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Abstract: According to the United Nations report, climate disasters have intensified in the past
20 years, and China has the largest number of disasters in the world. So the study of meteorological
disaster governance capacities is critically important for China. We designed a meteorological disaster
governance capacity evaluation system to calculate the evaluation values by using the generalized
λ-Shapley Choquet integral, a method that considers the interaction between indicators. We used
various official statistical yearbooks and internal data of China Meteorological Administration (CMA)
and weight intervals set by meteorologists for each level of indicators to calculate the evaluation
values of meteorological disaster governance capacity in mainland provinces, from 2014 to 2018. We
compared them with other methods (entropy weight method, Technique for Order Preference by
Similarity to an Ideal Solution (TOPSIS), and Analytic Hierarchy Process (AHP)), and the results
showed that the results calculated by the designed interaction method provided in this paper are
more stable and differentiated. The results show that provincial meteorological disaster governance
capacities in Mainland China are characterized by uneven development and a pro-slight polarization
phenomenon. This leads to policy recommendations: Provinces should strengthen the construction
of meteorological disaster information; provinces with outstanding capacity must strengthen the
experience sharing with provinces with lower capacity.

Keywords: meteorological disaster governance capacity; multi-attribute evaluation; Choquet integral;
generalized Shapley function

1. Introduction

In recent years, drastic climate change and various meteorological disasters have
occurred frequently, seriously threatening the survival and development of human beings
all over the world. China is located in the middle of two major natural disaster belts globally,
namely the Northern Hemisphere Mid-Latitude Disaster Belt and the Pacific Rim Disaster
Belt. It is one of the most severely impacted countries in the world by natural disasters.
Meteorological disasters account for more than 70% of all-natural disasters occurring in
China [1]. The economic losses brought by meteorological disasters account for about 2/3
of the financial losses from natural disasters [2]. China’s annual average direct economic
loss caused by meteorological disasters has increased from less than 100 billion yuan in the
1950s to more than 300 billion yuan in the 21st century [3], such as direct economic losses
of 503.29 billion yuan in 2016 [4], and financial losses caused by meteorological disasters
of up to 318 billion yuan in 2019 [5]. Meanwhile, China’s natural disaster prevention and
control capacity are generally weak. It is urgent and essential to improve the governance
capacity of natural disasters, primarily meteorological disasters, which is a significant issue
related to people’s safety, lives, properties, and national security.
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Many scholars have now made many studies on meteorological hazards in China.
Most of these papers have accumulated in the areas of individual meteorological hazards,
such as floods and droughts [6–8], typhoons [9], and other more homogeneous meteorolog-
ical hazards, or in terms of individual geographical divisions, such as the Yangtze River
Delta [10,11], the Maritime Silk Road [9], and Southern China [12]. There are certainly
some excellent review articles that finely sort out the meteorological hazard situation in
China [13] and explore research methods [14]. However, these studies are often based on
one or a few meteorological hazards or limited to a particular geographical area. In contrast,
very few studies have been conducted on meteorological disaster governance capacity
from Mainland China or have explored the concept of governance. Nowadays, China is
paying more and more attention to improving and strengthening meteorological disaster
governance capacity, and higher requirements have been put forward in disaster emergency
response [15]. Exploring the meteorological disaster governance capacity in Mainland
China from a national perspective is the theoretical starting point of this paper and the
starting point of this paper in collaboration with the China Meteorological Administration.
Meteorological disaster governance capacity is a comprehensive capacity and we often use
multi-attribute decision-making (MADM) in studying it with these attributes. Therefore,
in this paper, we establish the evaluation model of meteorological disaster governance
capability, considering the interaction of attributes to study the meteorological disaster
governance capability.

This paper establishes a meteorological disaster governance capacity assessment in-
dex system, in which the data are obtained from significant yearbooks (“China Statistical
Yearbook”, “Yearbook of Meteorological Disasters in China”, “China Civil Affair Statistical
Yearbook—Statistics of China Social Services”, and “China Agriculture Yearbook”) and the
data of meteorological modernization indicators given by the Bureau of Meteorology. The
setting of exact weights is not easy, and therefore, in this paper, the interval assignment of
weights is adopted, and we set weight intervals for each indicator based on experts’ experi-
ence in each meteorological field. The fuzzy multi-attribute decision evaluation method
was then used to derive each provincial area’s evaluation results [16,17]. However, the
simple weighted average cannot capture the indicators’ redundancy and synergy [18,19].
When evaluating meteorological disaster governance capacity using fuzzy multi-attribute
decision-making methods, it cannot merely be assumed that the attributes are independent
of each other. Many scholars have agreed that the assumption of independence between
attributes is inappropriate in decision-making problems [20–22]. Therefore, this paper
proposes a multi-attribute evaluation method that considers the interaction between at-
tributes to evaluate each province’s meteorological disaster governance capacity. Moreover,
this paper considers the case that the attribute weights are not entirely known, uses Shap-
ley integral and λ-fuzzy measure to reduce the difficulty of solving the fuzzy measure
problem, and finally uses the Choquet integral to derive the final evaluation value [23,24].
Fuzzy measures give up additivity compared to traditional probability measures, so they
have a more comprehensive range of monotonicity and are more consistent with human
inference when solving problems [25–27]. The Choquet integral proposed by the French
scientist Choquet can deal well with the issue of correlations existing between attributes in
comprehensive evaluation problems [28] and is widely used in the field of multi-attribute
decision-making [29,30].

