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Abstract: The trend of aging is intensifying and has become a prominent population phenomenon
worldwide. The aging population has an important impact on carbon emissions, but at present, there
is little research on its ecological consequences, especially the relationship with agricultural carbon
emissions. For a long time, China has been dominated by a scattered small-scale peasant economy.
Currently, the aging population also means that the agricultural labor force will gradually become
scarce, and the agricultural production will face reform. This article is intended to find the long-term
impact of aging and mechanization on agricultural carbon emissions and construct a more compre-
hensive policy framework for sustainable development, hoping to contribute to environmental and
ecological protection. The research sample in this article is from 2000 to 2019, covering 30 provinces
(cities, autonomous regions) in China. We adopted methods and models including Fully Modified
General Least Squares (FMOLS), Dynamic General Least Squares (DOLS), Panel Vector Autoregres-
sion (PVAR) model, etc., and used the Granger causality test to determine the causal relationship
between variables. Results show that aging is the Granger cause of agricultural carbon emissions and
agricultural mechanization. Agricultural carbon emissions and agricultural mechanization have a
bidirectional causal relationship. In the short term, agricultural mechanization and aging both have
made a great contribution to carbon dioxide emissions from agricultural production. However, in the
long term, the impact of aging on agricultural mechanization is significantly negative. Therefore, it is
generally beneficial to improve the environmental problems of agricultural production. Our research
focuses on the latest background of population trends and global climate issues and finally provides
suggestions and a theoretical basis for the formulation of government agricultural policies according
to the research conclusions.

Keywords: aging; agricultural mechanization; agricultural carbon emissions; PVAR

1. Introduction

Carbon dioxide emissions and aging are the two major challenges facing the develop-
ment of human society at present. Climate deterioration due to greenhouse gas emissions
has become a major environmental problem worldwide [1,2], seriously threatening socio-
economic development and human survival [3,4]. The United Nations Declaration on
Sustainable Development Goals emphasized the importance of improving global environ-
mental quality [5]. Global ecologists, policy makers and economists pay close attention to
and actively advocate for emission reduction policies [6]. The international community has
signed climate conventions such as the United Nations Framework Convention on Climate
Change and the Paris Agreement to address the climate issues. In addition, aging is an
important trend in changing the age structure of the world population, which has become
a widespread social problem in developed countries [7] and developing countries [8]. The
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United Nations released a report “World Population Prospects 2019: Summary of Findings”
on 17 June 2019 and pointed out that the proportion of the global population over 65 years
old is currently about 9%, and by 2050, this proportion will reach 16%, which is the clearest
manifestation of the aging of the world population. Aging has brought problems such as
increasing social burden, weakening the function of family support for the aged, shortage
of labor force, etc. At the same time, it has also seriously affected carbon emissions [9].

China’s carbon dioxide emission levels have led to it being recognized as the most
polluted economy in the world [10], so it is urgent to take corresponding measures to
reduce carbon emissions, especially to promote agricultural carbon emission reduction.
China is an agricultural country with a large population, with 9% of the world’s cultivated
land supporting about 21% of the world population [11]. A total of 17% of China’s green-
house gas emissions come from agricultural production activities, so its role in aggravating
climate warming cannot be ignored [12]. On the one hand, in pursuing the high growth of
agricultural production, China has become the largest fertilizer producer and consumer
globally. Chinese farmers use far more fertilizers per hectare than other countries [13]. In a
short period of 35 years, from 1980 to 2015, China’s agricultural productivity has dramati-
cally improved. The grain yield per unit area increased by 56%, but it was accompanied by
a 225% increase in fertilizer input [14]. The input of pesticides, agricultural films, chemical
fertilizers and other elements has led to severe soil pollution problems while increasing
grain yield [15]. Their overuse has become the main cause of China’s agricultural non-point
source pollution [16].

