systems. The cleaning process throughout the food industry is in debate over the best methods, equipment, monitoring, frequency, benchmarks, and standards to be used [70]. Thus, it is important to understand the effects that surface properties have on the cleaning efficacy of the substrata.




5. Conclusions


This work demonstrated that more bacteria were retained in higher amounts, initially on the stainless steel (FPSS) and titanium coated surfaces with the irregular topographies (TiFP). With subsequent cleaning, the amount of bacteria decreased and was most easily removed from the surfaces that had regular surface features and/or were titanium coated. The direction of cleaning (along or perpendicular to the linear features of the surface) did not have an effect on the amount of bacteria but did affect the amount of meat exudate retained whereby surfaces cleaned along the linear features removed more organic material. After ten cleans, the bacteria and meat exudate retained on the surfaces was not significantly different and suggested that a steady state of the surface properties had been reached. This study highlights the importance of surface properties and cleaning method selection to be utilised within the meat production industry to reduce microbial contamination and surface biofouling.







Author Contributions


J.V. devised the project and the main conceptual ideas presented in this study; J.V., I.D.A. and A.J.S. contributed to the manuscript preparation; K.A.W. drafted the final manuscript; A.E. was involved in data generation and analysis; and P.J.K. led the surface design. All authors have read and agreed to the published version of the manuscript.




Funding


This research received no external funding.




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Not applicable.




Data Availability Statement


The datasets generated during the current study are available from the corresponding author on reasonable request.




Acknowledgments


The authors would like to thank Brigitte Carpentier for her kind gift of the E. coli. This research was part of the project FOOD-CT-2005-007081 (PathogenCombat) supported by the European Commission through the Sixth Framework Programme for Research and Development.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Lindsay, D.; von Holy, A. What food safety professionals should know about bacterial biofilms. Br. Food J. 2006, 108, 27–37. [Google Scholar] [CrossRef]

	



Yuan, L.; Hansen, M.F.; Røder, H.L.; Wang, N.; Burmølle, M.; He, G. Mixed-species biofilms in the food industry: Current knowledge and novel control strategies. Crit. Rev. Food Sci. Nutr. 2020, 60, 2277–2293. [Google Scholar] [CrossRef] [PubMed]

	



Whitehead, K.A.; Benson, P.; Verran, J. Developing application and detection methods for Listeria monocytogenes and fish extract on open surfaces in order; to optimize cleaning protocols. Food Bioprod. Process. 2015, 93, 224–233. [Google Scholar] [CrossRef]

	



Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef]

	



Van Houdt, R.; Michiels, C.W. Biofilm formation and the food industry, a focus on the bacterial outer surface. J. Appl. Microbiol. 2010, 109, 1117–1131. [Google Scholar] [CrossRef] [PubMed]

	



Chlebicz, A.; Śliżewska, K. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: A review. Int. J. Environ. Res. Public Health 2018, 15, 863. [Google Scholar] [CrossRef] [PubMed]

	



Food Standard Agency. Foodborne Disease Strategy 2010–2015: An FSA Programme for the Reduction of Foodborne Disease in the UK; Food Standard Agency: London, UK, 2011. [Google Scholar]

	



Yemmireddy, V.K.; Hung, Y.C. Using photocatalyst metal oxides as antimicrobial surface coatings to ensure food safety—Opportunities and challenges. Compr. Rev. Food Sci. Food Saf. 2017, 16, 617–631. [Google Scholar] [CrossRef]

	



Genigeorgis, C. Biofilms: Their Significance to Cleaning in the Meat Sector. In New Challenges in Meat Hygiene: Specific Problems in Cleaning and Disinfection; Bart, S.A., Bauer, F., Eds.; ECCEAMST: Utrecht, The Netherlands, 1995; pp. 29–49. [Google Scholar]

	



CDC. Multistate Out Break of Shiga Toxin-Producing Escherichia coli O157:H7 Infections Linked to Ground Beef; CDC: Atlanta, GA, USA, 2014. [Google Scholar]

	



Pordesimo, L.O.; Wilkerson, G.; Womac, R.; Cutter, N. Process Engineering Variables in the Spray Washing of Meat. J. Food Prot. 2002, 65, 222–237. [Google Scholar] [CrossRef]

	



Gristina, A.G. Biomaterial-centered infection: Microbial adhesion versus tissue integration. Science 1987, 237, 1588–1595. [Google Scholar] [CrossRef]

	



