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A. Conventional frequentist meta-analysis of odds ratios 
 
A.1. Conventional meta-analysis models 
The fixed-effect (FE) and random-effects (RE) models are two conventional approaches 
for meta-analyses. Each model employs different assumptions to synthesize multiple 
studies. Suppose that a meta-analysis contains 𝑘𝑘 statistically independent studies; each 
has an underlying true effect size, 𝜃𝜃𝑖𝑖 (𝑖𝑖 = 1, … ,𝑘𝑘). The FE model assumes that all studies 
have a common true effect size; that is, 𝜃𝜃𝑖𝑖 = 𝜃𝜃. The only source of variation among effects 
is attributed to sampling errors within studies. Let 𝑦𝑦𝑖𝑖 be the observed effect size of study 
𝑖𝑖, whose within-study variance 𝜎𝜎𝑖𝑖2 is often treated as a known, fixed value. The FE model 
is specified as: 
𝑦𝑦𝑖𝑖 = 𝜃𝜃 + 𝜀𝜀𝑖𝑖, 𝜀𝜀𝑖𝑖 ∼ 𝑁𝑁(0,𝜎𝜎𝑖𝑖2), 
where 𝜀𝜀𝑖𝑖 represents the sampling error. 
 In practice, the FE model assumptions may not be valid, as different studies are 
often expected to be heterogeneous due to the difference in their patients’ basic 
characteristics, study methods, research teams, and other potential confounders.1 In such 
cases, the RE model is more appropriate as it assumes that the studies have different 
underlying true effect sizes 𝜃𝜃𝑖𝑖. Consequently, the observed effect sizes are subject to two 
sources of variation: variances due to sampling error 𝜎𝜎𝑖𝑖2 within studies and the between-
studies variance 𝜏𝜏2. Specifically, the RE model is 
𝑦𝑦𝑖𝑖 = 𝜃𝜃𝑖𝑖 + 𝜀𝜀𝑖𝑖, 𝜀𝜀𝑖𝑖 ∼ 𝑁𝑁(0,𝜎𝜎𝑖𝑖2); 
𝜃𝜃𝑖𝑖 ∼ 𝑁𝑁(𝜃𝜃, 𝜏𝜏2). 
The 𝜃𝜃𝑖𝑖 ’s are assumed to be random effects, following a normal distribution with mean 𝜃𝜃 
and variance 𝜏𝜏2. Thus, 𝜃𝜃 now represents the overall effect size and is of primary interest. 
When 𝜏𝜏2 = 0, the RE model reduces to the FE model. The RE model accounts for the 
additional source of variation between studies, thus being viewed as more conservative 
than the FE model; it often produces wider confidence intervals (CIs). 
 
A.2. Frequentist approach 
Currently, most meta-analyses are implemented using frequentist methods. The FE 
estimate of 𝜃𝜃 is the inverse-of-variance weighted least squares average; specifically, 
𝜃𝜃� = ∑ 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑘𝑘

𝑖𝑖=1 ∑ 𝑤𝑤𝑖𝑖
𝑘𝑘
𝑖𝑖=1⁄ , 

with standard error 
SE�𝜃𝜃�� = �∑ 𝑤𝑤𝑖𝑖

𝑘𝑘
𝑖𝑖=1 �

−1 2⁄ , 
where 𝑤𝑤𝑖𝑖 = 1 𝜎𝜎𝑖𝑖2⁄  is the weight for study 𝑖𝑖. Using the RE model approach, study-specific 
weights are revised to incorporate an estimate of the between-studies variance, 𝜏̂𝜏2. Thus, 
the RE estimate of 𝜃𝜃 and its variance are obtained by replacing the FE weights 𝑤𝑤𝑖𝑖 with 
𝑤𝑤𝑖𝑖
∗ = 1 (𝜎𝜎𝑖𝑖2 + 𝜏̂𝜏2)⁄ . 

Various methods are available to estimate the between-studies variance.2-4 If 𝜏̂𝜏2 
reduces to 0, the RE estimate becomes the FE estimate. Conversely, if 𝜏̂𝜏2 → ∞, the RE 
estimate becomes the naïve arithmetic mean. This article primarily considers three 
commonly-used estimators of 𝜏𝜏2: DerSimonian–Laird (DL) estimator, 𝜏̂𝜏DL2 , based on the 
method of moments,5 maximum-likelihood (ML) estimator, 𝜏̂𝜏ML2 , and restricted maximum-
likelihood (REML) estimator, 𝜏̂𝜏REML2 .6 
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The DL estimator (𝜏̂𝜏DL2 ) is a non-iterative method and can be easily calculated. 
However, it can produce zero estimates and yields considerable bias when the meta-
analysis contains a small number of studies.3 Specifically, this estimator is calculated as 
𝜏̂𝜏DL2 = max�0, [𝑄𝑄 − (𝑘𝑘 − 1)] �∑ 𝑤𝑤𝑖𝑖

𝑘𝑘
𝑖𝑖=1 − ∑ 𝑤𝑤𝑖𝑖

2𝑘𝑘
𝑖𝑖=1 ∑ 𝑤𝑤𝑖𝑖

𝑘𝑘
𝑖𝑖=1⁄ �⁄ �. 