In Section 2, we construct a meteorological disaster governance capacity indicator
system. In Section 3, we build a meteorological disaster governance model, considering the
interaction of attributes. In Section 4, the indicator data and the weight intervals given by
the experts’ experience are brought into the model to calculate the results, and the results
are compared with entropy weight method, Technique for Order Preference by Similarity to
an Ideal Solution (TOPSIS), and Analytic Hierarchy Process (AHP) methods. In Section 5,
we analyze the results and propose corresponding policy recommendations.
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2. Meteorological Disaster Governance Capacity and Index System Construction
2.1. Analysis of Meteorological Disaster Governance Capacity

Meteorological disasters have the characteristics of general natural disasters, i.e., the
damage caused varies according to the amount and speed of material and energy move-
ment; the topography of the region and other factors can cause the amount and intensity of
material and energy movement to change in different locations in the area; various disaster-
bearing bodies have additional resilience to different materials and energy, and the length
of the disaster process is related to the level of post-disaster recovery. According to the
essential elements of catastrophe, we can summarize the key to reduce disaster losses. That
is, disaster prevention infrastructure, construction planning or construction input based
on careful consideration of disaster prediction, regional topography, and characteristics
of disaster-bearing bodies for several years in the future; rapid and accurate disaster risk
zoning based on sudden meteorological disaster prediction, topography, and other factors;
precise disaster risk-reduction suggestions; and establishment of the development-oriented
disaster recovery system.

In recent years, China has actively pushed governments at all levels to improve their
disaster governance capabilities. In his report to the 19th Party Congress, General Secretary
Xi Jinping proposed to “enhance disaster prevention, mitigation and relief capabilities”,
and has repeatedly given essential instructions on “scientific and accurate forecasting”,
“implementing responsibilities, improving systems, integrating resources, and coordinating
efforts to comprehensively improve national comprehensive disaster prevention, mitigation
and relief capabilities”. In 2017, the China Meteorological Administration (CMA) issued
the “Opinions of CMA on Strengthening Meteorological Disaster Prevention, Mitigation
and Relief”, which proposed “two persistent and three transformations” as the goal of
disaster governance [31].

2.2. Rating Index System Construction

In this paper, based on the characteristics and specificity of meteorological disasters,
we consider the whole process of disaster governance [32,33] in conjunction with the
key of disaster loss and divide meteorological disaster governance capabilities into three
major categories of capabilities from the time and resource dimensions of emergency
management (including the three processes of efficient prevention, timely response, and
orderly recovery), as well as from the new requirements put forward by the state for disaster
governance. These three categories of capabilities are then divided into ten governance
capabilities, refined into 25 specific indicators, as shown in Table 1.

Next, we give a detailed explanation of Table 1. We divide the description into three
parts by the primary indicator:

(1) Legal construction capacity (c1) mainly focuses on constructing laws and regula-
tions related to meteorological disasters in each local area, including the annual promulga-
tion of standards about meteorological disaster defense, the coverage rate of meteorological
disaster defense planning and the completeness rate of meteorological disaster emergency
plans. The construction capacity of defense mechanisms mainly covers constructing mech-
anisms related to meteorological disasters, including the total number of comprehensive
disaster reduction demonstration zones and the number of new ones added annually and
the utilization of large-scale climate resource development projects. Currently, the capac-
ity of defense engineering construction only has a three-level indicator of disaster relief
reserve units’ total storage capacity. All three capabilities are construction and planning
to cope with possible future meteorological disasters, summarized as law and building
defense capability.
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Table 1. Meteorological disaster governance capacity evaluation index system.

Primary Indicator Secondary Indicator Tertiary Indicator

Law and building defense capacity c1

Legal system building capacity c11

Legal local meteorological disaster standard
cumulative count c111

Meteorological disaster defense planning provincial,
municipal, and county coverage rate—city c112

Completion rate of meteorological disaster
emergency plans c113

Defense mechanism construction capacity c12 Number of comprehensive disaster reduction
demonstration communities c121

Disaster defense engineering construction
capacity c13 Total storage capacity c131

Information-processing capacity c2

meteorological disaster monitoring
capacity c21

Number of operational weather radar observation
stations (pcs) c211

Number of automatic weather stations (one) c212

Number of operational stations for
lightning-positioning monitoring (pcs) c213

Satellite data receiving stations (pcs) c214

Meteorological disaster prediction capacity c22

Storm warning accuracy rate c221

Early warning of strong convective weather c222

The accuracy rate of 24-h clear rain forecast c223

Early warning information transmission
capacity c23

The coverage rate of social units of meteorological
warning information c231

The coverage rate of meteorological early warning
information broadcast media c232

The coverage rate of meteorological early warning
information social institutions c233

Disaster-related information acquisition
capacity c24

Two-way sharing rate of meteorological disaster
information departments c241

The rate of meteorological information personnel in
place in villages (communities) c242

Township (street) meteorological coordinators in
place c243

Disaster relief capability c3

Social resource mobilization capacity c31
Insurance premium income c311

Welfare Lottery Fund Expenditure c312

Proactive disaster risk reduction capacity c32
Available rockets c321

Available anti-aircraft guns c322

Disaster relief security capacity c33

Number of beds in medical institutions per 10,000
people c331

Local financial expenditure on medical and health
care c332

Local general public service expenditures per capita
(10,000 yuan) c333

(2) The disaster detection capability (c2) focuses on the completeness and density of
monitoring facilities, mainly examining the number of weather radar observation stations,
the number of automatic weather stations, the number of lightning location detection
stations and the number of satellite-data-receiving stations in each region, which are the
four tertiary indicators. The disaster prediction capability targets the prediction aspect,
mainly examining the accuracy of these monitoring facilities on various types of weather
conditions, including the accuracy of 24-h precise rain forecasts, the advance of strong
convective weather warnings, and the accuracy of heavy rainfall warnings, which are three
tertiary indicators. The ability to transmit early warning information is mainly examined
in the three tertiary hands of weather warning information in social units, information
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broadcasting media and social institutions. The disaster-related information acquisition
capability focuses on the three three-level indicators: the two-way sharing rate of the
meteorological information department and the deployment rate of village (community)
township (street) meteorological informants and coordinators. These four capabilities are
also essential elements of the meteorological modernization index system, which can be
used to obtain and process information in meteorological disaster governance, the basis
for accurate prediction of meteorological disasters before the disasters, and the basis for
precise decision-making before tragedies occur.