As an input of agricultural technology, an advanced representative of modern agri-
cultural productivity and a key factor affecting agricultural carbon emissions, agricultural
machinery plays a vital role in improving agricultural labor conditions, promoting agricul-
tural economic output and adjusting agricultural industrial structure [17,18]. Agricultural
machinery is mainly driven by fossil fuels, and in recent years, the rapidly growing en-
ergy consumption of agricultural mechanization (including irrigation motor pumps and
tractors, etc.) has gradually become an essential source of carbon emissions [19]. The
gas pollution produced by fossil energy consumption has a significant negative impact
on the environment [20]. Compared with the early 1970s, the number of tractors used
per 100 square kilometers of arable land in the early 21st century increased by nearly
5.5 times [21]; machinery mainly depends on burning fossil fuels such as kerosene and
diesel. The emission coefficient of diesel is the highest among all energy sources, and
its carbon emissions account for 15% of the total carbon emissions [22]. However, in the
17 years from 2000 to 2017, China’s agricultural energy consumption increased by nearly
50 million tons of standard coal (China Statistical Yearbook). Energy consumption increases
the carbon dioxide discharged into the atmosphere [23]. Wiebe et al. [24] also clearly
concluded that agricultural mechanization will exacerbate the carbon dioxide emissions of
the agricultural sector through a survey of global carbon emissions from the agricultural
sector. Jiang et al. [20] also pointed out that there were some shortcomings in energy saving
and emission reduction of agricultural machinery, and the greenhouse gases emitted by
agricultural machinery reduced the eco-environmental performance. Nevertheless, it is un-
deniable that the popularization of agricultural mechanization has significantly improved
the efficiency of agricultural production [25]. In order to give consideration to the ecological
environment and agricultural production efficiency, agricultural production urgently needs
to organically integrate agricultural mechanization with a low-carbon economy through
scientific and technological innovation, which can effectively help protect the ecological
environment and play a role in energy conservation and emission reduction [26].

Since the 1990s, China’s aging process has been accelerating. At present, China has
already stepped into an aging society, with the largest number of the elderly (aged 60
and above) in the world, and the aging process in China will continue to accelerate in the
future [27]. In China’s rural areas, farmers generally have small landholdings and large
families, so their agricultural income is relatively low. With the acceleration of urbanization,
a large number of rural people move to cities to pursue higher-paid non-agricultural
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employment activities [28,29], leading to the increasingly serious aging problem in rural
China. Statistics show that from 1982 to 2019, the aging rate in countryside China increased
by 11.24%, from 4.56% to 15.8% [30]. It is also necessary to explore the relationship between
aging and agricultural carbon emissions. The direct relationship between them is the
consumption pattern of the elderly. Scholars have different views on whether aging will
increase or decrease carbon emissions. Some scholars believe that the elderly spend a higher
proportion of their income on energy-intensive products such as housing, food and health
care [31]. At the same time, aging accelerates the miniaturization of families, leading to
more energy consumption and carbon dioxide emissions [32]. However, most studies still
believe that aging directly reduces carbon emissions, which are negatively related to carbon
emissions, and can improve the environment [33,34]. An important reason for the above
conclusion is that the living habits of the elderly are more low-carbon and environmentally
friendly than that of the younger generation [33], and their overall consumption demand
is smaller [35], they spend more time indoors, rarely use transportation and reduce the
energy consumption of private cars [36]. According to China’s energy demand table, the
annual demand of the elderly is 0.7 times that of the young, and the aging suppresses food
demand and reduces calories [37]. Hassan and Salim [38] studied the influence of aging
on carbon dioxide emissions in 25 high-income countries and proved that for every 1%
increase in the elderly population, the per capita carbon dioxide emissions would decrease
by 1.55%.

In addition, aging also affects agricultural carbon emissions. On the one hand, in
the context of rural labor shortages, the “high-input, high-output” agricultural produc-
tion model has been widely adopted in many regions, expanding the use of chemical
fertilizers [39]. Due to their low level of education and environmental awareness, the
elderly in rural areas do not care about agricultural non-point source pollution during
agricultural production [40], which increases agricultural carbon emissions. On the other
hand, the physiological decline in the elderly chose traditional primitive farming methods
or reduced farming. Research shows that farming will affect methane (CH4) emission,
and no-till or minimal tillage is regarded as a means to reduce carbon dioxide emission
and promote soil carbon sequestration, reducing leaching or surface runoff [41,42]. The
change in population age also determines the direction of land utilization transformation
and agricultural development [43]. Under the influence of aging and urbanization, young
people migrate to cities, and there are some problems in the agricultural sector, such as
the shortage of agricultural labor, the increase in cost and the weakening of the family’s
economic development ability, resulting in the formerly cultivated land being idle [44].
Therefore, farmers will adjust their land-use decisions to adapt to the impact of aging
on agricultural production [45]. In this way, farmers can still get the greatest economic
benefits when the labor supply decreases [46]. One way of adjustment is to abandon the
land and make it non-agricultural [47] or let the land be idle. Abandoned farmland has a
positive role in mitigating climate change, replacing agricultural cultivation with natural
regeneration, which can cause better carbon sequestration [48]. The second method is to
change the types of crops planted, choose the types of crops that are labor-saving and easy
to grow, use less labor [49], reduce the planting scale of food crops and increase the area of
cash crops. The last way is to lease the land. The shortage of agricultural labor force caused
by aging can promote the land transaction between the families lacking labor force and
those with surplus labor force [50]. According to the research of Deininger and Jin [51], in
China, the rural land leasing market can improve land utilization rate by allocating land to
those with high agricultural potential and then achieving large-scale operation. Moreover,
aging has led to the fragmentation and decentralization of small farmers’ management,
making it challenging to form large-scale production, which will seriously hinder mecha-
nization, reduce the applicability and universality of large-scale agricultural machinery [52],
weaken the use of agricultural machinery and reduce mechanical energy consumption and
CO2 emissions.



