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Abstract: Exploring spatio-temporal patterns of disease incidence can help to identify areas of
significantly elevated or decreased risk, providing potential etiologic clues. The study uses the
retrospective analysis of space-time scan statistic to detect the clusters of COVID-19 in mainland
China with a different maximum clustering radius at the family-level based on case dates of onset.
The results show that the detected clusters vary with the clustering radius. Forty-three space-time
clusters were detected with a maximum clustering radius of 100 km and 88 clusters with a maximum
clustering radius of 10 km from 2 December 2019 to 20 June 2020. Using a smaller clustering radius
may identify finer clusters. Hubei has the most clusters regardless of scale. In addition, most of
the clusters were generated in February. That indicates China’s COVID-19 epidemic prevention
and control strategy is effective, and they have successfully prevented the virus from spreading
from Hubei to other provinces over time. Well-developed provinces or cities, which have larger
populations and developed transportation networks, are more likely to generate space-time clusters.
The analysis based on the data of cases from onset may detect the start times of clusters seven days
earlier than similar research based on diagnosis dates. Our analysis of space-time clustering based
on the data of cases on the family-level can be reproduced in other countries that are still seriously
affected by the epidemic such as the USA, India, and Brazil, thus providing them with more precise
signals of clustering.

Keywords: COVID-19; GIS; space-time cluster; retrospective analysis; fine-scale

1. Introduction

A novel coronavirus was first reported in China in December 2019 and was named
“COVID-19” by the World Health Organization (WHO) [1,2].The COVID-19 was discovered
in the capital of Hubei province, a Central China city named Wuhan, where the traffic
system is well developed, and spread rapidly to nearly every part of the world causing
global pandemic [3]. The coronavirus is a large virus family, which is known to cause
Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS),
and other serious diseases [4]. The COVID-19 virus is a new strain of coronavirus that has
never been found in a human body before. The virus is mainly transmitted by droplets
of coughing or sneezing. In view of this mode of transmission, most cases are related to
direct contact, mainly during close contact [5–7].

Int. J. Environ. Res. Public Health 2021, 18, 3583. https://doi.org/10.3390/ijerph18073583 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0003-0394-7972
https://doi.org/10.3390/ijerph18073583
https://doi.org/10.3390/ijerph18073583
https://doi.org/10.3390/ijerph18073583
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18073583
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/18/7/3583?type=check_update&version=2


Int. J. Environ. Res. Public Health 2021, 18, 3583 2 of 17

Geography Information System (GIS) is an effective means to visualize and analyze
spatial characteristics based on epidemic data [8–10]. Combined with spatial statistics, GIS
can be used to help mitigate the epidemic through scientific information, find spatial corre-
lations with other variables, and identify transmission dynamics and clustering [11–14].

Chinese regions differ from one another quite to a great degree, especially in terms
of population density, meteorology, transmission net, industry, and economy [15–20].
Exploring spatio-temporal patterns of disease incidence can help to identify areas of
significantly elevated or decreased risk, providing potential etiologic clues [21,22]. Only
through mastering the temporal and spatial distribution of the epidemic can we achieve
the target of accurate prevention and control. Quantitative research on the spatial and
temporal characteristics of the clusters and the internal diffusion of the virus can not
only comprehensively and profoundly help to understand the spatio-temporal law and
internal mechanism of epidemic transmission, but also reflects the impact of emergency
prevention and control measures for the spread of epidemic and serve as scientific evidence
for policy adjustment.

However, most of the studies focus on the single analysis of spatial or temporal
clustering. Single analysis of spatial clustering cannot reflect the dynamic change of
epidemic situation, and single analysis of temporal aggregation can provide only some
fuzzy information, namely whether there exist clusters in a certain time. However, the
analysis of space-time clustering can not only indicate whether there exist clusters, but
also can detect the spatial location and time of duration. Therefore, the detection results of
space-time clustering are more conducive to the disease control departments taking timely
response measures. If an outbreak causes the incidence of the whole area to increase at the
same time, the temporal clustering method can easily detect the existence of clustering.
However, for an outbreak that started in a local area and then gradually spread to the whole
area, the incidence curve of the whole area will show an upward trend due to the increase
in number of cases in the local area, so the clusters will be detected by single temporal
clustering with a lag. The warning results of space-time clustering are more accurate and
timelier due to the full use of the temporal and spatial information in the data. It is of great
importance for early warning and prevention of future outbreaks [23–25].

Currently, epidemiologists pay more attention to the identifying of space-time clusters
on a small scale, such as communities, counties, or provinces, and there are very few
research works on large-scale analysis of space-time clustering, especially at the national
scale [26] Even where there is, due to the availability of data, many studies are conducted
with counties or provinces as the smallest unit [27,28]. In fact, it is very important to
analyze the clustering of an epidemic on a national scale at the unit of family-level because
it is of great significance for the development of accurate prevention, control, and work
resumption policy at the national level.