(3) The remaining three secondary indicators mainly reflect timely response in dis-
asters and post-disaster relief. The social resource mobilization capacity includes two
tertiary indicators of insurance premium income and welfare lottery fund expenditure.
The capacity of proactive disaster risk reduction mainly examines the reserve of meteo-
rological disaster mitigation equipment, including two three-level indicators of available
anti-aircraft guns and available rockets. Disaster relief capacity examines the medical and
health services, medical and health expenditures, and the provision of shelters that the
government and society can provide after a disaster. The secondary indicators of disaster
relief security capacity include three tertiary indicators: the number of institutional beds
per 10,000 people, local financial expenditure on health care and local per capita (10,000
yuan) expenditure on general public services. These three capacities can be summarized as
disaster relief capacity (c3).

These ten indicators cover the pre-disaster, disaster and post-disaster phases of me-
teorological disasters and focus on the government’s pre-disaster meteorological disaster
prevention capability and information technology construction, which are the requirements
of the current national goal of “two insistences and three changes” in disaster governance.
Meanwhile, the meteorological disaster governance capability is divided into three essential
items: creating the evaluation index system. Then the three important primary indicators
are refined into ten secondary indicators. The ten secondary indicators are then refined
into 25 tertiary indicators, following the requirements of scientific, feasibility, hierarchy,
flexibility, and dynamism of the index system.

3. Models and Computational Methods
3.1. Fuzzy Measure and Choquet Integral

Definition 1. A fuzzy measure on a finite set −N is a real-valued set function defined on the
powerset of N, i.e., µ : P(N)→ [0, 1] , satisfying the following:

(1) µ(∅) = 0, µ(N) = 1;
(2) If A, B ∈ P(N) and A ⊆ B, µ(A) ≤ µ(B).

Definition 2. Let X = {x1, x2, . . . , xn}, f be a non-negative real-valued function defined on X,
and µ be a fuzzy measure on N. The Choquet integral of the function f is defined as follows:

Cµ( f (x1), f (x2), . . . , f (xn)) =
n

∑
i=1

f (xi)(µ(Ai)− µ(Ai+1)) (1)

where f (x1) ≤ f (x2) ≤ . . . ≤ f (xn) , Ai = {xi . . . xn} , An+1 = ∅.

Since the fuzzy measure is defined on the power set of a set, the number of variables
in the fuzzy measure increases exponentially with the cardinality of the set. To reduce
the complexity of solving and computing fuzzy measures while reflecting the interaction
between evaluation indicators, Sugeno [34] proposed the λ-fuzzy measure.

Definition 3. For any A, B ⊆ N, A ∩ B = ∅. If the fuzzy measure gλ satisfies the following
conditions:

gλ(A ∪ B) = gλ(A) + gλ(B) + λgλ(A)gλ(B) (2)

where λ ∈ (−1, ∞), and then gλ is said to be a λ-fuzzy measure.
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From Definition 3, if λ > 0, gλ is said to be a superadditive measure, indicating some
complementary interaction between coalitions A and B. If −1 < λ < 0, then gλ is said to be a
subadditive measure, indicating redundant interactions between coalition A and coalition B.

gλ(A) =

{ 1
λ (∏i∈A[1 + λgλ(i)]− 1), λ 6= 0
∑i∈A gλ(i), λ = 0

(3)

From (µ, N) = 1, the value of λ can be determined by Equation (5), so when the value
of gλ(i) is given, the value of λ can be calculated. From Equation (4), for a set N with n
elements, only n values need to be determined to obtain the fuzzy measure of any subset
of the set N. If ∑n

i∈A gλ(i) = 1, then λ = 0.

λ + 1 = ∏
i∈N

[1 + λgλ(i)] (4)

3.1.1. Determination of Attribute Weights

Since we cannot give each indicator a substantial weight, we get only partial weights
more often than not. In this paper, we consider the interaction between the attributes by
utilizing the Shapley value to build a mathematical model and then find the optimal fuzzy
measure on the set of attributes. The Shapley function is one of the most critical allocation
indicators in cooperative games, denoted as follows:

φi(µ) = ∑
S ⊆ N\i

(n− s− 1)!s!
n!

(µ(S ∪ i)− µ(S)) , ∀ i ∈ N (5)

3.1.2. Generalized λ-Shapley Choquet Integral

The Shapley value can be applied to multi-attribute decision-making to express the
importance coefficient of each indicator [35], which is defined by the equation:

ϕsh
s (µ, N) = ∑

T ⊆ N\S

(n− s− t)!t!
(n− s + 1)!

(µ(S ∪ T)− µ(T)), ∀S ⊆ N (6)

where µ is a fuzzy measure on N.
We consider the importance and relevance of the combination of elements globally

according to the generalized λ-Shapley Choquet integral defined by Meng [21]. The λ-fuzzy
measure on the set N is first given, denoted as:

ϕsh
s (gλ, N) = ∑

T ⊆ N\S

(n− s− t)!t!
(n− s + 1)!

(gλ(S ∪ T)− gλ(T)), ∀S ⊆ N (7)

From Equation (4), if S = {i}, then we have the following:

ϕsh
i (gλ, N) = ∑

S ⊆ N\i

(n− s− 1)!s!
n!

gλ(i)∏
j∈S

[1 + λgλ(j)], ∀i ⊆ N (8)

Combining with Definition 2, we define the arithmetic generalized λ-Shapley Choquet
integral formula [23] as follows:

Cϕsh(gλ ,N)

(
f
(

x(1)
)

, f
(

x(2)
)

, . . . , f
(

x(n)
))

= ⊕n
i=1

(
ϕsh

A(i)
(gλ, N)− ϕsh

A(i+1)
(gλ, N)

)
f
(

x(i)
)

(9)

where f (x1) ≤ f (x2) ≤ . . . ≤ f (xn), A(i) =
{

x(i) . . . x(n)
}

, A(n+1) = ∅.
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3.2. Meteorological Disaster Governance Capability Evaluation Method Based on λ-Shapley
Choquet Integral

The multi-attribute evaluation method used in this paper considers the interaction
between attributes. When the weights of the attributes are unknown or partially known,
the weights of the attributes are determined first, and then the capability evaluation values
are calculated.