Here, 𝑄𝑄 = ∑ 𝑤𝑤𝑖𝑖�𝑦𝑦𝑖𝑖 − 𝜃𝜃��
2𝑘𝑘

𝑖𝑖=1  is the conventional test statistic for heterogeneity, where 𝜃𝜃� 
and 𝑤𝑤𝑖𝑖  are the estimated overall effect size and study-specific weights under the FE 
setting, respectively. 

The ML estimator (𝜏̂𝜏ML2 ) is a classic method that has many desired statistical 
properties. The estimator is obtained by maximizing the log-likelihood of the RE model: 
log 𝐿𝐿 ∝ − 1

2
∑ �log(𝜎𝜎𝑖𝑖2 + 𝜏𝜏2) + (𝑦𝑦𝑖𝑖−𝜃𝜃)2

𝜎𝜎𝑖𝑖
2+𝜏𝜏2

�𝑘𝑘
𝑖𝑖=1 , 

with respect to both 𝜃𝜃 and 𝜏𝜏2. Nevertheless, it is well known that ML estimates of variance 
components are often biased.7 As an alternative, the REML method is able to produce 
unbiased variance estimates. More specifically, the REML approach maximizes the 
following modified log-likelihood:6 

log 𝐿𝐿 ∝ − 1
2
∑ �log(𝜎𝜎𝑖𝑖2 + 𝜏𝜏2) + �𝑦𝑦𝑖𝑖−𝜃𝜃��

2

𝜎𝜎𝑖𝑖
2+𝜏𝜏2

�𝑘𝑘
𝑖𝑖=1 − 1

2
log∑ 1

𝜎𝜎𝑖𝑖
2+𝜏𝜏2

𝑘𝑘
𝑖𝑖=1 , 

with respect to 𝜏𝜏2, where 𝜃𝜃� = ∑ 𝑦𝑦𝑖𝑖 �𝜎𝜎𝑖𝑖
2+𝜏𝜏2�⁄𝑘𝑘

𝑖𝑖=1
∑ 1 �𝜎𝜎𝑖𝑖

2+𝜏𝜏2�⁄𝑘𝑘
𝑖𝑖=1

. 
Both the ML and REML methods require iterative computations, which may not 

converge in some cases (e.g., 𝑘𝑘 is small).8 Based on previous simulation studies, the 
REML estimator is generally recommended.2,3,9 The various estimators can be obtained 
using many software packages, such as the R packages “metafor” and “meta”.8,10 
 
A.3. Meta-analysis of odds ratio with a worked example 
Many meta-analyses include studies with binary outcomes (e.g., disease incidence, 
mortality, pass/fail), and the odds ratio (OR) is commonly used as the effect measure to 
quantify treatment effects.11 We will focus on such meta-analyses of ORs. 

Table S1 illustrates a 2×2 table of an individual study with a binary outcome, which 
is typically reported in published articles. Within Table S1, we provide counts of both 
events and no events in both the treatment and control groups. Let 𝑟𝑟 represent event 
counts and 𝑛𝑛 be sample sizes. Furthermore, let subscripts T and C denote the treatment 
and control groups, respectively. The OR is estimated as OR� = 𝑟𝑟T (𝑛𝑛T−𝑟𝑟T)⁄

𝑟𝑟C (𝑛𝑛C−𝑟𝑟C)⁄ . In practice, the 
OR is often analyzed on a logarithmic scale. The rationale for this decision is the log OR, 
𝑦𝑦 = log �OR��, has an asymptotic normal distribution when the counts in the 2×2 table (e.g., 
Table S1) are sufficiently large. The sample variance of the log OR is approximated as 
𝜎𝜎2 = 𝑟𝑟T−1 + (𝑛𝑛T − 𝑟𝑟T)−1 + 𝑟𝑟C−1 + (𝑛𝑛C − 𝑟𝑟C)−1 . The 𝑦𝑦  and 𝜎𝜎2  correspond to the individual 
study summary data. In the context of meta-analysis, as shown above, we would include 
the subscript 𝑖𝑖 to index a specific study from 𝑘𝑘 studies. 
Table S1. Illustration of a 2×2 table. 