Although we can roughly observe the clustering areas of COVID-19according to the
existing epidemic map, the results of clusters number, clustering sizes, and time of duration
obtained by different clustering methods at different spatial and temporal scales are very
different. Currently, most of the national scale epidemic clustering detection is based on
the administrative boundaries of counties, cities, or provinces. However, in the process of
infectious disease transmission, the separation of administrative divisions cannot become
the barrier of disease transmission. If the detection is carried out in isolation with provinces,
cities, and counties as the units, some important clusters may not be detected timely due
to the lack of information in the surrounding areas. Therefore, it is necessary to take the
family as the smallest unit of clusters detection.

2. Materials and Methods
2.1. Materials

The COVID-19 cases are collected from the database of diagnosis and suspected cases
of COVID-19 in mainland China established by a special group of big data analysis, which
is subordinate to the Joint Prevention and Control Mechanism of the State Council. The
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database is generated based on China’s National Infectious Disease Information System
(IDIS), which requires each COVID-19 case to be reported electronically by the respon-
sible doctor as soon as a case has been diagnosed. It includes cases that are reported as
asymptomatic, and data are updated in real time. The dataset includes the records of all
confirmed COVID-19 cases from the onset of the outbreak on 2 December 2019 to 20 June
2020 in Mainland China (excluding Hong Kong, Macao, and Taiwan regions). Each record
contains the information of the patient’s name, gender, ID, date of onset, date of diagno-
sis, administrative code, home address, and so on. The administrative boundary map of
China was acquired from National Geomatics Center of China (http://ngcc.sbsm.gov.cn/,
accessed date: 3 March 2018), which is in the format of shapefile.

The daily number of new cases of COVID-19 in mainland China between 2 December
2019 and 20 June 2020 was the data used for Figure 1. The total number of COVID-19 cases
is 83,377 as of 20 June 2020. There are two peaks in the variation curve. One is on 24 January
2020 with a count of 3756 confirmed cases. The other one is on 1 February 2020 with a count
of 5089 cases. That is because the prevention and control plan of COVID-19 (5th edition)
issued by General Office for National Health Commission of China has added “clinical
diagnosis” in the case diagnosis classification of Hubei province so that the patients can
be diagnosed as early as possible according to the epidemic characteristics of Hubei on 13
February 2020, which led to a surge in new cases near 1 February 2020 as the date of onset.

Figure 1. Daily number of COVID-19 cases in mainland China between 2 December 2019 and 20 June
2020 (dates of onset are used for the statistics).

2.2. Methodology
2.2.1. Spatialization of the Case Date

The traditional method of spatialization for epidemic data is based on the administra-
tive code of the patient’s home on county, city, or province scale. However, this method
cannot catch the exact location of the case. In this paper, we employ the software of
XGeocoding v2 to translate the patient’s home address into coordinate information. In this
way, all the recorded confirmed cases were inputted into Microsoft Excel 2010 (Microsoft,
Redwoods, WA, USA), geo-coded according to their residential addresses and determined
its longitude and latitude coordinates by using ArcGIS10.2 (ESRI Inc., Redlands, CA, USA),
which was assumed to represent the location of case outbreak.

http://ngcc.sbsm.gov.cn/
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2.2.2. Space-Time Cluster Detection

The method employed for cluster detection is space-time scan statistic. Scan statistic is
a method widely used in epidemic clustering analysis. It can effectively detect the increase
of local time and/or spatial incidence of cases, and test whether the increase is caused by
random variation. It can not only detect whether there is clustering in a certain area, but
also accurately locate the clustering.

Space-time scan statistics is an extension of spatial scan statistics put forward by
Kulldorf, professor of Harvard Medical School in 1997 [29–31]. It adds the time dimension
to the original spatial scanning statistics so that the scanning statistics can detect the
clustering in time and space at the same time. Therefore, compared with the circular
window of the spatial scanning statistics, its scanning window is also correspondingly
changed into a cylinder, where the bottom of the cylinder corresponds to the spatial range,
while the height corresponds to a certain length of time segment. Because the size and
position of the cylinder scanning window are constantly changing, the space-time scan
statistics can be used for the time and place of epidemic onset. The size of the point and its
scale are analyzed in depth, so as to realize the early identification of epidemic outbreak.

The specific detection process of Space-time Scan Statistic can be divided into four
steps. Firstly, select a random spatial point in the study area as the center of the bottom
surface of the cylinder scanning window. Then, they gradually increase the radius and
height of the bottom surface of the cylinder scanning window. The continuous change
of the bottom area of the cylinder corresponds to the change of the geographical area
covered by the scanning window, and the continuous change of the height of the cylinder
corresponds to the change of the bottom area until reaching the maximum space and time
limit of the scan window. All positions of the cylinder scan window in the study area repeat
the same scanning process. For each scan window, the expected incidence can be calculated
according to the actual number of cases and population. Thirdly, the expected incidence
can be calculated according to the number of cases in the scan window and outside the
scan window. The log likelihood of the test statistics can be constructed from the actual
and expected incidence Ratio; LLR (Log Likelihood Ratio) is used to evaluate the abnormal
degree of the number of cases in the log likelihood ratio scanning window. It is necessary
to select the window with the largest log likelihood ratio as the window with the highest
abnormal degree of the number of cases will produce a large number of scanning windows.
Finally, use the method of Monte Carlo simulation to evaluate the statistical significance of
the window.

The retrospective analyses of space-time permutation is employed as the probability
model of clustering detection. Its principle is as follows.