Bos, R.; Van der Mei, H.C.; Busscher, H.J. Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiol. Rev. 1999, 23, 179–230. [Google Scholar] [CrossRef]

	



Hori, K.; Matsumoto, S. Bacterial adhesion: From mechanism to control. Biochem. Eng. J. 2010, 48, 424–434. [Google Scholar] [CrossRef]

	



Slate, A.J.; Wickens, D.; Wilson-Nieuwenhuis, J.; Dempsey-Hibbert, N.; West, G.; Kelly, P.; Verran, J.; Banks, C.E.; Whitehead, K.A. The effects of blood conditioning films on the antimicrobial and retention properties of zirconium-nitride silver surfaces. Colloids Surf. B 2019, 173, 303–311. [Google Scholar] [CrossRef] [PubMed]

	



Lorite, G.S.; Rodrigues, C.M.; De Souza, A.A.; Kranz, C.; Mizaikoff, B.; Cotta, M.A. The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. J. Colloid Interface Sci. 2011, 359, 289–295. [Google Scholar] [CrossRef] [PubMed]

	



Kokare, C.; Chakraborty, S.; Khopade, A.; Mahadik, K.R. Biofilm: Importance and Applications. Indian J. Biotechnol. 2009, 8, 159–168. [Google Scholar]

	



Moreira, J.; Gomes, L.; Whitehead, K.; Lynch, S.; Tetlow, L.; Mergulhão, F. Effect of surface conditioning with cellular extracts on Escherichia coli adhesion and initial biofilm formation. Food Bioprod. Process. 2017, 104, 1–12. [Google Scholar] [CrossRef]

	



Guyard-Nicodème, M.; Tresse, O.; Houard, E.; Jugiau, F.; Courtillon, C.; El Manaa, K.; Laisney, M.J.; Chemaly, M. Characterization of Campylobacter spp. transferred from naturally contaminated chicken legs to cooked chicken slices via a cutting board. Int. J. Food Microbiol. 2013, 164, 7–14. [Google Scholar] [CrossRef] [PubMed]

	



Birk, T.; Ingmer, H.; Andersen, M.T.; Jørgensen, K.; Brøndsted, L. Chicken juice a food-based model system suitable to study survival of Campylobacter jejuni. Lett. Appl. Microbiol. 2004, 38, 66–71. [Google Scholar] [CrossRef]

	



Brown, H.L.; Reuter, M.; Salt, L.J.; Cross, K.L.; Betts, R.P.; van Vliet, A.H.M. Chicken juice enhances surface attachment and biofilm formation of Campylobacter Jejuni. Appl. Environ. Microbiol. 2014, 80, 7053–7060. [Google Scholar] [CrossRef]

	



Otto, C.; Zahn, S.; Rost, F.; Zahn, P.; Jaros, D.; Rohm, H. Physical Methods for Cleaning and Disinfection of Surfaces. Food Eng. Rev. 2011, 3, 171–188. [Google Scholar] [CrossRef]

	



Gibson, H.; Taylor, J.H.; Hall, K.E.; Holah, J.T. Effectiveness of cleaning techniques used in the food industry in terms of the removal of bacterial biofilms. J. Appl. Microbiol. 1999, 87, 41–48. [Google Scholar] [CrossRef]

	



Yang, X.; Wang, H.; He, A.; Tran, F. Microbial efficacy and impact on the population of Escherichia coli of a routine sanitation process for the fabrication facility of a beef packing. Plant Food Control 2017, 71, 353–357. [Google Scholar] [CrossRef]

	



Yang, X.; Badoni, M.; Youssef, M.K.; Gill, C.O. Enhanced control of microbiological contamination of product at a large beef packing plant. J. Food Prot. 2012, 75, 144–149. [Google Scholar] [CrossRef] [PubMed]

	



Youssef, M.K.; Badoni, M.; Yang, X.; Gill, C.O. Sources of Escherichia coli deposited on beef during breaking of carcasses carrying few E. coli at two packing plants. Food Control 2013, 31, 166–171. [Google Scholar] [CrossRef]

	



Genigeorgis, C.; Rosales, J.; Verder-Elepano, M. Affect of selected sanitizer cleaners and soaps on Listeria spp., S. typhimurium, E. coli, and P. aeruginosa in the presence or absence of organic matter. In Proceedings of the International Conference Listeria and Food Safety—ASEPT, Laval, France, 13–14 June 1991; p. 186. [Google Scholar]

	