 Treatment Group Control Group Total 
Event 
No Event 
Total 

𝑟𝑟T 
𝑛𝑛T − 𝑟𝑟T 
𝑛𝑛T 

𝑟𝑟C 
𝑛𝑛C − 𝑟𝑟C 
𝑛𝑛C 

𝑟𝑟T + 𝑟𝑟C 
𝑛𝑛T + 𝑛𝑛C − 𝑟𝑟T − 𝑟𝑟C 

𝑛𝑛T + 𝑛𝑛C 
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For example, Lamont et al.12 collected 13 cohort studies that compared the risk of 
stillbirth recurrence in women who had experienced a previous stillbirth with those who 
had a previous live birth. Figure 1 in the main content shows the associated forest plot. 
The 𝐼𝐼2 index was 84%, suggesting considerable heterogeneity beyond that of sampling 
error.13 Compared with women with a previous live birth, women with a previous stillbirth 
had a significantly increased risk of stillbirth recurrence with an overall OR=4.59 and 95% 
CI [3.56, 5.93]. These results used the DL estimator of between-studies variance. 

A potential problem in meta-analyses of binary outcomes is the presence of zero 
counts. Using conventional meta-analysis methods, ORs are not estimable in studies with 
zero event counts in both arms; such studies are usually excluded from meta-analyses.14 
However, an exclusion of this sort may lose important information and lead to research 
waste.15-17 When only one arm in a study contains zero count, a continuity correction 
(typically 0.5) can be applied to the 2×2 table, so that the OR and its CI can be calculated. 

The problem of zero counts may be avoided by using more advanced meta-
analysis methods, such as generalized linear mixed models, which are considered one-
stage approaches completed without calculating ORs for individual studies.18 
Nevertheless, such methods may require comparatively complicated computation 
algorithms, with the iterative estimation procedure being unstable in certain instances. 
Alternatively, Bayesian methods offer a flexible approach with the aim at the same 
purpose. Within a Bayesian framework for meta-analysis, researchers are able 
incorporate informative priors to improve estimated treatment effects.  
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B. R code for analyzing the five examples 
 
## load libraries  
library("rjags") 
library("coda") 
 
################################################################ 
## functions 
 
ma <- function(prior.distribution){ 
  if (prior.distribution == "IG") { 
    out <- "model{ 
    for(i in 1:n.studies){ 
      delta[i,1] <- 0 
      mu[i] ~ dnorm(0, 0.0001)  # vague priors for trial baselines 
      for(k in 1:2){ 
        r[i,k] ~ dbin(p[i,k], n[i,k])  # binomial likelihood 
        logit(p[i,k]) <- mu[i] + delta[i,k] 
      } 
      delta[i,2] ~ dnorm(lor, prec)  # trial-specific LOR distributions 
    } 
    lor ~ dnorm(0, 0.0001)  #  vague priors for log odds ratio 
    # inverse gamma prior 
    tau2 <- 1/prec 
    tau <- sqrt(1/prec) 
    prec ~ dgamma(alpha, beta) 
    OR <- exp(lor) 
  }" } 
  else if (prior.distribution == "U") { 
    out <- "model{ 
    for(i in 1:n.studies){ 
      delta[i,1] <- 0 
      mu[i] ~ dnorm(0, 0.0001)  # vague priors for trial baselines 
      for(k in 1:2){ 
        r[i,k] ~ dbin(p[i,k], n[i,k])  # binomial likelihood 
        logit(p[i,k]) <- mu[i] + delta[i,k] 
      } 
      delta[i,2] ~ dnorm(lor, prec)  # trial-specific LOR distributions 
    } 
    lor ~ dnorm(0, 0.0001)  #  vague priors for log odds ratio 
    # uniform prior 
    tau2 <- tau*tau 
    prec <- 1/tau2 
    tau ~ dunif(alpha, beta) 
    OR <- exp(lor) 
  }" } 
  else if (prior.distribution == "HN") { 
    out <- "model{ 
    for(i in 1:n.studies){ 
      delta[i,1] <- 0 
      mu[i] ~ dnorm(0, 0.0001)  # vague priors for trial baselines 
      for(k in 1:2){ 
        r[i,k] ~ dbin(p[i,k], n[i,k])  # binomial likelihood 
        logit(p[i,k]) <- mu[i] + delta[i,k] 
      } 
      delta[i,2] ~ dnorm(lor, prec)  # trial-specific LOR distributions 
    } 
    lor ~ dnorm(0, 0.0001)  #  vague priors for log odds ratio 
    # half-mormal prior 
    tau2 <- tau*tau 
    prec <- 1/tau2 
    tau ~ dnorm(alpha, 1/beta) T(0,) 
    OR <- exp(lor) 
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  }" } 
  else if (prior.distribution == "LN") { 
    out <- "model{ 
    for(i in 1:n.studies){ 
      delta[i,1] <- 0 
      mu[i] ~ dnorm(0, 0.0001)  # vague priors for trial baselines 
      for(k in 1:2){ 
        r[i,k] ~ dbin(p[i,k], n[i,k])  # binomial likelihood 
        logit(p[i,k]) <- mu[i] + delta[i,k] 
      } 
      delta[i,2] ~ dnorm(lor, prec)  # trial-specific LOR distributions 
    } 
    lor ~ dnorm(0, 0.0001)  #  vague priors for log odds ratio 
    # log-normal prior 
    prec <- 1/tau2 
    tau <- sqrt(1/prec) 
    tau2 ~ dlnorm(alpha, 1/(beta)^2) 
    OR <- exp(lor) 
  }" } 
  else { 
    print("Check prior distribution") 
  } 
  return(out) 
} 
 