Int. J. Environ. Res. Public Health 2022, 19, 6191 4 of 22

However, the long-term aging of the population will eventually affect food security
and challenge sustainable development [53]. The population aging will encourage farmers
to make up for the shortage of labor by increasing the input of machinery and improving
the level of agricultural modernization [43]. Agricultural mechanization is more widely
used as an essential substitute for labor input [17]. Although it leads to more carbon
emissions, it greatly improves agricultural production efficiency [18,54]. Therefore, efforts
to reduce environmental pollution caused by agricultural machinery may be the right
way for sustainable development. Research widely has shown that the critical factor in
improving energy efficiency and controlling carbon dioxide emissions growth is technolog-
ical progress [55]. In the early stage, due to less investment in scientific research and low
technical level, it was not conducive to reducing energy consumption and carbon dioxide
emissions. In the later stages of mechanization, the government encouraged renewable
energy use [56], continuously increased the investment of capital and technical personnel,
and made remarkable progress in energy-saving technology. By reducing the energy in-
tensity of machinery [57] and adopting comprehensive agricultural technology [25], China
has gradually promoted agricultural industrialization. While improving the efficiency of
agricultural machinery, it has also gradually reduced the amount of agricultural machinery.
Nowadays, introducing clean energy such as biogas and solar energy as the main power
of agricultural machines [58] while improving mechanization efficiency and promoting
technological innovation for ecological protection [26] can effectively reduce agricultural
carbon emissions.

Related research on the two themes of carbon emissions and population aging has
become a recent research hotspot for scholars and achieved fruitful results. Previous stud-
ies have laid a good foundation for our study, with important inspiration and reference
significance. Existing literature has extensively studied the sources and influencing fac-
tors of carbon emissions, such as the impact of urbanization, industrial structure, energy
consumption and land use on carbon emissions. However, most literature selects a single
core variable to explore the linear relationship between this variable and carbon emissions.
Compared with traditional research, this paper innovatively brings aging, agricultural
mechanization and agricultural carbon emissions into a unified research system, examines
their long-term equilibrium relationship, discusses the impact of aging and agricultural
mechanization on carbon emissions and demonstrates the impact and transmission mecha-
nism of aging on agricultural carbon emissions through agricultural mechanization, as well
as the dynamic relationship between them. The above is also the biggest contribution of
this paper. In addition, this paper has the following two contributions: 1. Using systematic
and rich empirical methods, including a set of testing frameworks (cross-section correlation
test, unit root test and cointegration test), and using Fully Modified General Least Squares
(FMOLS) and Dynamic General Least Squares (DOLS) to make an empirical analysis of
the long-term impact of variables, the estimated results are accurate and reliable. Using
the Panel Vector Autoregression (PVAR) model, the endogenous problem and lag effect of
variables are fully considered, which provides an effective testing method for studying the
dynamic relationship. 2. In the past, scholars mainly used county-level data, survey data
and data from several designated provinces and cities to study the impact of land change
or aging on agricultural production. The research level is relatively low. However, this
paper examines the situation of 30 provincial levels in China, with a wider research scope
and more convincing results.

2. Materials and Methods
2.1. Data Interpretation and Index Construction
2.1.1. Total Agricultural Carbon Emissions

According to Altieri and Nicholls [59], the diversity of agricultural carbon emission
sources is caused by the diversity and complexity of agricultural production. According to
FAO (Food and Agriculture Organization of the United Nations) data, agricultural land
emissions, rice cultivation, agricultural waste disposal, animal enteric fermentation and
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animal manure management constitute the primary GHG (Greenhouse Gas) emissions from
agricultural production activities in China. According to Cui et al. [60], the main sources of
agricultural carbon emissions include pesticides, agricultural plastic films, fertilizers and
agricultural activities. Among the many factors affecting agricultural carbon emissions,
we mainly focus on the factors of production inputs and animal activities. Therefore, the
carbon emission sources we selected mainly include fertilizer, pesticides, agricultural plastic
film, agricultural planting, agricultural irrigation, agricultural electricity, agricultural diesel
oil and the weight of pigs, cattle and sheep, estimating each province’s total agricultural
carbon emissions. The fertilizer is a compound fertilizer containing nitrogen, phosphorus
and potassium. The data sources of the above carbon sources are shown in Table 1. The
table presents the main variable’s name, each variable’s unit and the data source.