The optimal fuzzy measurement model on the attribute set C is established as follows:

min
m

∑
i=1

n

∑
j=1

dijΦcj(v, C)

s.t.


v(C) = 1
v(S) ≤ v(T), ∀S, T ⊆ C, s.t. S ⊆ T
v
(
cj
)
∈ Ucj , v

(
cj
)
≥ 0 , ∀cj ∈ C

(10)

where Φcj(v, C) is the Shapley value of cj, v is a fuzzy measure on C, and Ucj is the range
of values of cj.

The dij in the model is replaced by the original TOPSIS value in this paper. The
calculation steps of the original TOPSIS value are rough, as follows:

(1) Normalize the original data. All the data in this paper are benefit-based indicators,
so they do not need to be normalized. For cost-based indicators, they need to be normalized.

(2) Use the maximum value of each indicator as to the positive ideal solution Z+
j and

the minimum value as the negative ideal solution Z−j , and then find the distance D+
i and

D−i for each evaluation value and positive ideal solution and negative ideal solution.

D+
i =

√
∑m

j=1

(
Z+

j − Zij

)2
, D−i =

√
∑m

j=1

(
Z−j − Zij

)2

(3) Calculate the integrated value of the ith evaluation object: dij =
D+

i
D+

i +D−i
.

Because the original TOPSIS does not need to add weights when calculating positive
and negative ideal solutions, this paper uses the Shapley value Φcj(v, C) as weights in the
Model (10).

The steps for evaluating the meteorological disaster governance capacity of provinces
in Mainland China with incomplete weight information and interactions between 2014–2018
are given below:

Step 1: Using the optimal fuzzy measure linear programming Model (10) to find the
fuzzy measure of the sub-criteria level, the fuzzy measure v

(
cjk

)
is expressed by g

(
cjk

)
and brought into Equation (4) to solve for λ. Then, the λ-fuzzy measure is calculated
according to Equation (3), and the generalized Shapley value of the tertiary index is found
using Equations (7) and (8).

Step 2: The generalized λ-Shapley Choquet integral formula is used to calculate the
third-level indicators’ data to obtain the second-level indicators’ evaluation value.

Step 3: As in Step 1, the generalized Shapley values of the second-level indicators are
calculated by bringing the second-level indicators into the Model (10), and then, as in Step
2, the first-level indicator values are calculated.

Step 4: Similar to Step 3, the comprehensive evaluation value is calculated.
Step 5: Finally, repeat Steps 1–4 to calculate each province’s comprehensive evaluation

value from 2014 to 2018.

4. Evaluation Value Calculation and Method Comparison
4.1. Evaluation of Provincial Meteorological Disaster Governance Capacity in Mainland China

In this paper’s indicator system, the data of the three-level indicators are obtained from
significant yearbooks (“China Statistical Yearbook”, “Yearbook of Meteorological Disasters
in China”, “China Civil Affair Statistical Yearbook—Statistics of China Social Services”, and
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“China Agriculture Yearbook”) and the data of meteorological modernization indicators
given by the Bureau of Meteorology. Based on the interval weights drawn up by experts
for each level of indicators, the provinces’ meteorological disaster governance capacity in
Mainland China from 2014 to 2018 was then evaluated by the model presented in Section 3.
The meteorological experts’ weight intervals for the indicators given for each level are
shown in Table 2.

Table 2. Weight intervals of indicators at each level.

Primary
Indicator

Weight
Range

Secondary
Indicator

Weight
Range

Tertiary
Indicator

Weight
Range

c1 [0.3, 0.5]
c11 [0.3, 0.6]

c111 [0.5, 0.7]

c112 [0.25, 0.4]

c113 [0.25, 0.4]

c12 [0.5, 0.7] c121 [0.5, 1]

c13 [0.2, 0.3] c131 [0.5, 1]

c2 [0.4, 0.6]

c21 [0.3, 0.5]

c211 [0.25, 0.4]

c212 [0.25, 0.4]

c213 [0.25, 0.4]

c214 [0.25, 0.4]

c22 [0.4, 0.6]

c221 [0.4, 0.6]

c222 [0.4, 0.6]

c223 [0.2, 0.4]

c23 [0.1, 0.2]

c231 [0.3, 0.5]

c232 [0.4, 0.5]

c233 [0.3, 0.5]

c24 [0.2, 0.3]

c241 [0.25, 0.4]

c242 [0.5, 0.7]

c243 [0.25, 0.4]

c3 [0.3, 0.5]

c31 [0.5, 0.7]
c311 [0.5, 0.7]

c312 [0.5, 0.7]

c32 [0.3, 0.6]
c321 [0.5, 0.7]

c322 [0.5, 0.7]

c33 [0.2, 0.5]
c331 [0.25, 0.4]

c332 [0.5, 0.7]

c333 [0.25, 0.4]

Using the data of 2014 as an example, perform the calculation as follows:
Step 1: Following Model (10), the optimal fuzzy measure linear programming model

on the attribute set c11 is obtained, as shown below:

min 2.730(v(c111)− v(c112, c113))− 3.504(v(c112)− v(c111, c113)) + 0.773(v(c113)− v(c111, c112)) + 18.085

s.t.


v(c111, c112, c113) = 1

v(S) ≤ v(T), ∀S, T ⊆ {c111, c112, c113}, S ⊆ T
v(c11) = [0.5, 0.7]

v(c12) = [0.25, 0.4]
v(c13) = [0.25, 0.4]
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By solving the model, we get the following:

v(c111) = v(c111, c113) = 0.5,

v(c112) = 0.4, v(c113) = 0.25,

v(c111, c112) = v(c112, c113) = v(c111, c112, c113) = 1.