Whitehead, K.A.; Verran, J. The effect of surface topography on the retention of microorganisms. Food Bioprod. Process. 2006, 84, 253–259. [Google Scholar] [CrossRef]

	



Jullien, C.; Bénézech, T.; Carpentier, B.; Lebret, V.; Faille, C. Identification of surface characteristics relevant to the hygienic status of stainless steel for the food industry. J. Food Eng. 2003, 56, 77–87. [Google Scholar] [CrossRef]

	



Mettler, E.; Carpentier, B. Hygienic quality of floors in relation to surface texture. Food Bioprod. Process. 1999, 77, 90–96. [Google Scholar] [CrossRef]

	



Whitehead, K.A.; Verran, J. The effect of application method on the retention of Pseudomonas aeruginosa on stainless steel, and titanium coated stainless steel of differing topographies. Inter. Biodeter. Biodeg. 2007, 60, 74–80. [Google Scholar] [CrossRef]

	



Whitehead, K.; Benson, P.; Smith, L.; Verran, J. The use of physicochemical methods to detect organic food soils on stainless steel surfaces. Biofouling 2009, 25, 749–756. [Google Scholar] [CrossRef]

	



Jullien, C.; Benezech, T.; Le Gentil, C.; Boulange-Petermann, L.; Dubois, P.; Tissier, J.P.; Traisnel, M.; Faille, C. Physico-chemical and hygienic property modifications of stainless steel surfaces induced by conditioning with food and detergent. Biofouling 2008, 24, 163–172. [Google Scholar] [CrossRef]

	



Tuson, H.H.; Weibel, D.B. Bacteria-surface interactions. Soft Matter. 2013, 9, 4368–4380. [Google Scholar] [CrossRef]

	



Song, F.; Koo, H.; Ren, D. Effects of material properties on bacterial adhesion and biofilm formation. J. Dent. Res. 2015, 94, 1027–1034. [Google Scholar] [CrossRef]

	



Wu, S.; Zhang, B.; Liu, Y.; Suo, X.; Li, H. Influence of surface topography on bacterial adhesion: A review. Biointerphases 2018, 13, 060801. [Google Scholar] [CrossRef]

	



Whitehead, K.A.; Colligon, J.; Verran, J. Retention of microbial cells in substratum surface features of micrometer and sub-micrometer dimensions. Colloids Surf. B 2005, 41, 129–138. [Google Scholar] [CrossRef]

	



Hsu, L.C.; Fang, J.; Borca-Tasciuc, D.A.; Worobo, R.W.; Moraru, C.I. Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Appl. Environ. Microbiol. 2013, 79, 2703–2712. [Google Scholar] [CrossRef] [PubMed]

	



Verran, J. Testing surface cleanability in food processing. In Handbook of Hygiene Control in the Food Industry; Lelieveld, A.H.L.M., Holah Mostert, J.T., Eds.; CRC Press: New York, NY, USA, 2005; pp. 556–571. [Google Scholar]

	



Cheng, Y.; Feng, G.; Moraru, C.I. Micro and Nanotopography Sensitive Bacterial Attachment Mechanisms: A Review. Front. Microbiol. 2019, 10, 191. [Google Scholar] [CrossRef] [PubMed]

	



Lee, J.; Pascal, M.A. Effect of micro-pattern topography on the attachment and survival of foodborne microorganisms on food contact surfaces. Food Saf. 2018, 38, e12379. [Google Scholar] [CrossRef]

	



Kamerud, K.L.; Hobbie, K.A.; Anderson, K.A. Stainless steel leaches nickel and chromium into foods during cooking. J. Agric. Food Chem. 2013, 61, 9495–9501. [Google Scholar] [CrossRef]

	



Ma, H.; Winslow, C.J.; Logan, B.E. Spectral force analysis using atomic force microscopy reveals the importance of surface heterogeneity in bacterial; and colloid adhesion to engineered surfaces. Colloids Surf. B 2008, 62, 232–237. [Google Scholar] [CrossRef]

	



Ribeiro, C.F.; Cogo-Müller, K.; Franco, G.C.; Silva-Concílio, L.R.; Campos, M.S.; de Mello Rode, S.; Neves, A.C.C. Initial oral biofilm formation on titan;ium implants with different surface treatments: An in vivo study. Arch. Oral. Biol. 2016, 69, 33–39. [Google Scholar] [CrossRef] [PubMed]

	