Table 1. Data sources.

Variables Unit Data Sources

The pure amount of agricultural chemical
fertilizer application kg

Pesticides consumption kg
Agricultural plastic films consumption kg
The total sown area of agriculture hm2

The effective irrigated area of agriculture hm2 China Rural Statistical Yearbook
Agricultural power kwh
Agricultural diesel oil consumption kg
Pig kg
Cattle kg
Sheep kg

In this paper, the emission coefficient method is used to calculate agricultural car-
bon emissions. In this method, agricultural carbon emissions are equal to carbon source
consumption multiplied by the corresponding carbon emission factor. The formula is
as follows:

E = ∑ Ei = ∑ Ti·δi

In the above formula, Ti is the carbon source usage, δi is the carbon emission coefficient
of each carbon source (i represents the type of carbon source, i = 1, 2, . . . , 10), and E
represents all agricultural carbon emissions.

Table 2 shows each carbon source’s emission factors and main reference sources. In
the carbon emission factor unit in the second column of the table, the first unit represents
the unit of carbon dioxide emissions: kg and the latter unit represents the measurement
unit of each carbon source. Figure 1 shows the annual carbon emissions from agricultural
production in China from 2000 to 2019.

Table 2. Carbon emission factors and reference sources.

Carbon Source Carbon Emission Coefficient Refer to the Main Source

Fertilizer 0.8956 kg/kg Oak Ridge National
Laboratory [61]

Pesticide 4.9341 kg/kg Oak Ridge National
Laboratory

Agricultural Plastic films 5.18 kg/kg

Institute of Resource,
Ecosystem and Environment

of Agriculture, Nanjing
Agricultural University

Agricultural Power CO2: 0.7921 t·MWh−1 Ministry of Ecology and
Environment

Agricultural Cultivation 312.6 kg/hm2 College of Biological Sciences,
China Agricultural University
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Table 2. Cont.

Carbon Source Carbon Emission Coefficient Refer to the Main Source

Agricultural Irrigation 25 kg/hm2 [61,62]

Agricultural Diesel oil 0.5927 kg/kg Intergovernmental Panel on
Climate Change IPCC

Pig 34.0910 kg/(each year) Intergovernmental Panel on
Climate Change IPCC

Cattle 415.91 kg/(each year) Intergovernmental Panel on
Climate Change IPCC

Sheep 35.1819 kg/(each year) Intergovernmental Panel on
Climate Change IPCC
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2.1.2. The Index of Population Aging and Mechanization

In this article, the population aging index is constructed by the ratio of the elderly over
65 years old to the total rural population. The mechanization index can be expressed by
mechanization intensity and measured by agricultural machinery’s total power/cultivated
land area. The data sources of aging are China Rural Statistical Yearbook and China
Population, Employment Statistical Yearbook and China Statistical Yearbook. The data
source of mechanization is China Rural Statistical Yearbook.

The carbon emission index used in this article is average carbon emission per land =
sum of carbon emissions/cultivated land area.

2.1.3. Descriptive Statistics Analysis

Table 3 reveals descriptive statistics of each variable. The data interval of total carbon
emissions and total mechanical strength fluctuates obviously, which indicates that there are
regional differences in agricultural mechanization use and carbon emissions in 30 provinces
(cities, autonomous regions) across the country, which are related to the agricultural plant-
ing area and planting methods of each province (city, autonomous region). The national
total carbon emissions and total mechanical strength are relatively large, so the average
value is at a high level. The fluctuation of the aging interval is slight, and aging is common
in all regions. In order to reasonably control the influence of heteroscedasticity, these data
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were taken logarithmically, and the standard deviation of the three variables after logarithm
was large, showing significant differences.

Table 3. Descriptive statistics for primary variables.