 
prior_results <- function(data, prior, alpha, beta, 
                          n.burnin = 50000, n.iter = 200000, n.chains = 3, 
                          n.adapt = 1000, thin = 2, seed = 1234){ 
  dat.jags <- list(n.studies = length(data$r1), alpha = alpha, beta = beta,     
    r = cbind(data$r1,data$r2), n = cbind(data$n1, data$n2)) 
  inits <- list( 
    list(lor = 0, mu = rep(0, length(data$r1)), 
         .RNG.name = "base::Wichmann-Hill", .RNG.seed = 1234), 
    list(lor = -1, mu = rep(1, length(data$r1)), 
         .RNG.name = "base::Wichmann-Hill", .RNG.seed = 12345), 
    list(lor = 1, mu = rep(-1, length(data$r1)), 
         .RNG.name = "base::Wichmann-Hill", .RNG.seed = 123456)) 
   
  params <- c("OR", "lor", "prec", "tau", "tau2") 
  set.seed(seed) 
  jags.ma <- jags.model(file = textConnection(ma(prior)), data = dat.jags, 
    n.chains = n.chains, n.adapt = n.adapt, inits = inits) 
  update(jags.ma, n.iter = n.burnin) 
  coda.ma <- coda.samples(model = jags.ma, variable.names = params, 
    n.iter = n.iter, thin = thin) 
  smry.ma <- summary(coda.ma) 
  print(smry.ma$quantiles[c("OR", "tau") , c("2.5%", "50%", "97.5%")]) 
  out <- smry.ma$quantiles[ , c("2.5%", "50%", "97.5%")] 
  colname <- c("lb", "median", "ub") 
  write.table(matrix(out, byrow = FALSE, nrow = 5), file = "summary1_MA.txt",  
              row.names = c("OR", "lor", "prec", "tau", "tau2"), 
              col.names = colname) 
 
  # trace plot of log OR 
  png(paste0(paste("traceplot_", prior), "_lor", ".png"), 
      res = 600, height = 8.5, width = 11, units = "in") 
  par(mfcol = c(length(coda.ma), 1)) 
  for(k in 1:length(coda.ma)){ 
    temp <- as.vector(coda.ma[[k]][,"lor"]) 
    plot(temp, type = "l", col = "red", cex.lab = 1.5, cex.main = 1.5, 
         xlab = "Iteration", ylab = "Log odds ratio", 
         main = paste("Chain", k)) 
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  } 
  dev.off() 
 
  # density plot of log OR 
  png(paste0("densityplot", "lor", ".png"), 
      res = 600, height = 8.5, width = 11, units = "in") 
  post.coda <- NULL 
  for(k in 1:length(coda.ma)){ 
     post.coda <- rbind(post.coda, coda.ma[[k]][,"lor"]) 
  } 
  postden <- density(post.coda) 
  plot(postden, main = "Posterior density", xlab = "Log odds ratio") 
  polygon(postden, col = "lightblue", border = "darkblue") 
  dev.off() 
} 
 
 
################################################################ 
## data of five real-world meta-analyses 
 
Stillbirth <- list(r1 = c(20, 1884, 1402, 179, 1144, 257, 1832, 1309, 
                          3407, 145, 660, 803, 477), 
                   r2 = c(2, 45, 18, 5, 72, 5, 106, 50, 222, 3, 21, 12, 13), 
                   n1 = c(3160, 402201, 524328, 33715, 242672, 70942, 533258, 
                          306627, 568315, 51762, 242881, 250769, 144565), 
                   n2 = c(316, 1979, 2363, 364, 2168, 373, 3161, 2677, 5996, 
                          348, 1323, 2058, 872)) 
 