First of all, assume that the number of infections in an area z during d days is Czd,
which corresponds to a scanning cylinder. Then, the total number of infections C in the
whole study area during all time segments can be expressed as the following function.

C = ∑
z

∑
d

Czd (1)

Thus, the number of infections per day in each region µzd can be described as:

µzd =

(∑
z

Czd)(∑
d

Czd)

C
(2)

Therefore, we can calculate the expected number of infections µA per scanning window
A according to the number of infections of each unit µzd.

µA = ∑
(z,d)∈A

µzd (3)
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If the observed number of infections in cylinder A is CA, then CA obeys the hyper-
geometric distribution of mean µA. The probability function of CA can be calculated
as:

P(CA) =

(
∑

z∈A
Czd

CA

) C− ∑
z∈A

Czd

∑
d∈A

Czd − CA


(

C
∑

d∈A
Czd

) (4)

When ∑
z∈A

Czd and ∑
d∈A

Czd are very small relative to the total number of infections C,

CA approximately obeys the Poisson distribution of mean µA. Based on this approximation,
the generalized likelihood ratio (GLR) is used to measure whether the number of infections
in cylinder A is abnormal.

In this paper, we show how information about the location and spatial extent of
such events can be estimated from the spatial and temporal array of all calls by using the
space-time permutation scan statistic.

GLR =

{
CA
µA

}CA
{

C− CA
C− µA

}C−CA

(5)

The probability that a cluster will form by chance is assigned using Monte Carlo
hypothesis testing by employing the likelihood of the statistic in question. For this, the
time stamps of data points are shuffled and the statistic is calculated again. The process is
then repeated 999 times.

The conventional techniques of space-time scan statistic commonly used the admin-
istrative boundary such as province, city, and county to be the minimum spatial unit of
detection and use the regional center coordinate as all the cases location, which outbreak
in this region [27,28].However, the separation of administrative divisions may become
the barrier of disease transmission, because some important clusters may not be detected
timely due to the lack of information in the surrounding areas if use the provinces, cities,
and counties as the minimum unit of the detection. Our method employed the locations of
the patients’ community or family to be the basic statistic unit by translating the patients’
home addresses to coordinate in order to detect the space-time clusters in finer scale.

3. Results

All 83,377 of the COVID-19 new cases in mainland China between 2 December 2019
and 20 June 2020 are geocoded and spatialized. The spatial distribution of COVID-19 cases
are shown in Figure 2. The COVID-19 cases are distributed throughout all the provinces of
China. No province is immune. Most of the cases are located in Hubei province, where
Wuhan is its provincial capital. Tibet has only one case, which is the least of any province
in China.
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Figure 2. The spatial distribution of COVID-19 in mainland China between 2 December 2019 and 20
June 2020 (Taiwan, Hang Kong and Macau not included).

All the geo-coded cases were inputted into the model retrospective analyses of space-
time permutation using the software of SatScan V9.6 (Department of Population Medicine,
Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA).
The space-time permutation scan statistic employed in the study utilizes millions of over-
lapping cylinders to define the scanning window, each being a possible candidate for an
outbreak. It can use different parameter settings of the maximum scan cylinders radius
and height to consider the spatio-temporal independence of the clusters. When the out-
break location distance of two cases exceeds the maximum scanning radius or the interval
time of them exceeds the scanning height, they are considered to be independent, and
will not be detected in the same cluster. In this study, we set the maximum cluster size
of the spatial window to a circle with a 100 km radius. The maximum temporal cluster
size is seven days. The time precision is one day. Table 1 summarizes the characteristics
of the statistically significant space-time clusters of COVID-19 at the family-level with a
maximum spatial scanning window size of 100km in mainland China. Figure 3 illustrates
the distribution of all the corresponding space-time clusters. According to the statistics, 43
clusters were detected with a p-value less than 0.05, in which 10 clusters were identified
in Hubei province and 4 clusters were in Hebei province. Inner Mongolia and Shandong
province had three clusters in each. Heilongjiang, Gansu, Sichuan, Liaoning, Guangdong,
Fujian, and Zhejiang province had two clusters in each. Tianjin, Jilin, Jiangxi, Shaanxi,
Guizhou, Anhui, Chungking, Shanghai, and Shanxi province had one cluster in each. All
the clusters were detected in the central or eastern provinces. No cluster was detected in
the western provinces.

The earliest space-time cluster was identified in Zhejiang province from 15–21 January
2020 with a radius of 88.1 km. The earliest cluster in Hubei province was detected from
19–25 January with a radius of 97.1 km. The third province, autonomous region, or
municipality directly under the central government that shows a cluster appear is in Inner
Mongolia from 2–4 February 2020 with a radius of 7.9 km. Jiangxi and Anhui are the
adjacent provinces of Hubei and detected clusters separately from 2–3 February 2020.
There were nine clusters detected in Zhejiang, Chongking, Hebei, Hubei, Shandong with a
radius of 0 km. This means the cases of the cluster are located in the same communities,
and it is likely to be a cluster of the same family. The last cluster was identified in Hebei
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province from 10–16 June 2020 with a radius of 68.2 km. The observed number of cases
is 171, while the expected one is 1.1. In fact, the last cluster is caused by Beijing’s new
confirmed COVID-19 cases related to Xinfadi market. Cases in Hebei province account for
only a small proportion. With the maximum spatial scanning window size set as 100 km,
this cluster contains both areas in Beijing and Hebei, and the cluster center is located in
Hebei.