Akhidime, I.D.; Saubade, F.; Benson, P.S.; Butler, J.A.; Olivier, S.; Kelly, P.; Verran, J.; Whitehead, K.A. The antimicrobial effect of metal substrates on food pathogens. Food Bioprod. Process. 2019, 113, 68–76. [Google Scholar] [CrossRef]

	



Lausmaa, J. Surface spectroscopic characterization of titanium implant materials. J. Electron. Spectros. Relat. Phenom. 1996, 81, 343–361. [Google Scholar] [CrossRef]

	



Verran, J.; Packer, A.; Kelly, P.; Whitehead, K.A. The retention of bacteria on hygienic surfaces presenting scratches of microbial dimensions. Lett. Appl. Microbiol. 2010, 50, 258–263. [Google Scholar] [CrossRef] [PubMed]

	



Whitehead, K.A.; Olivier, S.; Benson, P.S.; Arneborg, N.; Verran, J.; Kelly, P. The effect of surface properties of polycrystalline, single phase metal coatin;gs on bacterial retention. Int. J. Food Microbiol. 2015, 197, 92–97. [Google Scholar] [CrossRef] [PubMed]

	



Caballero, L.; Whitehead, K.; Allen, N.; Verran, J. Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. J. Photochem. Photobiol. A 2009, 202, 92–98. [Google Scholar] [CrossRef]

	



Whitehead, K.; Benson, P.; Verran, J. The detection of food soils on stainless steel using energy dispersive X-ray and Fourier transform infrared spectroscopy. Biofouling 2011, 27, 907–917. [Google Scholar] [CrossRef]

	



Whitehead, K.A.; Benson, P.; Verran, J. Differential fluorescent staining of Listeria monocytogenes and a whey food soil for quantitative analysis of surfac;e hygiene. Int. J. Food Microbiol. 2009, 135, 75–80. [Google Scholar] [CrossRef]

	



Boyd, R.D.; Verran, J.; Jones, M.; Bhakoo, M. Use of the atomic force microscope to determine the effect of substratum surface topography on bacterial adhesion. Langmuir 2002, 18, 2343–2346. [Google Scholar] [CrossRef]

	



Slate, A.J.; Wickens, D.J.; El Mohtadi, M.; Dempsey-Hibbert, N.; West, G.; Banks, C.E.; Whitehead, K.A. Antimicrobial activity of Ti-ZrN/Ag coatings for use in biomaterial applications. Sci. Rep. 2018, 8, 1497. [Google Scholar] [CrossRef]

	



McGaffey, M.; zur Linden, A.; Bachynski, N.; Oblak, M.; James, F.; Weese, J.S. Manual polishing of 3D printed metals produced by laser powder bed fusion reduces biofilm formation. PLoS ONE 2019, 14, e0212995. [Google Scholar] [CrossRef]

	



Wilson, C.; Lukowicz, R.; Merchant, S.; Valquier-Flynn, H.; Caballero, J.; Sandoval, J.; Okuom, M.; Huber, C.; Brooks, T.D.; Wilson, E.; et al. Quantitative and qualitative assessment methods for biofilm growth: A mini-review. Res. Rev. J. Eng. Technol. 2017, 6, 30214915. [Google Scholar]

	



Jeyachandran, Y.; Venkatachalam, S.; Karunagaran, B.; Narayandass, S.K.; Mangalaraj, D.; Bao, C.; Zhang, C. Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films. Mater. Sci. Eng. C 2007, 27, 35–41. [Google Scholar] [CrossRef]

	



Spriano, S.; Chandra, V.S.; Cochis, A.; Uberti, F.; Rimondini, L.; Bertone, E.; Vitale, A.; Scolaro, C.; Ferrari, M.; Cirisano, F. How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials? Mater. Sci. Eng. C 2017, 74, 542–555. [Google Scholar] [CrossRef]

	



Wassmann, T.; Kreis, S.; Behr, M.; Buergers, R. The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants. Int. J. Implant. Dent. 2017, 3, 1–11. [Google Scholar] [CrossRef]

	



Scwach, T.S.; Zottola, E.A. Scanning electron microscopic study on some effects of sodium hypochloride on attachment of bacteria to stainless steel. J. Food. Prot. 1984, 47, 656–759. [Google Scholar]

	



Li, J.; Feng, J.; Ma, L.; de la Fuente Núñez, C.; Gölz, G.; Lu, X. Effects of meat juice on biofilm formation of Campylobacter and Salmonella. Int. J. Food Microbiol. 2017, 253, 20–28. [Google Scholar] [CrossRef] [PubMed]