PPI <- list(r1 = c(10, 66, 20, 27, 522, 31, 31, 95), 
            r2 = c(16, 62, 14, 43, 570, 63, 63, 116), 
            n1 = c(63, 87, 194, 682, 1381, 1149, 1149, 3297), 
            n2 = c(63, 86, 146, 682, 1412, 2301, 2301, 2949)) 
 
Colitis <- list(r1 = c(2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0), 
                r2 = c(6, 2, 0, 2, 0, 3, 0, 3, 2, 2, 2, 1, 0), 
                n1 = c(255, 268, 129, 135, 309, 309, 62, 151, 171, 171, 578, 
                       205, 102), 
                n2 = c(266, 287, 131, 142, 343, 339, 59, 154, 179, 178, 609, 
                       206, 268)) 
 
Hepatitis <-  list(r1 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 
                  r2 = c(0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 2, 0, 0), 
                  n1 = c(255, 268, 129, 135, 111, 309, 309, 62, 397, 151, 
                         171, 171, 578, 205, 102), 
                  n2 = c(266, 287, 131, 142, 236, 343, 339, 59, 406, 154, 
                         179, 178, 609, 206, 268)) 
 
ARTI <- list(r1 = c(33, 69, 126, 54, 11, 458, 29, 245, 53, 155, 39, 38, 276, 
                    96, 80, 17, 53, 75, 93, 58, 10, 93, 5, 24, 14), 
             r2 = c(32, 68, 97, 39, 4, 438, 30, 260, 44, 154, 26, 26, 303, 
                    185, 70, 32, 94, 76, 85, 83, 10, 110, 4, 17, 16), 
             n1 = c(76, 167, 229, 84, 24, 1030, 89, 1505, 103, 161, 62, 58, 
                    360, 197, 234, 99, 80, 118, 125, 103, 11, 207, 35, 52, 16), 
             n2 = c(81, 167, 224, 80, 24, 1034, 86, 1506, 141, 161, 62, 58, 
                    399, 397, 258, 148, 156, 122, 125, 137, 14, 201, 54, 55, 18)) 
 
 
################################################################ 
## Bayesian meta-analysis for each dataset 
 
data <- Stillbirth # PPI, Colitis, Hepatitis, or ARTI 
 
prior_results(data = data, prior = "IG", alpha = 0.001, beta = 0.001) 
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prior_results(data = data, prior = "IG", alpha = 0.01, beta = 0.01) 
prior_results(data = data, prior = "IG", alpha = 0.1, beta = 0.1) 
 
prior_results(data = data, prior = "U", alpha = 0, beta = 2) 
prior_results(data = data, prior = "U", alpha = 0, beta = 10) 
prior_results(data = data, prior = "U", alpha = 0, beta = 100) 
 
prior_results(data = data, prior = "HN", alpha = 0, beta = 0.1) 
prior_results(data = data, prior = "HN", alpha = 0, beta = 1) 
prior_results(data = data, prior = "HN", alpha = 0, beta = 2) 
 
# for Stillbirth and PPI 
prior_results(data = data, prior = "LN", alpha = -3.93, beta = 1.51) 
prior_results(data = data, prior = "LN", alpha = -2.89, beta = 1.91) 
prior_results(data = data, prior = "LN", alpha = -2.01, beta = 1.64) 
 
# for Colitis, Hepatitis, and ARTI 
prior_results(data = data, prior = "LN", alpha = -4.06, beta = 1.45) 
prior_results(data = data, prior = "LN", alpha = -3.02, beta = 1.85) 
prior_results(data = data, prior = "LN", alpha = -2.13, beta = 1.58) 
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C. Forest plots 
 
This section presents the forest plots of the meta-analyses on patient enrollment in 
clinical trials (Example 2), on colitis (Example 3), on hepatitis (Example 4), and on acute 
respiratory tract infection (Example 5). In each forest plot, the ORs and their 95% CIs 
were calculated using the frequentist methods described in Appendix A.3. 
 