Table 1. Characteristics of the statistically significant space-time clusters of COVID-19 at the family-level with a maximum
spatial scanning window size of 100 km in mainland China from 2 December 2019 to 20 June 2020 (clusters where all cases
happen in the same geolocation are reported as having 0 km radii).

SN Cluster Center Radius
(km) Start Date End Date Temporal

Size (d) p-Value Observed Expected

1 Zhejiang 88.1 15 January 2020 21 January 2020 7 <0.001 130 60.35
2 Hubei 97.1 19 January 2020 25 January 2020 7 <0.001 933 674.71
3 Hubei 100.0 22 January 2020 28 January 2020 7 <0.001 487 341.09
4 Hubei 83.2 23 January 2020 27 January 2020 5 <0.001 353 237.13
5 Hubei 99.7 28 January 2020 31 January 2020 4 <0.001 670 378.61
6 Inner Mongolia 7.9 2 February 2020 4 February 2020 3 <0.001 30 4.33
7 Jiangxi 43.7 2 February 2020 5 February 2020 4 0.005 33 8.62
8 Anhui 39.4 3 February 2020 7 February 2020 5 <0.001 64 22.88
9 Hubei 26.8 3 February 2020 8 February 2020 6 0.002 64 25.17
10 Guizhou 85.2 6 February 2020 7 February 2020 2 0.001 20 2.94
11 Hebei 24.8 8 February 2020 14 February 2020 7 0.001 24 4.19
12 Zhejiang 0.0 9 February 2020 11 February 2020 3 <0.001 20 1.94
13 Chungking 0.0 11 February 2020 11 February 2020 1 <0.001 7 0.10
14 Hebei 0.0 11 February 2020 11 February 2020 1 0.040 7 0.21
15 Hubei 86.5 14 February 2020 20 February 2020 7 <0.001 712 369.38
16 Sichuan 22.5 15 February 2020 19 February 2020 5 <0.001 25 2.94
17 Hubei 0.0 17 February 2020 18 February 2020 2 <0.001 311 11.86
18 Hubei 0.0 19 February 2020 21 February 2020 3 <0.001 85 1.18
19 Shandong 0.0 19 February 2020 19 February 2020 1 <0.001 122 1.25
20 Hubei 0.0 24 February 2020 28 February 2020 5 <0.001 25 0.29
21 Hubei 0.0 25 February 2020 25 February 2020 1 <0.001 23 0.13
22 Hebei 17.6 25 February 2020 27 February 2020 3 0.009 5 0.04
23 Gansu 6.3 4 March 2020 10 March 2020 7 <0.001 35 0.14
24 Guangdong 65.5 12 March 2020 18 March 2020 7 <0.001 14 1.04
25 Gansu 73.7 13 March 2020 14 March 2020 2 <0.001 5 0.01
26 Fujian 57.6 18 March 2020 24 March 2020 7 <0.001 24 0.46
27 Shanghai 53.6 19 March 2020 25 March 2020 7 <0.001 103 2.64
28 Fujian 30.9 19 March 2020 25 March 2020 7 <0.001 12 0.28
29 Guangdong 29.2 21 March 2020 27 March 2020 7 <0.001 51 2.05
30 Shandong 76.4 22 March 2020 24 March 2020 3 0.007 7 0.16
31 Tianjin 41.5 23 March 2020 29 March 2020 7 <0.001 27 0.43
32 Heilongjiang 7.3 25 March 2020 31 March 2020 7 <0.001 33 0.24
33 Liaoning 8.8 27 March 2020 31 March 2020 5 <0.001 7 0.03
34 Shanxi 92.2 1 April 2020 7 April 2020 7 <0.001 44 0.43
35 Heilongjiang 20.0 5 April 2020 11 April 2020 7 <0.001 59 0.35
36 Inner Mongolia 82.8 7 April 2020 13 April 2020 7 <0.001 238 2.11
37 Inner Mongolia 72.2 14 April 2020 20 April 2020 7 <0.001 32 0.32
38 Shaanxi 3.6 21 April 2020 27 April 2020 7 <0.001 33 0.05
39 Liaoning 5.4 8 May 2020 12 May 2020 5 0.003 3 <0.01
40 Jilin 60.0 9 May 2020 15 May 2020 7 <0.001 23 0.03
41 Sichuan 0.8 28 May 2020 1 June 2020 5 <0.001 11 0.01
42 Shandong 0.0 29 May 2020 29 May 2020 1 <0.001 3 <0.01
43 Hebei 68.2 10 June 2020 16 June 2020 7 <0.001 171 1.10
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Figure 3. Space-time clusters of COVID-19 at the family-level with a maximum spatial scanning
window size of 100 km in mainland China from 2 December 2019 to 20 June 2020.