Variable Mean Std. Dev. Min Max

Fertilizer 175.131 137.603 6.2 716.1
Pesticide 5.266 4.224 0.14 17.35

Agricultural plastic films 6.955 6.33 0.06 34.35
Agricultural diesel oil 63.827 64.681 1.8 487

Agricultural cultivation 5327.101 3588.664 88.6 14,783.4
Agricultural irrigation 2004.289 1515.2 109.24 6177.59
Agricultural electricity 212.195 337.304 1.5 1949.1

Cattle 357.893 293.474 1.2 1496.2
Pig 1515.626 1282.969 13.2 5757

Sheep 973.076 1200.783 11 6111.9
Total carbon emission 630.554 414.268 18.776 1996.382

Total mechanical strength 2809.358 2683.924 93.97 13,353.02
Machine 7.229 5.318 0.64 48.648

Aging 0.096 0.021 0.048 0.164
Cultivated area 207.21 119.33 1 412

Percarbon 1.866 2.315 0.357 22.985
Lnpercarbon 0.433 0.505 −1.03 3.135

Lnaging −2.369 0.22 −3.044 −1.809
Lnmachine 1.779 0.639 −0.447 3.885

2.2. Cross-Sectional Dependence Tests

A cross-section correlation test is an important part of panel inspection. Before de-
termining whether a panel data set can carry out a series of tests, it is most important to
conduct a cross-section test [63]. The significance of testing the original hypothesis of the
cross-section is the weak cross-section correlation between variables. If the final result is
significant, the original hypothesis will be rejected, which indicates that there is a strong
cross-sectional correlation between aging, agricultural mechanization and agricultural
carbon emissions.

To test the cross-section correlation, Breusch and Pagan put forward the Breusch–
PaganLM test in 1980. In order to solve the shortcomings of the Breusch–PaganLM test,
Pesaran [64] improved it and put forward PesaranCD and PesaranLM tests. The formulas of
the above three cross-section inspection methods are as follows:

Breush–PaganLM =
N−1

∑
i=1
•

N

∑
j=i+1

Tijµ
2
ij → χ2

(
N(N − 1)

2

)
(1)

PesaranLM =

√
1

N(N − 1)

N−1

∑
i=1
•

N

∑
j=i+1

(Tijµ
2
ij − 1)→ N(0, 1) (2)

PesaranCD =

√
2

N(N − 1)

N−1

∑
i=1
•

N

∑
j=i+1

Tijµ
2
ij → N(0, 1) (3)

µij = µij =
∑T

t−1 εijε ji(
∑T

t−1 ε2
ij

) 1
2
(

∑T
t−1 ε2

jt

)1/2
(4)

When the number of samples N and the time series T are small, the Formula (1) can
be used. The data set with a large sample and dynamic time variation is suitable for
Equation (2), while Equation (3) is suitable for large sample and fixed time.
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In Equation (4), µ2
ij is the correlation coefficient of residual error, εij and ε ji refer to

standard errors.

2.3. Unit Root Test
2.3.1. IPS

IPS test [65] points out that the ρi difference of some individuals can also cause the
instability of the whole panel data. IPS test overcomes the defect of the LLC test and allows
different individuals in the panel to have different ρi, which is a relaxation of the hypothesis.
The relaxation of IPS homogeneity requirements is more in line with the characteristics of
economic data and acknowledges that the whole data is stable and some individual data
are unstable.

The form of the IPS inspection model is as follows:

∆yi,t = αt + ρiyi,t−1 + εi,t, i = 1, 2, . . . , N, t = 1, 2, . . . , T

In the IPS test, the original hypothesis and alternative hypothesis are as follows:

H0: ρi= 0, ∀i ∈ N

H1 :
{

ρi < 0, i = 1, 2, . . . , N1
ρi = 0, i = N1 + 1, N2 + 2, . . . , T

Based on the modified DF-t statistic, the original hypothesis test statistic:

Γt =
√

N[tNT(p)− αNT ]/
√

bNT → N(0, 1)

αNT =
1
N

i=N

∑
i=1

E[tNT(p, 0)]

bNT =
1
N

i=N

∑
i=1

var[tNT(p, 0)]

In the above formula, when the lag period is p, tNT(p) is the ADF-t statistic of N
departments, and var[tNT(p, 0)] and E[tNT(p, 0)] represent the variance and mean of the
ADF-t statistic of N departments with a lag period of p, respectively.

Under the original hypothesis, T → ∞, N → ∞, or N/T → k, k is a finite normal
number. Statistics converge to normal distribution function.