 
 

 
Figure S1. Forest plot of the meta-analysis on patient enrollment in clinical trials 
(Example 2).  
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Figure S2. Forest plot of the meta-analysis on colitis (Example 3).  
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Figure S3. Forest plot of the meta-analysis on hepatitis (Example 4). 
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Figure S4. Forest plot of the meta-analysis on acute respiratory tract infection (Example 
5).  
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D. Trace plots 
 

 
Figure S5. Trace plots of the overall log odds ratio based on the prior 𝐼𝐼𝐼𝐼(0.001, 0.001) 
for 𝜏𝜏2 in the meta-analysis on stillbirth (Example 1).  
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Figure S6. Trace plots of the overall log odds ratio based on the prior 𝐼𝐼𝐼𝐼(0.01, 0.01) for 
𝜏𝜏2 in the meta-analysis on stillbirth (Example 1).  
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Figure S7. Trace plots of the overall log odds ratio based on the prior 𝐼𝐼𝐼𝐼(0.1, 0.1) for 𝜏𝜏2 
in the meta-analysis on stillbirth (Example 1).  
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Figure S8. Trace plots of the overall log odds ratio based on the prior 𝑈𝑈(0, 2) for 𝜏𝜏 in the 
meta-analysis on stillbirth (Example 1).  
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Figure S9. Trace plots of the overall log odds ratio based on the prior 𝑈𝑈(0, 10) for 𝜏𝜏 in 
the meta-analysis on stillbirth (Example 1).  
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Figure S10. Trace plots of the overall log odds ratio based on the prior 𝑈𝑈(0, 100) for 𝜏𝜏 in 
the meta-analysis on stillbirth (Example 1).  
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Figure S11. Trace plots of the overall log odds ratio based on the prior 𝐻𝐻𝐻𝐻(0, 0.1) for 𝜏𝜏 
in the meta-analysis on stillbirth (Example 1).  
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Figure S12. Trace plots of the overall log odds ratio based on the prior 𝐻𝐻𝐻𝐻(0, 1) for 𝜏𝜏 in 
the meta-analysis on stillbirth (Example 1).  
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Figure S13. Trace plots of the overall log odds ratio based on the prior 𝐻𝐻𝐻𝐻(0, 2) for 𝜏𝜏 in 
the meta-analysis on stillbirth (Example 1).  
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Figure S14. Trace plots of the overall log odds ratio based on the prior 𝐿𝐿𝐿𝐿(−3.93, 1.512) 
for 𝜏𝜏2 in the meta-analysis on stillbirth (Example 1).  
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Figure S15. Trace plots of the overall log odds ratio based on the prior 𝐿𝐿𝐿𝐿(−2.89, 1.912) 
for 𝜏𝜏2 in the meta-analysis on stillbirth (Example 1).  
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Figure S16. Trace plots of the overall log odds ratio based on the prior 𝐿𝐿𝐿𝐿(−2.01, 1.642) 
for 𝜏𝜏2 in the meta-analysis on stillbirth (Example 1).  
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Figure S17. Trace plots of the overall log odds ratio based on the prior 𝐼𝐼𝐼𝐼(0.001, 0.001) 
for 𝜏𝜏2 in the meta-analysis on patient enrollment in clinical trials (Example 2).  
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Figure S18. Trace plots of the overall log odds ratio based on the prior 𝐼𝐼𝐼𝐼(0.01, 0.01) for 
𝜏𝜏2 in the meta-analysis on patient enrollment in clinical trials (Example 2).  
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Figure S19. Trace plots of the overall log odds ratio based on the prior 𝐼𝐼𝐼𝐼(0.1, 0.1) for 
𝜏𝜏2 in the meta-analysis on patient enrollment in clinical trials (Example 2).  
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Figure S20. Trace plots of the overall log odds ratio based on the prior 𝑈𝑈(0, 2) for 𝜏𝜏 in 
the meta-analysis on patient enrollment in clinical trials (Example 2).  
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Figure S21. Trace plots of the overall log odds ratio based on the prior 𝑈𝑈(0, 10) for 𝜏𝜏 in 
the meta-analysis on patient enrollment in clinical trials (Example 2).  
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Figure S22. Trace plots of the overall log odds ratio based on the prior 𝑈𝑈(0, 100) for 𝜏𝜏 in 
the meta-analysis on patient enrollment in clinical trials (Example 2).  
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Figure S23. Trace plots of the overall log odds ratio based on the prior 𝐻𝐻𝐻𝐻(0, 0.1) for 𝜏𝜏 
in the meta-analysis on patient enrollment in clinical trials (Example 2).  
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Figure S24. Trace plots of the overall log odds ratio based on the prior 𝐻𝐻𝐻𝐻(0, 1) for 𝜏𝜏 in 
the meta-analysis on patient enrollment in clinical trials (Example 2).  
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Figure S25. Trace plots of the overall log odds ratio based on the prior 𝐻𝐻𝐻𝐻(0, 2) for 𝜏𝜏 in 
the meta-analysis on patient enrollment in clinical trials (Example 2).  
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Figure S26. Trace plots of the overall log odds ratio based on the prior 𝐿𝐿𝐿𝐿(−3.93, 1.512) 
for 𝜏𝜏2 in the meta-analysis on patient enrollment in clinical trials (Example 2).  
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Figure S27. Trace plots of the overall log odds ratio based on the prior 𝐿𝐿𝐿𝐿(−2.89, 1.912) 
for 𝜏𝜏2 in the meta-analysis on patient enrollment in clinical trials (Example 2).  
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Figure S28. Trace plots of the overall log odds ratio based on the prior 𝐿𝐿𝐿𝐿(−2.01, 1.642) 
for 𝜏𝜏2 in the meta-analysis on patient enrollment in clinical trials (Example 2).  
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Figure S29. Trace plots of the overall log odds ratio based on the prior 𝐼𝐼𝐼𝐼(0.001, 0.001) 
for 𝜏𝜏2 in the meta-analysis on colitis (Example 3).  