In order to discover finer-scale clusters, we set the maximum cluster size of the spatial
window to a circle with a 10 km radius. The maximum temporal cluster size and time
precision are still set as seven days and one day. Table 2 summarizes the characteristics
of the statistically significant space-time clusters of COVID-19 at the family-level with a
maximum spatial scanning window size of 10 km in mainland China. Figure 4 illustrates
the distribution of all the corresponding space-time clusters. As statistics, 88 clusters
were detected with a p-value less than 0.05. The clusters are distributed in 19 provinces,
autonomous regions, or municipalities directly under the central government, as shown
in Table 3. The earliest clusters are identified in Hubei from 20–25 January, and the last
one is in Beijing from 14–20 June. There are 25 clusters located in Hubei province and 8
clusters were in Shanghai city. Each of Beijing, Guangdong, and Inner Mongolia has seven
clusters. These areas including Shanghai, Beijing, and Guangdong are China’s top-three
well-developed provinces or cities. They have developed transportation network with
Hubei province especially Wuhan city. The large population of trade and migrant flow
lead to the virus transmitting from Hubei to these areas more quickly than other provinces.

Table 2. Characteristics of the statistically significant space-time clusters of COVID-19 at the family-level with a maximum
spatial scanning window size of 10 km in mainland China from 2 December 2019 to 20 June 2020 (clusters where all cases
happen in the same geo-location are reported as having 0 km radii).