The fuzzy measure v
(

cjkl

)
is expressed by g

(
cjkl

)
and brought into Equation (4) to

solve for λ = −0.369. Calculating the λ-fuzzy measure according to Equation (3) yields.

g(c111) = 0.5, g(c112) = 0.4, g(c113) = 0.25,

g(c111, c112) = 0.826, g(c111, c113) = 0.704,

g(c112, c113) = 0.613, g(c111, c112, c113) = 1.

From Equations (7) and (8), we have the following:

ϕsh
∅ (gλ, C) = 0, ϕsh

c111
(gλ, C) = 0.442, ϕsh

c112
(gλ, C) = 0.347,

ϕsh
c113

(gλ, C) = 0.211, ϕsh
{c111,c112}(gλ, C) = 0.788, ϕsh

{c111,c113}(gλ, C) = 0.652,

ϕsh
{c112,c113}(gλ, C) = 0.557, ϕsh

{c111,c112,c113}(gλ, C) = 1.

Similarly, the generalized Shapley values of the remaining tertiary indicators can be
obtained, as shown in Table 3.

Table 3. Generalized Shapley values for the three levels of indicators.

c211 c212 c213 c214 c221 c222 c223

v(c) 0.4 0.25 0.25 0.25 0.6 0.4 0.2
ϕsh

c (gλ, C) 0.354 0.215 0.282 0.215 0.517 0.327 0.156

c231 c232 c233 c241 c242 c253 c311

v(c) 0.5 0.4 0.3 0.25 0.5 0.4 0.5
ϕsh

c (gλ, C) 0.425 0.332 0.243 0.211 0.442 0.347 0.4

c312 c321 c322 c331 c332 c333

v(c) 0.7 0.7 0.5 0.4 0.5 0.25
ϕsh

c (gλ, C) 0.6 0.6 0.4 0.347 0.442 0.211

Step 2: Rearrange the evaluation values from smallest to largest to get cBeijing
111 ≺

cBeijing
113 ≺ cBeijing

112 , and use the generalized λ-Shapley Choquet integral Equation (9) to get

the composite value of Beijing’s attribute c11 as FBeijing
C11

= 0.0304. Similarly, we can get

the comprehensive evaluation values of Beijing’s attributes c12 and c13 as FBeijing
C12

= 0.0380,

FBeijing
C13

= 0.0062. The same applies to other secondary indicators, which are brought into
Model (10), to obtain the secondary indicator evaluation values, as shown in Table 4.
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Table 4. Evaluation values of secondary indicators in 2014.

Province c11 c12 c13 c21 c22 c23 c24 c31 c32 c33

Beijing 0.030 0.038 0.006 0.006 0.036 0.040 0.035 0.055 0.010 0.031
Tianjin 0.023 0.014 0.003 0.004 0.030 0.033 0.033 0.011 0.010 0.019
Hebei 0.031 0.042 0.025 0.033 0.102 0.030 0.030 0.040 0.033 0.039
Shanxi 0.040 0.015 0.008 0.031 0.029 0.023 0.030 0.018 0.022 0.026

Inner Mongolia 0.023 0.023 0.012 0.038 0.030 0.040 0.034 0.020 0.055 0.027
Liaoning 0.079 0.043 0.044 0.034 0.075 0.037 0.035 0.031 0.031 0.035

Jilin 0.026 0.027 0.040 0.022 0.032 0.029 0.026 0.010 0.034 0.025
Heilongjiang 0.032 0.030 0.032 0.037 0.028 0.034 0.030 0.019 0.096 0.027

Shanghai 0.026 0.021 0.001 0.011 0.032 0.040 0.035 0.037 0.005 0.027
Jiangsu 0.029 0.061 0.004 0.029 0.030 0.035 0.036 0.064 0.008 0.056

Zhejiang 0.029 0.084 0.053 0.052 0.031 0.034 0.027 0.061 0.000 0.040
Anhui 0.045 0.031 0.039 0.031 0.032 0.035 0.033 0.035 0.012 0.035
Fujian 0.044 0.032 0.024 0.036 0.030 0.032 0.035 0.027 0.000 0.028
Jiangxi 0.027 0.040 0.036 0.033 0.029 0.026 0.028 0.029 0.068 0.031

Shandong 0.032 0.061 0.026 0.040 0.031 0.035 0.031 0.066 0.004 0.054
Henan 0.030 0.037 0.050 0.057 0.056 0.030 0.034 0.047 0.052 0.053
Hubei 0.052 0.051 0.149 0.057 0.031 0.035 0.031 0.039 0.030 0.042
Hunan 0.035 0.038 0.059 0.042 0.033 0.035 0.033 0.036 0.029 0.041

Guangdong 0.023 0.084 0.053 0.034 0.035 0.036 0.035 0.083 0.006 0.067
Guangxi 0.034 0.019 0.080 0.038 0.028 0.033 0.035 0.021 0.018 0.033
Hainan 0.029 0.009 0.013 0.013 0.039 0.036 0.029 0.005 0.002 0.015

Chongqing 0.046 0.019 0.014 0.021 0.028 0.032 0.031 0.027 0.019 0.028
Sichuan 0.069 0.050 0.043 0.062 0.028 0.031 0.032 0.048 0.062 0.049
Guizhou 0.040 0.023 0.052 0.042 0.029 0.026 0.033 0.016 0.056 0.034
Yunnan 0.024 0.015 0.045 0.058 0.029 0.040 0.025 0.024 0.107 0.033

Tibet 0.019 0.000 0.004 0.028 0.028 0.027 0.035 0.013 0.029 0.016
Shaanxi 0.055 0.023 0.010 0.040 0.052 0.039 0.032 0.025 0.047 0.032
Gansu 0.045 0.023 0.013 0.035 0.031 0.027 0.034 0.016 0.037 0.026

Qinghai 0.027 0.005 0.038 0.025 0.028 0.043 0.027 0.006 0.025 0.018
Ningxia 0.030 0.008 0.003 0.014 0.031 0.031 0.034 0.004 0.014 0.015
Xinjiang 0.033 0.034 0.022 0.068 0.052 0.032 0.025 0.028 0.142 0.030

Step 3: The data in Table 4 are brought into Model (10) to obtain the secondary
indicators’ generalized Shapley values, as shown in Table 5.