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Figure S30. Trace plots of the overall log odds ratio based on the prior 𝐼𝐼𝐼𝐼(0.01, 0.01) for 
𝜏𝜏2 in the meta-analysis on colitis (Example 3).  
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Figure S31. Trace plots of the overall log odds ratio based on the prior 𝐼𝐼𝐼𝐼(0.1, 0.1) for 
𝜏𝜏2 in the meta-analysis on colitis (Example 3).  
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Figure S32. Trace plots of the overall log odds ratio based on the prior 𝑈𝑈(0, 2) for 𝜏𝜏 in 
the meta-analysis on colitis (Example 3).  
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Figure S33. Trace plots of the overall log odds ratio based on the prior 𝑈𝑈(0, 10) for 𝜏𝜏 in 
the meta-analysis on colitis (Example 3).  
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Figure S34. Trace plots of the overall log odds ratio based on the prior 𝑈𝑈(0, 100) for 𝜏𝜏 in 
the meta-analysis on colitis (Example 3).  
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Figure S35. Trace plots of the overall log odds ratio based on the prior 𝐻𝐻𝐻𝐻(0, 0.1) for 𝜏𝜏 
in the meta-analysis on colitis (Example 3).  
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Figure S36. Trace plots of the overall log odds ratio based on the prior 𝐻𝐻𝐻𝐻(0, 1) for 𝜏𝜏 in 
the meta-analysis on colitis (Example 3).  
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Figure S37. Trace plots of the overall log odds ratio based on the prior 𝐻𝐻𝐻𝐻(0, 2) for 𝜏𝜏 in 
the meta-analysis on colitis (Example 3).  
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Figure S38. Trace plots of the overall log odds ratio based on the prior 𝐿𝐿𝐿𝐿(−4.06, 1.452) 
for 𝜏𝜏2 in the meta-analysis on colitis (Example 3).  
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Figure S39. Trace plots of the overall log odds ratio based on the prior 𝐿𝐿𝐿𝐿(−3.02, 1.852) 
for 𝜏𝜏2 in the meta-analysis on colitis (Example 3).  
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Figure S40. Trace plots of the overall log odds ratio based on the prior 𝐿𝐿𝐿𝐿(−2.13, 1.582) 
for 𝜏𝜏2 in the meta-analysis on colitis (Example 3).  
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Figure S41. Trace plots of the overall log odds ratio based on the prior 𝐼𝐼𝐼𝐼(0.001, 0.001) 
for 𝜏𝜏2 in the meta-analysis on hepatitis (Example 4).  
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Figure S42. Trace plots of the overall log odds ratio based on the prior 𝐼𝐼𝐼𝐼(0.01, 0.01) for 
𝜏𝜏2 in the meta-analysis on hepatitis (Example 4).  
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Figure S43. Trace plots of the overall log odds ratio based on the prior 𝐼𝐼𝐼𝐼(0.1, 0.1) for 
𝜏𝜏2 in the meta-analysis on hepatitis (Example 4).  
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Figure S44. Trace plots of the overall log odds ratio based on the prior 𝑈𝑈(0, 2) for 𝜏𝜏 in 
the meta-analysis on hepatitis (Example 4).  
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Figure S45. Trace plots of the overall log odds ratio based on the prior 𝑈𝑈(0, 10) for 𝜏𝜏 in 
the meta-analysis on hepatitis (Example 4).  
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Figure S46. Trace plots of the overall log odds ratio based on the prior 𝑈𝑈(0, 100) for 𝜏𝜏 in 
the meta-analysis on hepatitis (Example 4).  
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Figure S47. Trace plots of the overall log odds ratio based on the prior 𝐻𝐻𝐻𝐻(0, 0.1) for 𝜏𝜏 
in the meta-analysis on hepatitis (Example 4).  
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Figure S48. Trace plots of the overall log odds ratio based on the prior 𝐻𝐻𝐻𝐻(0, 1) for 𝜏𝜏 in 
the meta-analysis on hepatitis (Example 4).  
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Figure S49. Trace plots of the overall log odds ratio based on the prior 𝐻𝐻𝐻𝐻(0, 2) for 𝜏𝜏 in 
the meta-analysis on hepatitis (Example 4).  
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Figure S50. Trace plots of the overall log odds ratio based on the prior 𝐿𝐿𝐿𝐿(−4.06, 1.452) 
for 𝜏𝜏2 in the meta-analysis on hepatitis (Example 4).  
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Figure S51. Trace plots of the overall log odds ratio based on the prior 𝐿𝐿𝐿𝐿(−3.02, 1.852) 
for 𝜏𝜏2 in the meta-analysis on hepatitis (Example 4).  
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Figure S52. Trace plots of the overall log odds ratio based on the prior 𝐿𝐿𝐿𝐿(−2.13, 1.582) 
for 𝜏𝜏2 in the meta-analysis on hepatitis (Example 4).  
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Figure S53. Trace plots of the overall log odds ratio based on the prior 𝐼𝐼𝐼𝐼(0.001, 0.001) 
for 𝜏𝜏2 in the meta-analysis on acute respiratory tract infection (Example 5).  
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Figure S54. Trace plots of the overall log odds ratio based on the prior 𝐼𝐼𝐼𝐼(0.01, 0.01) for 
𝜏𝜏2 in the meta-analysis on acute respiratory tract infection (Example 5).  
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Figure S55. Trace plots of the overall log odds ratio based on the prior 𝐼𝐼𝐼𝐼(0.1, 0.1) for 
𝜏𝜏2 in the meta-analysis on acute respiratory tract infection (Example 5).  
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Figure S56. Trace plots of the overall log odds ratio based on the prior 𝑈𝑈(0, 2) for 𝜏𝜏 in 
the meta-analysis on acute respiratory tract infection (Example 5).  
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Figure S57. Trace plots of the overall log odds ratio based on the prior 𝑈𝑈(0, 10) for 𝜏𝜏 in 
the meta-analysis on acute respiratory tract infection (Example 5).  
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Figure S58. Trace plots of the overall log odds ratio based on the prior 𝑈𝑈(0, 100) for 𝜏𝜏 in 
the meta-analysis on acute respiratory tract infection (Example 5).  