SN Cluster
Center Latitude Longitude Radius Start Time End Time Temporal

Size (d) p-Value Observed Expected

1 Hubei 30.9662 113.9902 8.3 20 January
2020

25 January
2020 6 0.005 163 95.3

2 Hubei 31.6174 113.8294 9.4 25 January
2020

31 January
2020 7 0 132 64.8

3 Hubei 32.0496 112.1332 5.2 26 January
2020

31 January
2020 6 0 188 101.4

4 Hubei 31.6887 113.4446 8.9 29 January
2020

31 January
2020 3 0 153 54.1

5 Hubei 30.7732 112.6343 7.7 3 February
2020

7 February
2020 5 0 36 8.3
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Table 2. Cont.

SN Cluster
Center Latitude Longitude Radius Start Time End Time Temporal

Size (d) p-Value Observed Expected

6 Hubei 30.4947 113.5432 2.8 3 February
2020

4 February
2020 2 0 23 3.4

7 Hubei 30.6153 114.4855 10 6 February
2020

10 February
2020 5 0 564 378.2

8 Hubei 30.674 114.6567 7.4 7 February
2020

12 February
2020 6 0.005 45 14.8

9 Sichuan 31.0197 101.1555 1.2 8 February
2020

8 February
2020 1 0 12 0.5

10 Zhejiang 29.0978 119.0652 0 9 February
2020

11 February
2020 3 0 20 1.9

11 Hubei 30.6753 114.3019 8.6 11 February
2020

16 February
2020 6 0 1255 806.7

12 Hubei 30.807 114.7813 9.9 11 February
2020

17 February
2020 7 0 78 30.1

13 Chungking 29.6338 106.3409 0 11 February
2020

11 February
2020 1 0 7 0.1

14 Hebei 41.7145 114.7829 0 11 February
2020

11 February
2020 1 0.027 7 0.2

15 Hubei 30.3781 114.4275 8.5 12 February
2020

17 February
2020 6 0 69 19.9

16 Hubei 31.0169 114.2449 7 12 February
2020

17 February
2020 6 0 31 6.5

17 Guangdong 22.1659 113.2833 8.1 13 February
2020

13 February
2020 1 0.002 8 0.2

18 Inner
Mongolia 44.9239 127.177 0 14 February

2020
15 February

2020 2 0.011 7 0.2

19 Hubei 30.3177 114.0855 10 14 February
2020

19 February
2020 6 0 98 33.4

20 Hubei 30.9102 114.5958 9.6 14 February
2020

20 February
2020 7 0 50 12.3

21 Hubei 30.4973 114.89 9.2 14 February
2020

14 February
2020 1 0 45 10.7

22 Hubei 30.504 113.9726 9.8 16 February
2020

21 February
2020 7 0 52 15.8

23 Hubei 30.5878 114.2588 0 17 February
2020

18 February
2020 2 0 311 11.9

24 Hubei 30.6244 114.1162 8.5 18 February
2020

24 February
2020 7 0 172 64.4

25 Hubei 31.2838 114.2869 4.6 18 February
2020

18 February
2020 1 0 19 0.3

26 Hubei 30.8288 114.317 8.9 18 February
2020

24 February
2020 7 0 66 15.4

27 Hubei 31.1484 114.3455 9.8 18 February
2020

21 February
2020 4 0 21 2

28 Hubei 30.4977 114.3479 0 19 February
2020

21 February
2020 3 0 85 1.2

29 Shandong 35.5204 116.5637 0 19 February
2020

19 February
2020 1 0 122 1.2

30 Inner
Mongolia 46.7797 131.8194 7.9 2 February

2020
4 February

2020 3 0 30 4.3

31 Anhui 32.9803 117.3249 7.9 2 February
2020

7 February
2020 6 0.022 56 22.1

32 Beijing 39.9807 116.3938 0 22 February
2020

26 February
2020 5 0 10 0.1

33 Hubei 30.515 114.0829 0.8 22 February
2020

27 February
2020 6 0 24 0.4

34 Hubei 30.554 114.3122 0 24 February
2020

28 February
2020 5 0 25 0.3
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Table 2. Cont.

SN Cluster
Center Latitude Longitude Radius Start Time End Time Temporal

Size (d) p-Value Observed Expected

35 Hubei 30.4946 114.2993 0 25 February
2020

25 February
2020 1 0 23 0.1

36 Hebei 41.4276 114.9566 2.2 25 February
2020

25 February
2020 1 0.018 4 0

37 Gansu 36.0742 103.7648 6.3 4 March
2020

10 March
2020 7 0 35 0.1

38 Guangdong 22.5322 113.9951 6.9 8 March
2020

12 March
2020 5 0 8 0.1

39 Guangdong 22.9355 113.4241 9.5 8 March
2020

14 March
2020 7 0 7 0.1

40 Shanghai 31.1188 121.6558 9.9 10 March
2020

13 March
2020 4 0 10 0.1

41 Gansu 35.6057 103.2067 0 13 March
2020

14 March
2020 2 0 5 0

42 Beijing 40.0674 116.5792 8.1 14 March
2020

20 March
2020 7 0 61 0.4

43 Beijing 40.1854 116.3973 0.4 15 March
2020

21 March
2020 7 0 17 0.1

44 Fujian 24.5038 118.0441 7.1 15 March
2020

21 March
2020 7 0 9 0.1

45 Fujian 24.724 118.7083 7.8 16 March
2020

21 March
2020 6 0 9 0

46 Shanghai 31.3344 121.6008 9.9 18 March
2020

24 March
2020 7 0.011 7 0.2

47 Tianjin 39.0995 117.2372 9.7 19 March
2020

25 March
2020 7 0 16 0.3

48 Shanghai 31.2015 121.4778 9.4 19 March
2020

25 March
2020 7 0 50 0.9

49 Fujian 26.0801 119.3766 8.4 19 March
2020

25 March
2020 7 0.022 6 0.1

50 Shanghai 31.0122 121.4134 0.1 20 March
2020

25 March
2020 6 0.001 5 0

51 Sichuan 30.5619 103.9225 3.1 21 March
2020

26 March
2020 6 0 5 0

52 Guangdong 23.1856 113.3322 9.3 21 March
2020

27 March
2020 7 0 32 0.8

53 Heilongjiang 40.9065 111.9804 0 22 March
2020

22 March
2020 1 0 6 0

54 Zhejiang 28.0965 120.3317 8.7 22 March
2020

27 March
2020 6 0.013 5 0

55 Tianjin 39.0041 117.7655 0 23 March
2020

28 March
2020 6 0 8 0

56 Heilongjiang 40.8446 111.7303 7.3 25 March
2020

31 March
2020 7 0 33 0.2

57 Hebei 39.3359 117.8391 2.8 27 March
2020

29 March
2020 3 0 4 0

58 Liaoning 38.9591 121.6183 8.8 27 March
2020

31 March
2020 5 0 7 0

59 Beijing 40.092 116.3751 3.4 28 March
2020

29 March
2020 2 0 5 0

60 Hebei 38.0112 114.5161 0 28 March
2020 3 April 2020 7 0 6 0

61 Guangdong 23.4414 113.3113 8.4 29 March
2020 4 April 2020 7 0.022 5 0

62 Shanxi 37.7926 112.5359 8.1 31 March
2020 6 April 2020 7 0 29 0.2

63 Shanghai 30.8993 121.165 0 1 April 2020 4 April 2020 4 0.003 4 0



Int. J. Environ. Res. Public Health 2021, 18, 3583 11 of 17

Table 2. Cont.

SN Cluster
Center Latitude Longitude Radius Start Time End Time Temporal

Size (d) p-Value Observed Expected

64 Shanghai 31.0648 121.7437 0 3 April 2020 9 April 2020 7 0 31 0.3
65 Shanghai 31.2074 121.7187 0 3 April 2020 9 April 2020 7 0 16 0.1