Table 5. Generalized Shapley values of secondary indicators.

c11 c12 c13 c21 c22 c23 c24 c31 c32 c33

v(c) 0.3 0.7 0.2 0.5 0.4 0.2 0.3 0.5 0.3 0.5
ϕsh

c (gλ, C) 0.234 0.614 0.152 0.371 0.287 0.218 0.208 0.390 0.210 0.390

Step 4: Similarly, the integrated evaluation value for 2014 was found, and the results
are shown in Table 6.

Table 6. Primary indicator evaluation values and comprehensive evaluation value (CEV) for 2014.

Province c1 c2 c3 CEV

Beijing 0.027 0.030 0.033 0.029
Tianjin 0.014 0.026 0.013 0.017
Hebei 0.031 0.053 0.037 0.038
Shanxi 0.019 0.028 0.022 0.022

Inner Mongolia 0.020 0.035 0.034 0.028
Liaoning 0.050 0.046 0.032 0.041

Jilin 0.029 0.026 0.022 0.025
Heilongjiang 0.031 0.032 0.049 0.036

Shanghai 0.018 0.030 0.022 0.023
Jiangsu 0.031 0.032 0.041 0.034

Zhejiang 0.056 0.037 0.034 0.041
Anhui 0.038 0.032 0.026 0.031
Fujian 0.033 0.032 0.017 0.026
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Table 6. Cont.

Province c1 c2 c3 CEV

Jiangxi 0.035 0.028 0.043 0.034
Shandong 0.036 0.034 0.040 0.035

Henan 0.039 0.045 0.050 0.043
Hubei 0.073 0.040 0.036 0.048
Hunan 0.042 0.035 0.034 0.036

Guangdong 0.056 0.034 0.050 0.045
Guangxi 0.041 0.033 0.024 0.031
Hainan 0.015 0.029 0.008 0.016

Chongqing 0.023 0.028 0.024 0.024
Sichuan 0.052 0.040 0.052 0.046
Guizhou 0.038 0.033 0.034 0.034
Yunnan 0.026 0.040 0.057 0.039

Tibet 0.006 0.029 0.019 0.017
Shaanxi 0.027 0.040 0.034 0.032
Gansu 0.025 0.031 0.026 0.027

Qinghai 0.025 0.032 0.015 0.023
Ningxia 0.012 0.028 0.010 0.016
Xinjiang 0.029 0.046 0.070 0.046

Step 5: Repeat Steps 1–4 to calculate the comprehensive evaluation value (CEV) for
each province, from 2014–2018, as shown in Table 7.

Table 7. CEV by province, 2014–2018.

Province 2014 2015 2016 2017 2018

Beijing 0.029 0.027 0.028 0.027 0.027
Tianjin 0.017 0.018 0.017 0.016 0.017
Hebei 0.038 0.033 0.032 0.031 0.031
Shanxi 0.022 0.023 0.022 0.022 0.026
Inner

Mongolia 0.028 0.030 0.033 0.030 0.026

Liaoning 0.041 0.040 0.034 0.033 0.031
Jilin 0.025 0.027 0.031 0.031 0.030

Heilongjiang 0.036 0.035 0.035 0.036 0.034
Shanghai 0.023 0.024 0.028 0.025 0.022
Jiangsu 0.034 0.034 0.034 0.036 0.039

Zhejiang 0.041 0.042 0.041 0.042 0.043
Anhui 0.031 0.031 0.031 0.031 0.029
Fujian 0.026 0.027 0.029 0.029 0.027
Jiangxi 0.034 0.029 0.029 0.030 0.029

Shandong 0.035 0.042 0.040 0.041 0.041
Henan 0.043 0.041 0.037 0.040 0.040
Hubei 0.048 0.046 0.044 0.043 0.047
Hunan 0.036 0.039 0.038 0.039 0.036

Guangdong 0.045 0.045 0.051 0.049 0.052
Guangxi 0.031 0.031 0.031 0.032 0.035
Hainan 0.016 0.015 0.016 0.016 0.017

Chongqing 0.024 0.027 0.024 0.024 0.024
Sichuan 0.046 0.046 0.045 0.043 0.041
Guizhou 0.034 0.033 0.035 0.036 0.036
Yunnan 0.039 0.041 0.043 0.044 0.047

Tibet 0.017 0.016 0.016 0.017 0.017
Shaanxi 0.032 0.031 0.032 0.033 0.033
Gansu 0.027 0.027 0.029 0.029 0.030

Qinghai 0.023 0.023 0.025 0.028 0.026
Ningxia 0.016 0.017 0.016 0.016 0.017
Xinjiang 0.046 0.045 0.044 0.042 0.040
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From Table 7, we can see that the comprehensive evaluation value (CEV) of each
province does not change much from 2014 to 2018. So, in order to make the graph look
more concise and easy to understand, we take the average of the comprehensive evaluation
value from 2014 to 2018 and continue to make the graph, as shown in Figure 1.

Figure 1. Average CEV by province.