	



Nakanishi, K.; Sakiyama, T.; Imamura, K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J. Biosci. Bioeng. 2001, 91, 233–244. [Google Scholar] [CrossRef]

	



Rechendorff, K.; Hovgaard, M.B.; Foss, M.; Zhdanov, V.; Besenbacher, F. Enhancement of protein adsorption induced by surface roughness. Langmuir 2006, 22, 10885–10888. [Google Scholar] [CrossRef] [PubMed]

	



Thyparambil, A.A.; Wei, Y.; Latour, R.A. Experimental characterization of adsorbed protein orientation, conformation, and bioactivity. Biointerphases 2015, 10, 019002. [Google Scholar] [CrossRef] [PubMed]

	



Saubade, F.J.; Hughes, S.; Wickens, D.J.; Wilson-Nieuwenhuis, J.; Dempsey-Hibbert, N.; Crowther, G.S.; West, G.; Kelly, P.; Banks, C.E.; Whitehead, K.A. Effectiveness of titanium nitride silver coatings against Staphylococcus spp. in the presence of BSA and whole blood conditioning agents. Int. Biodeterior. Biodegrad. 2019, 141, 44–51. [Google Scholar] [CrossRef]

	



Dickson, J.S.; Koohmaraie, M. Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Appl. Environ. Microbiol. 1989, 55, 832–836. [Google Scholar] [CrossRef]

	



van de Weyer, A.; Devleeschouwer, M.J.; Dony, J. Bactericidal activity of disinfectants on Listeria. J. Appl. Bacteriol. 1993, 74, 480–483. [Google Scholar] [CrossRef]

	



Spurlock, A.T.; Zottola, E.A. Growth and attachment of Listeria monocytogenes to cast iron. J. Food Prot. 1991, 54, 925–929. [Google Scholar] [CrossRef] [PubMed]

	



Jessen, B.; Lammert, L. Biofilm and disinfection in meat processing plants. Int. Biodeter. Biodeg. 2003, 51, 265–269. [Google Scholar] [CrossRef]

	



Lopez, G.U.; Kitajima, M.; Sherchan, S.P.; Sexton, J.D.; Sifuentes, L.Y.; Gerba, C.P.; Reynolds, K.A. Impact of disinfectant wipes on the risk of Campylobacter jejuni infection during raw chicken preparation in domestic kitchens. J. Appl. Microbiol. 2015, 119, 245–252. [Google Scholar] [CrossRef] [PubMed]

	



Bloomfield, S.F.; Carling, P.C.; Exner, M. A unified framework for developing effective hygiene procedures for hands, environmental surfaces and laundry in healthcare, domestic, food handling and other settings. GMS Hyg. Infect. Control 2017, 12, 1–16. [Google Scholar] [CrossRef]








[image: Ijerph 18 03198 g001 550] 





Figure 1. Atomic force microscopy (AFM) demonstrating the (a) fine polished stainless steel (FPSS), (b) titanium-coated fine polished stainless steel (TiFP), and (c) titanium coated regular linear featured surface (RG) (n = 15). 
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Figure 2. Percentage coverage bacteria retained on fine polished stainless steel (FPSS), titanium polished stainless steel (TiFP) and the regular linear featured titanium coated surface (RG) surface following 0, 1, 5 and 10 cleans (A) along the direction and (B) perpendicular to the surface features (n = 45). Asterisks denote significance, * p ≤ 0.05, ** p ≤ 0.01 and **** p ≤ 0.0001. 
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Figure 3. Percentage coverage of meat exudate retained on fine polished stainless steel (FPSS), titanium polished stainless steel (TiFP) and the regular linear featured titanium coated surface (RG) surface following 0, 1, 5 and 10 cleans (A) along the direction and (B) perpendicular to the surface features (n = 45). Asterisks denote significance, * p ≤ 0.05, ** p ≤ 0.01 and **** p ≤ 0.0001. 
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Figure 5. Schematic demonstrating how (a,b) the size of the bacteria (cylindrical) and (c,d) meat exudate (circles) influenced the efficacy of cleaning in the (a,c) direction of cleaning along the linear surface features or (b,d) in a direction perpendicular to the surface features. 
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Figure 6. The bacteria retained on the surfaces were bound in the highest amounts on the surfaces with (a) irregular topographies rather than on (b) topographically regular surfaces. 
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