66 Heilongjiang 49.48 117.6884 0 4 April 2020 10 April
2020 7 0 30 0.1

67 Heilongjiang 49.6056 117.4898 2.9 5 April 2020 11 April
2020 7 0 31 0.2

68 Inner
Mongolia 44.6009 129.6144 2.2 6 April 2020 12 April

2020 7 0 25 0.2

69 Shanxi 37.9272 112.5666 3 7 April 2020 7 April 2020 1 0 12 0

70 Inner
Mongolia 44.4032 131.1704 5.1 7 April 2020 13 April

2020 7 0 208 1.6

71 Inner
Mongolia 44.9222 130.5428 4.9 13 April

2020
17 April

2020 5 0 9 0

72 Inner
Mongolia 45.7625 126.6578 6.2 14 April

2020
20 April

2020 7 0 28 0.2

73 Tianjin 39.1706 117.3875 1.3 16 April
2020

16 April
2020 1 0.003 3 0

74 Shaanxi 34.2054 108.9867 3.6 21 April
2020

27 April
2020 7 0 33 0.1

75 Inner
Mongolia 45.2905 130.2865 3.3 25 April

2020
30 April

2020 6 0 4 0

76 Jilin 44.4123 126.9714 1.6 5 May 2020 11 May 2020 7 0 11 0
77 Liaoning 41.7046 123.4162 5.4 8 May 2020 12 May 2020 5 0.002 3 0
78 Jilin 43.8046 126.532 8 10 May 2020 15 May 2020 6 0 17 0
79 Shanghai 31.339 121.4488 0 13 May 2020 13 May 2020 1 0 4 0
80 Sichuan 30.6483 104.0582 0.8 28 May 2020 1 June 2020 5 0 11 0
81 Shandong 35.1304 119.2983 0 29 May 2020 29 May 2020 1 0 3 0
82 Guangdong 23.0409 113.2594 6.5 31 May 2020 6 June 2020 7 0 5 0
83 Sichuan 30.5971 104.1595 5.9 3 June 2020 8 June 2020 6 0 5 0
84 Guangdong 23.1688 113.4528 1.5 8 June 2020 13 June 2020 6 0 10 0
85 Beijing 39.7775 116.1731 6.4 9 June 2020 12 June 2020 4 0.024 4 0
86 Hebei 38.8718 115.9767 9.3 10 June 2020 15 June 2020 6 0 7 0
87 Beijing 39.7966 116.3498 9.9 11 June 2020 17 June 2020 7 0 144 0.7
88 Beijing 39.9131 116.1772 8.4 14 June 2020 20 June 2020 7 0 13 0.1

Figure 4. Space-time clusters of COVID-19 at the family-level with a maximum spatial scanning
window size of 10 km in mainland China from 2 December 2019 to 20 June 2020.
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Table 3. Number of clusters in each province at the family-level with a maximum spatial scanning
window size of 10 km.

Province Name Number of Clusters

Anhui 1
Beijing 7

ChongKing 1
Fujian 3
Gansu 1

Guangdong 7
Hebei 5

Heilongjiang 4
Hubei 25

Inner Mongolia 7
Jilin 2

Liaoning 2
Shaanxi 1

Shandong 2
Shanghai 8

Shanxi 2
Sichuan 4
Tianjin 3

Zhejiang 2

In order to discover more detailed characteristics of the clusters, we enlarged the
clustering maps of both Wuhan and Beijing city, which are reported as the original epidemic
areas, respectively, in the first and second waves of COVID-19 in China as shown in
Figures 5 and 6.There are 16 clusters identified in Wuhan city. All the clusters are detected
in February 2020. These clusters are more uniformly distributed in all areas of Wuhan,
regardless of whether in urban or suburban areas. In order to help to understand the
detail spatio-temporal structure of the clusters, we colored the points of cases by the cluster
according to the time from the first case reported in China. The early clusters formed in
the east areas of the Yangtze River during 6–10 February 2020, which is about 10 weeks
after the first case was reported, although the early cases were reported in Hankou district,
which is in the west of the Yangtze River, as shown in Figure 5.

Although there are seven clusters identified in Beijing city, the clustering times range
from February 2020 to June 2020. The clusters in Beijing are mainly distributed in the
urban area. Similarly, we colored the points of cases by the cluster, and found the clusters
can be divided into two stages. The first stage includes four clusters from February to
March that are located in the northern urban area of Beijing, which is 12 to 17 weeks from
the first reported case. These clusters belong to the first wave of COVID-19 in China,
which originated in Wuhan. The second stage includes three clusters of outbreak in June
2020 and is located in the southern urban area of Beijing, which is 27 to 29 weeks from
the first reported case. These clusters belong to the second wave of COVID-19 in China,
which may have originated in Xinfadi market, which is a large wholesale market that sells
fruits, vegetables, and meat located in Beijing’s Fengtai District and has been caught in the
spotlight after new COVID-19 clusters were linked to it in June 2020, as shown in Figure 6.
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Figure 5. Zoomed space-time clusters of COVID-19 at the family-level with a maximum spatial
scanning window size of 10 km in Wuhancity from 2 December 2019 to 20 June 2020.

Figure 6. Zoomed space-time clusters of COVID-19 at the family-level with a maximum spatial
scanning window size of 10 km in Beijing city from 2 December 2019 to 20 June 2020.
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4. Discussion

The study employed the retrospective analyses of space-time permutation to detect
the space-time clusters of COVID-19 in mainland China on a fine scale. Based on the
data obtained from China’s National Infectious Disease Information System (IDIS), we
geo-coded each case and translate the patient’s home address into coordinate information
in order to catch the exact location of the case. Former studies on space-time clusters
detecting of COVID-19 in a county are mainly at the county-level [27,28]. It is the first time
for a study to identify the clusters at the family-level in a large country.

Epidemic diagnosis time can scientifically evaluate and comprehensively reflect the
emergency level and physical therapy capacity of a national or local health department.
Most studies use COVID-19 case data based on diagnosis time from Johns Hopkins Univer-
sity’s Center for Systems Science and Engineering GIS dashboard to do the retrospective
analysis. Although these data are updated daily, the statistics of daily cases are based on the
diagnosis date. In fact, the average epidemic diagnosis time for COVID-19 outbreak from
early onset to diagnosis is 7.35 days in mainland China [32]. It means the detected clusters
start and end times will delay 7.35 days using the same space-time scan model based on
the diagnosis dates rather than dates of onset. Therefore, it is more scientific and effective
to use the case dates of onset when detecting the space-time clusters of an epidemic.