67 
 

 
Figure S59. Trace plots of the overall log odds ratio based on the prior 𝐻𝐻𝐻𝐻(0, 0.1) for 𝜏𝜏 
in the meta-analysis on acute respiratory tract infection (Example 5).  
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Figure S60. Trace plots of the overall log odds ratio based on the prior 𝐻𝐻𝐻𝐻(0, 1) for 𝜏𝜏 in 
the meta-analysis on acute respiratory tract infection (Example 5).  
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Figure S61. Trace plots of the overall log odds ratio based on the prior 𝐻𝐻𝐻𝐻(0, 2) for 𝜏𝜏 in 
the meta-analysis on acute respiratory tract infection (Example 5).  
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Figure S62. Trace plots of the overall log odds ratio based on the prior 𝐿𝐿𝐿𝐿(−4.06, 1.452) 
for 𝜏𝜏2 in the meta-analysis on acute respiratory tract infection (Example 5).  
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Figure S62. Trace plots of the overall log odds ratio based on the prior 𝐿𝐿𝐿𝐿(−3.02, 1.852) 
for 𝜏𝜏2 in the meta-analysis on acute respiratory tract infection (Example 5).  
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Figure S64. Trace plots of the overall log odds ratio based on the prior 𝐿𝐿𝐿𝐿(−2.13, 1.582) 
for 𝜏𝜏2 in the meta-analysis on acute respiratory tract infection (Example 5).  
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E. Posterior density plots 
 

 
Figure S65. Posterior density plots of the overall log odds ratio based on various priors 
in the meta-analysis of stillbirth (Example 1).  
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Figure S66. Posterior density plots of the overall log odds ratio based on various priors 
in the meta-analysis of patient enrollment in clinical trials (Example 2).  
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Figure S67. Posterior density plots of the overall log odds ratio based on various priors 
in the meta-analysis of colitis (Example 3).  
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Figure S68. Posterior density plots of the overall log odds ratio based on various priors 
in the meta-analysis of hepatitis (Example 4).  
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Figure S69. Posterior density plots of the overall log odds ratio based on various priors 
in the meta-analysis of acute respiratory tract infection (Example 5).  
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