From Figure 1, we can see that the average comprehensive evaluation value of
31 provinces in Mainland China from 2014 to 2018 can be divided into four levels, which
are greater than or equal to 0.04 (first level, red histogram), between 0.03 and 0.04 (second
level, yellow histogram), between 0.02 and 0.03 (third level, green histogram), between 0.01
and 0.02 (fourth rank, blue histogram). There are 7 provinces in the first rank (Zhejiang,
Henan, Hubei, Guangdong, Sichuan, Yunnan, and Xinjiang); 11 provinces in the second
rank (Hebei, Liaoning, Heilongjiang, Jiangsu, Anhui, Jiangxi, Shandong, Hunan, Guangxi,
Guizhou, and Shaanxi); 9 provinces in the third rank (Beijing, Shanxi, Inner Mongolia, Jilin,
Shanghai, Fujian, Chongqing, Gansu, and Qinghai); and 4 provinces in the fourth rank
(Tianjin, Hainan, Tibet and Ningxia). This result is basically in line with the reality that the
top-ranked provinces are experienced in disaster management capacity.

4.2. Comparison of Methods

The model used in this paper has some similarity with the entropy weight TOPSIS
model, so the same data are used and brought into the entropy-weighted TOPSIS model.
Moreover, the superiority of the model developed in this paper considering the interaction
is discussed in terms of both the maximum ordinal difference and the weights.

4.2.1. Comparison with Entropy Method TOPSIS Model

Using the same data, we calculated the weights of the 25 indicators from 2014 to 2018
using the entropy weight method as shown in Table 8.

From Table 8 we can obviously see that the weights of some indicators, such as
c233, c321, and c322, are so small as to be almost negligible. The entropy weight method
obtains the weights entirely from the dispersion degree of objective data, i.e., the size of
entropy. While entropy is used to measure uncertainty, the greater the dispersion of the
indicator (the greater the uncertainty) the greater the entropy value, indicating that the
more information the indicator value provides, the greater the weight of the indicator
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should be. Moreover, some indicators do not vary much nationally, so the weights are not
high, but the importance of these indicators may be high. For example, some indicators
under information-processing capacity (c2) have a very low weight close to 0, but in real
life, they are not less important.

Table 8. Weights of entropy weight method.

Tertiary Indicators 2014 2015 2016 2017 2018

c111 0.1236 0.1311 0.1169 0.1051 0.0682
c112 0.0100 0.0078 0.0074 0.0039 0.0038
c113 0.0001 0.0001 0.0000 0.0000 0.0000
c121 0.0474 0.0519 0.0548 0.0599 0.0606
c131 0.0854 0.0894 0.1049 0.1036 0.1212
c211 0.0644 0.0688 0.0819 0.0876 0.0861
c212 0.0390 0.0433 0.0475 0.0470 0.0417
c213 0.0291 0.0326 0.0362 0.0395 0.0267
c214 0.0445 0.0471 0.0515 0.0559 0.0628
c221 0.0539 0.0614 0.0672 0.0729 0.0768
c222 0.0433 0.0477 0.0522 0.0566 0.0430
c223 0.0000 0.0054 0.0022 0.0015 0.0018
c231 0.0983 0.0939 0.0208 0.0029 0.0391
c232 0.0002 0.0004 0.0003 0.0004 0.0005
c233 0.0001 0.0003 0.0001 0.0000 0.0000
c241 0.0064 0.0012 0.0006 0.0005 0.0001
c242 0.0251 0.0113 0.0040 0.0037 0.0029
c243 0.1278 0.1304 0.1528 0.1540 0.1518
c311 0.1206 0.0952 0.1088 0.1043 0.1094
c312 0.0106 0.0044 0.0028 0.0021 0.0011
c321 0.0001 0.0001 0.0000 0.0000 0.0000
c322 0.0003 0.0000 0.0002 0.0002 0.0000
c331 0.0020 0.0020 0.0023 0.0026 0.0029
c332 0.0337 0.0368 0.0432 0.0478 0.0488
c333 0.0341 0.0375 0.0413 0.0481 0.0506

We then calculated the meteorological disaster governance capacity of 31 provinces,
from 2014 to 2018, by using the entropy-weight method to calculate the weights by our-
selves, combined with the TOPSIS model. We then took the average and made the graph
shown in Figure 2:

Figure 2. Average CEV by province, entropy weight TOPSIS model.
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As can be seen from Figure 2, there are some differences from the results in Figure 1
because of the influence of the weight defined by the entropy weight method. The main
difference lies in the low scores of the four municipalities, which are all classified in
the lowest rank, which obviously lacks rationality. The reason for this phenomenon is
that the entropy weight method calculates the weights according to the variability of the
information contained in each indicator in order to determine the indicator weights, relying
only on the discrete degree of the data itself. Entropy is used to measure uncertainty, and the
greater the dispersion of the indicator (the greater the uncertainty), the greater the entropy
value, indicating that the more information the indicator value provides, the greater the
weight of the indicator should be. Moreover, some indicators do not vary much nationally,
so the weight is not high, but the importance of these indicators may be high, such as some
indicators under information-processing capacity. Moreover, four municipalities directly
under the central government, such as Beijing, have higher population density, so they will
have lower values for some indicators involving per capita, so they yield poorer results.
Therefore, in both models, the composite scores of the four municipalities are not high,
and the model considering interaction performs better than the entropy weight TOPSIS
method. However, how to estimate the meteorological disaster governance capacity of the
four municipalities directly under the central government more accurately is a work that
needs to be accomplished in the future.

Analytic Hierarchy Process (AHP) is a combined qualitative and quantitative decision
analysis method, by judging the relative importance of each measurement index, and then
obtaining the weight of each index in the decision scheme; entropy weighting method is a
data-based weighting method, while hierarchical analysis method is an empirical weight
method. The method in this paper requires less qualitative judgment than the hierarchical
analysis method (only the experts need to give the weight intervals of each indicator in the
hierarchy) and combines objective data, which has higher operability and is a combined
qualitative and predetermined quantitative method, and uses the generalized λ-Shapley
function to remove the interaction between indicators, and the weights obtained under this
method are also purer.