In order to account for the characteristics of the disease in a small region and to
improve the probability of detecting smaller clusters, we set the maximum cluster size of
the space-time clusters to two fine scales: One is 100 km and another one is 10 km. On the
maximum cluster size of 100 km, we have detected 43 clusters during the study period, 10
of which were located in Hubei province. However, to our surprise, the earliest space-time
cluster was identified in Zhejiang province from 15–21 January 2020 with a radius of 88.1
km. This may be explained by there being a large flow of population between Hubei and
Zhejiang, especially in late January, with many infected students and migrant workers
returning to Zhejiang from Wuhan before the closure of the city on 23 January. It also
verified one table result in the former study that identifies a significant number of people
who entered Wenzhou from Hubei Province, which explains why this city was the first
outside the epicenter where confinement was adopted. While the maximum cluster size
of 10 km, 88 clusters were detected by space-time scan statistic. The detected clusters are
finer than that of 100 km. We have compared the characteristic of the clusters in the city
of Wuhan with Beijing. The clusters identified in Wuhan are all detected in February and
they are uniformly distributed in all areas of Wuhan, regardless of whether in urban or
suburban areas. However, the seven detected clusters in Beijing are mainly distributed in
the urban area. Four clusters ranging from February to March are located in the northern
urban area. The other three clusters from the outbreak in June are located in southern urban
area of Beijing, which may have originated in Xinfadi market and belong to the second
wave of COVID-19 in China.

Regardless of whether it isa maximum clustering size of 100 km or 10 km scale, the
province where the most clusters are located is Hubei, and the month with the most
clusters is February, which indicates that China’s COVID-19 epidemic prevention and
control strategy is effective and has successfully prevented the virus from spreading from
Hubei to other provinces and lasting too long. When the first wave of the pandemic hit, the
virus-testing capabilities were not strong, as it was unbeknownst to us at the time. However,
China did a satisfactory job in data tracking, patient tracking, community quarantine, and
the early warning from front-line fever clinics, which ensured there were no loopholes
left. China was under great pressure when Wuhan city was closed on 23 January 2019.
That strategy relieved the situation that the epidemic might transmit into the other areas of
China through the Spring Festival holiday and formed more clusters.

There are also some limitations in the study. Firstly, because we use the home coordi-
nate as the unit of space-time scan statistic, no population data at the home address-level
can be collected in China. Therefore, we can only select the space-time permutation rather
than the Poisson model in the discrete scan statistics. Secondly, the clusters detected are
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circular. In fact, changes in geography and cultural practices will in many cases invalidate
this. Non-circular clusters may help to improve the detection. Thirdly, it is difficult to
present all the fine space-time clusters in such a large country as China, especially when
there are 88 clusters with a maximum cluster size of 10 km to be exhibited on the map.
Finally, because of the change of statistical standards, previously only the number of people
who had been diagnosed by accounting instruments were counted as confirmed cases.
However, from 12 February 2020, clinical diagnosis cases recognized by doctors were also
included in the statistics of confirmed cases, thus causing a sharp increase of cases and
clusters in early February for a week from early onset to diagnosis. Lastly, using the conven-
tional space-time scan statistic to detect the fine-scale space-time clusters at the family-level
in whole China takes a lot of time. Combined with some of the optimization algorithms
such as the particle swarm optimization [33], the probabilistic cellular automata model [34]
and the coupled spring forced bat algorithm [35] may help improve the efficiency of the
method.

5. Conclusions

In this study, we use the retrospective analysis of space-time scan statistic to detect
clusters of COVID-19 in mainland China on two fine scales: With maximum clustering radii
of 100 km and 10 km. Different from the other study, our analysis is based on case dates of
onset, which are collected from the database of diagnosis and suspected cases of COVID-19
in mainland China established by the special group of big data analysis, which is subordi-
nate to the Joint Prevention and Control Mechanism of the State Council. In addition, it
is the first time to identify the space-time clusters of COVID-19 in a large country at the
family-level. The results show that the detected clusters vary with the maximum clustering
radius. Forty-three space-time clusters were detected with a maximum clustering radius
of 100 km and 88 clusters with a maximum clustering radius of 10 km from 2 December
2019 to 20 June 2020. Using a small clustering radius may identify finer clusters. Hubei
has the most clusters regardless of scale. Most of the clusters were generated in February.
That indicates China’s COVID-19 epidemic prevention and control strategy is effective
and has successfully prevented the virus from spreading from Hubei to other provinces
and lasting too long. Well-developed provinces or cities that have large populations and
developed transportation network are more likely to generate space-time clusters. The
analysis based on the data of cases of onset may detect the start times of clusters seven
days earlier than the same research that is based on the diagnosis dates. Our analysis
of space-time clustering based on the data of cases of onset on the family-level can be
reproduced in other countries that are still seriously affected by the epidemic, such as the
USA, India, and Brazil, providing them with more precise signals of clustering.
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