2.3.2. LLC

LLC (Levin–Lin–Chu) [66] test is suitable for the same root and long panel data (T > n).
The test principle adopts the ADF test, but it uses standard proxy variables that exclude the
influence of autocorrelation and deterministic items. LLC assumes sequence correlation
from the beginning and uses the ADF test to test whether there is a unit root. The ADF test
model equation is as follows:

∆yit = ρyi t−1 +
pi

∑
L=1

θiL∆yi t−L + αmidmt + εit, m = 1, 2, 3,

Assuming that all individuals in LLC have homogeneity under the original and
alternative assumptions, the following are the original and alternative assumptions:

H0 : ρ1 = ρ2 = . . . = ρN = 0,

H1 : ρ1 = ρ2 = . . . = ρN < 0.
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Under the above null hypothesis, ρ̂ and se(ρ̂) are calculated using the combined data,

and tρ = ρ̂
se(ρ̂) and modified

tρ−NT̃ŜN σ̂̃ε−2STD(ρ̂)µ∗
mT̃

σ∗
mT

.

Statistics and tρ = ρ̂
STD(ρ̂)

are calculated by least squares, and the statistics contained

in the modified t∗ρ =
tρ−NT̃ŜN σ̂̃ε−2STD(ρ̂)µ∗

mT̃
σ∗

mT
, and t∗ρ are as follows:

ρ̂ =
∑N

i=1 ∑T
t=2+pi

ṽit−1 ẽit

∑N
i=1 ∑T

t=2+pi
ṽ2

it−1

STDρ̂ = σ̃̃ε(∑N
i=1 ∑T

t=2+pi
ṽ2

it−1)
−1/2

,

ρ̂2
ε̃

1
NT̃

=
N

∑
i=1

∑T
t=2+pi

(ẽit − ρ̂ṽit−1)
2.

where T̃ = T − P− 1, P = 1
N ∑N

i=1 Pi.
t∗ρ converges to the standard normal distribution.

2.3.3. ADF

The high-order autoregressive process may produce time series in the actual unit root
test, and the random error term may not be white noise series. Therefore, in order to ensure
random error terms’ noise characteristics in the DF test, Dicky and Fuller proposed an
enhanced DF test, which formed the enhanced Dickey–Fuller test.

For theoretical and practical reasons, the following three regression models are com-
monly used for the ADF test:

∆yt = ωyt−1 +
k

∑
i=1

βi∆y t−i + εt (5)

∆yt = α + ωyt−1 +
k

∑
i=1

βi∆y t−i + εt (6)

∆yt = α + δt + ωyt−1 +
k

∑
i=1

βi∆y t−i + εt (7)

The original assumptions in the three models are H0 : δ = 0, and there is a unit root.
In model (7), T represents the trend of time series changing with time, which is a time
variable, and α is a constant term. The inspection starts with model (7), then model (6), and
finally model (5). The inspection will not stop until the original hypothesis is rejected by
the inspection, which means that the original series has no unit root. It is a stationary series.

2.3.4. PP

The unit root test method of PP is put forward for the existence of sequence correlation
of disturbance items. Phillips and Perron revised the ADF test nonparametric in 1988 and
put forward the Phillips–Perron test statistic. This test statistic obeys the limit distribution of
the corresponding ADF test statistic and applies to the stationarity test of heteroscedasticity.

The steps of PP inspection are as follows:
1© Estimating the regression model by the least square method to obtain the parameter

estimation and residual sequence;
2© Calculate the sample autocovariance of residual sequence:

γ̂j = T−1
T

∑
t=j+1

ûtût−j, j = 0, 1, 2, . . . .
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The estimated value of λ = σϕ(1) is as follows:

γ̂2 = γ̂0 + 2
q

∑
j−1

[
1− j

q + 1

]
.γ̂j

The size of the value of q is determined according to the actual situation. If after a
certain order (such as after the nth order), the contribution of γ̂j to γ̂2 is negligible, then q
takes n.

3© Calculate the standard deviation σ̂ρ̂ of the parameter estimator ρ̂ and the estimated
variance s2 = 1

T−2 ∑ û2
t of residual ut.

4© Substitute the calculation result in 3© into the expression of Zρ or Zt statistic to get
the statistic value.

2.4. Panel Cointegration Test

If the unit root process is found, it is necessary to continue the panel cointegration test
to see if there is a long-term equilibrium cointegration relationship between endogenous
variables. Kao [67] and Kao and Chiang [68] used the generalized DF and ADF tests to test
panel cointegration. The initial assumption of this method is that there is no cointegration
relationship between variables, and the residual of static panel regression is used to test the
build statistics. The inspection process is divided into the following two stages:

The first stage: set each section to have different intercept terms and the same coeffi-
cient:

yit = αi + δit + x′itβ + uit

where αi is different and β is the same, and is set.
In the second stage, the residual sequence ûit in the first stage is tested by unit root.