4.2.2. Comparison of Maximum Sequence Differences

After we calculated the composite evaluation value of 31 provinces from 2014 to
2018, using two methods, the provinces were ranked by the composite value, and then
the difference between the highest and lowest rank of each province was taken as the
maximum ordinal difference, and a histogram was made as shown in Figure 3:

Figure 3. The maximum sequence difference under the two methods.
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From Figure 3, we can see that the results calculated by the entropy weight TOPSIS
method and the results calculated by the evaluation method used in this paper considering
interaction differ in the maximum ordinal difference, especially in the five provinces of
Hebei, Liaoning, Jiangxi, Shandong, Guangxi, and Chongqing, where the difference is
enormous. We know that the larger the ordinal difference is, the less stable it is, and
the improvement of disaster management capacity is a long-term process, and it is more
difficult to have results with such a significant jump as those five that provinces, in contrast,
the calculation results of this paper’s model are more reasonable.

4.2.3. Comparison of Weights

We consider the specificity of the method in this paper: Only the weights of the
first level indicators are extracted, and a comparison is made between the weights of the
first level indicators and the weights derived from the entropy-weight method, as shown
in Table 9.

Table 9. Comparison of the weights of primary indicators.

Year Methods c1 c2 c3

2014
Interaction method 0.304 0.304 0.392

Entropy weight TOPSIS method 0.267 0.312 0.422

2015
Interaction method 0.304 0.304 0.392

Entropy weight TOPSIS method 0.280 0.306 0.414

2016
Interaction method 0.240 0.519 0.240

Entropy weight TOPSIS method 0.284 0.238 0.478

2017
Interaction method 0.240 0.519 0.240

Entropy weight TOPSIS method 0.272 0.236 0.491

2018
Interaction method 0.240 0.519 0.240

Entropy weight TOPSIS method 0.254 0.255 0.491

From Table 9, we can see that the distribution of the weights of the entropy TOPSIS
method is that c3 accounts for more than 40%, and c1 and c2 are similar. Meanwhile, in
the results of the model designed in this paper, the three indicators are almost equally
divided in 2014 and 2015, c2 occupies more than 50% of the weight from 2016 to 2018,
and the remaining part is equally divided by c1 and c3. Moreover, just in 2016, the China
Meteorological Administration proposed in the modernization of meteorology, the goal
of informatization and big data in the future development of meteorology [36], and the
indicator of c2 information-processing capacity has increased in proportion from 2016 is
very reflective of the fact. However, the weight obtained by the entropy weight method in
the c2 indicator is not high, and even in some years, it is at the lowest of the three, which
reflects the superiority of the method in this paper.

5. Conclusion and Policy Recommendations
5.1. Conclusions

In this paper, we devote ourselves to studying meteorological disaster governance
capacity and evaluating the meteorological disaster governance capacity of provinces
in Mainland China, using multi-attribute decision-making. When we assess each local
area’s meteorological disaster governance capacity, we use the generalized λ-Shapley
Choquet integral to eliminate the interaction between attributes. We build an evaluation
model considering the interaction of attributes and then substitute the data and expert
weight intervals to calculate the comprehensive evaluation value of meteorological disaster
governance capacity of Mainland China’s provincial areas from 2014 to 2018. Finally,
the calculation results of this paper and the model are compared with other MADM
models (entropy weight method, Technique for Order Preference by Similarity to an Ideal
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Solution(TOPSIS), and Analytic Hierarchy Process (AHP)). The results of this paper are
more stable and reasonable.

According to Figure 1, the development of meteorological disaster governance capac-
ity is unbalanced among provinces in Mainland China, with few provinces having a strong
capacity and most of them in the middle rank. The top-ranked provinces, especially Guang-
dong, Sichuan, and Hubei, pay special attention to meteorological disaster governance
and information technology construction, which can be seen from these local governments’
official websites. These provinces have mastered the technology of meteorological dis-
aster management and have entered a virtuous cycle. Except for the four municipalities
directly under the central government, the provinces with weaker capacity, which are the
blue provinces in the chart, are Tibet, Ningxia, Hainan, and Tianjin. Except for Tianjin,
the rest of these places are areas in China with harsh natural environmental conditions
and relatively backward economic levels. Understandably, the meteorological disaster
governance capacity is weak. By comparing with some articles of the same type [9,10], this
paper’s conclusions have some similarities. For example, the two provinces of Zhejiang
and Guangzhou are more vital in meteorological disaster management, while Fujian and
Hainan have lower evaluation values. In terms of methodological use, this paper uses the
MADM method to measure the meteorological hazard management capacity of provinces
in Mainland China, which has been used many times in the study of meteorological haz-
ards [14], and this paper also takes into account the interactivity, and the results obtained
are more stable and reasonable than the standard MADM method.

5.2. Policy Recommendations

Based on the findings indicated in the above conclusion, we can make the following
policy recommendations:

(1) Strengthen the informatization of meteorological disaster governance: In 2016,
the China Meteorological Administration proposed informatization and big data in fu-
ture meteorological development in meteorology modernization. The informatization of
meteorological disaster governance is also the consensus of governments worldwide [37].
Modernized meteorological disaster governance requires the support of big data, cloud
computing, and other data-processing technologies. More precise data analysis and pro-
cessing can strengthen meteorological disaster prediction accuracy and monitoring, the
software part of the meteorological disaster management information construction. The
hardware part is that each place should reasonably invest in central weather disaster
monitoring and prediction equipment and the recruitment of relevant high-tech talents.

(2) Experience sharing: As shown in Figure 1, the provinces with high capacity are
getting better and better, and there is a trend of polarization, but this is uneven and
unhealthy. The valuable experience of meteorological disaster governance needs to be
shared, especially by the provinces that perform relatively poorly. China’s meteorological
disaster governance has received considerable attention in recent years, and experience
sharing is needed to improve nationwide. It can be seen from the zoning map that the
provinces with lower and higher scores are relatively unchanged, especially those in
the last echelon. So it is possible to set up key help targets and focus on the provinces
with lower scores. Furthermore, provinces with higher scores in meteorological disaster
governance capacity can be tested and shared with neighboring provinces, which is done
by considering the similarity of natural environment in neighboring provinces.
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