Under the original hypothes is H0: ρ = 1, construct the following statistics:

ADFρ =

√
NT(ρ̂− 1) + 3

√
Nσ̂2

v /σ̃2
v√

3 + 36σ̂4
v /(5σ̃4

v )

ADFt =
tρ +
√

6Nσ̂2
v /(2σ̃v)√

σ̃v
2σ̃v

+ 3σ̂2
v /(10σ̃2

v )

2.5. Causality Test

Granger [69] initiated the analysis of the causality of time series data. On this basis,
Dumitrescu Hurlin [70] extended it. Granger causality means that when forecasting Y, the
effect of forecasting with the past information containing variables X and Y are better than
that of forecasting only with the past information of Y. This study adopts the causal test
method proposed by Dumitrescu Hurlin to determine the directional causal relationship
between variables. It includes directional causality in three ways: bidirectional causality,
unidirectional causality, and neutral causality.

Granger test is completed by constrained F test, which is expressed as follows:

Yt =
m
∑

i=1
αiXt−i +

m
∑

i=1
βiYt−i + µ1t

H0 : α1 = α2 = · · · = αm = 0,
F = (SSRr−SSRur)/m

SSRur/(n−k) .

If F > Fα(m, n − k), reject the original hypothesis: x is not the Granger cause of Y.
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Xt =
m
∑

i=1
λiYt−i +

m
∑

i=1
δiXt−i + µ2t

H0 : λ1 = λ2 = · · · = λm = 0,
F = (SSRr−SSRur)/m

SSRur/(n−k) .

If F < Fα(m, n − k), reject the original hypothesis that y is not the Granger cause of X.
Among them, if the regression model contains constant terms, the degree of freedom

of F test k = 2m + 1, and if the constant terms are not included, k = 2m.

2.6. Autoregressive Distributed Lag

The autoregressive distributed lag (ARDL) method Pesaran [71] proposed can be used
for long-term estimation of aging, agricultural mechanization and agricultural carbon emis-
sions. Compared with the standard cointegration test, this method can test the long-term
relationship between variables without single integration of variables of the same order.

The structure of a typical ARDL(p, q1, q2, . . . qk) model is as follows:

∅(L, P)yt =
k

∑
i=1

βi(L, qi)xit + δwt + µt

where
∅(L, P) = 1−∅1L−∅2L2 − · · · −∅pLp

βi(L, qi) = 1− βi1L− βi2L2 − · · · − βiqiLqi

p indicates the lag order of Y, qi indicates the lag order of i-th independent variable xi,
i = 1, 2, . . . , k. L is the lag operator. The following formula can define it:

Lyt = yt−1

2.7. FMOLS and DOLS

In this paper, after using the cointegration test and ARDL to test the long-term in-
fluence between test variables, we use FMOLS developed by Phillips and Hansen [72]
and DOLS developed by Kao and Chiang [68] to run more robust tests. Compared with
other regression methods, OLS and DOLS have the advantage that they can solve the
problems of sequence correlation and endogenous explanatory variables in the study of
long-term relationships between variables. Both of them are group average estimation
methods between dimensions.

The panel FMOLS estimator β is given by:

β∗NT = N−1
N

∑
i=1

(
T

∑
i=1

(
Xit − Xi

)2
)

−1

(
T

∑
i=1

(
Xit − Xi

)
Y∗it − Tτ̂i
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N

∑
i=1

(∑T
t=1 ZitZi

it)
−1
(

T

∑
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ZitY∗it
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where Zit =
(
Xit − Xi, ∆Xit−j, . . . , ∆Xit+k

)
is 2(K + 1) vector of regressors.

2.8. PVAR

Panel autoregression, PVAR for short, was first proposed by Holtz Eakin et al. [73].
This model is based on a multivariate system equation, which converts all variables into
endogenous variables for processing, and considers the effects of all variables’ lag terms.
Based on inheriting the advantages of the VAR model, compared with the long time
sequence requirement of the traditional VAR model, the PVAR model has the characteristics
of a large cross-section and short time sequence. At the same time, the model can effectively
solve the problem of individual heterogeneity by using panel data and fully considering
the individual and time effects.

The PVAR formula is as follows:

Yit = α0 +
n

∑
j=1

αjYi,i−j + βi + γi + εit

In the above formula, Yit refers to the core variable in this paper: agricultural carbon
emission, aging and agricultural mechanization; i refers to the sample; t refers to the year;
α0 refers to the intercept term; j refers to the lag order; αj refers to the parameter matrix
of lag order j; βi refers to the individual fixed effect; γi refers to the individual time effect;
and εit refers to the random disturbance term that obeys the normal distribution.

3. Results
3.1. Cross-Sectional Dependence and Unit Root Tests Results

The results of the cross-section correlation test are shown in Table 4. We can conclude
that the original hypothesis is rejected, and the alternative hypothesis is accepted at 1%
significance level. There is a cross-sectional correlation.

Table 4. Cross-sectional dependence test results.

Test Statistic Prob.

Breusch–PaganLM 2331.903 0.0000 ***
Pesaran scaledLM 64.31103 0.0000 ***

PesaranCD 22.04594 0.0000 ***
Note: *** Significant at 1% level.

Empirically, we usually use a unit root test to analyze the stationarity of panel data to
check whether the data process is stable. This process is to avoid “false regression” and
ensure the validity of the estimation results. In order to ensure the reliability and robustness
of the test results, this paper uses the LLC method for homogeneous panel hypothesis and
IPS, ADF-Fisher and PP-Fisher method for heterogeneous panel hypothesis to test each
variable’s stationarity.

Stationarity estimates for the three variables are reported in Table 5. The results
obtained by the four methods of unit root test are basically the same. In terms of level
value, only lnmachine in the LLC test rejects the original hypothesis with the unit root at a
1% significance level, and other variables cannot reject the original hypothesis. Therefore,
we further test their first-order differences. The results show that at the 1% significance
level, the null hypothesis with unit root is rejected for each variable, and they have the
same order stability.
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Table 5. Panel unit root tests results.

Variables Level First-Difference

Intercept Intercept
and Trend Intercept Intercept and

Trend

LLC test
Lnpercarbon 0.6898 0.9999 0.0000 *** 0.0000 ***

Lnaging 0.9687 0.0845 * 0.0000 *** 0.0000 ***
Lnmachine 0.0000 *** 0.9992 0.0000 *** 0.0000 ***

Im, Pesaran, and Shin test
Lnpercarbon 0.9691 1.0000 0.0000 *** 0.0000 ***

Lnaging 1.0000 0.2029 0.0000 *** 0.0000 ***
Lnmachine 0.4025 1.0000 0.0000 *** 0.0000 ***

ADF-Fisher Chi-square test
Lnpercarbon 0.9037 0.9564 0.0000 *** 0.0000 ***

Lnaging 0.9988 0.1046 0.0000 *** 0.0000 ***
Lnmachine 0.5432 1.0000 0.0000 *** 0.0000 ***

PP-Fisher Chi-square test
Lnpercarbon 0.9539 1.0000 0.0000 *** 0.0000 ***

Lnaging 1.0000 0.4615 0.0000 *** 0.0000 ***
Lnmachine 0.2209 1.0000 0.0000 *** 0.0000 ***

Note: *** Significant at 1% level, and * Significant at 10% level.

3.2. Panel Cointegration Test Results

From the cointegration test results shown in Table 6, we can find that the p-value is
0.0000, far less than 0.01. Therefore, we can reject the original hypothesis at a 1% signifi-
cance level. That is, the alternative hypothesis can be supported, which means that there
is a cointegration relationship between endogenous variables. We can draw the conclu-
sion that there is a long-term balanced causal relationship between aging, mechanization
and agricultural carbon emission reduction, which enables us to study how aging and
mechanization affect agricultural CO2 emissions.

Table 6. The results of Kao’s residual panel cointegration test (ADF).

Null Hypothesis t-Statistics Probability

ADF No co-integration −7.227329 0.0000 ***
Note: *** Significant at 1% level.

3.3. Results of DOLS and FMOLS

Table 7 shows the estimated results of the FMOLS and DOLS panel models. In the
two regressions, the coefficient of mechanization is positive, but the coefficient of aging
is negative, both of which are significant at a 1% significance level. It shows that mech-
anization will increase agricultural carbon emissions, which is consistent with previous
studies [20,63]. On the contrary, aging can reduce emissions. According to the estimates of
FMOLS and DOLS, when the mechanization index increases by 1%, agricultural carbon
emissions will increase by 0.60% and 0.70%, respectively. When the proportion of the
elderly population increases by 1%, agricultural carbon emissions will decrease by 0.76%
and 0.89%, respectively, which shows that aging can directly promote the reduction of
agricultural carbon emissions.
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Table 7. Benchmark results.

Variables Coefficient S. E. t-Statistic Prob.

FMOLS
LNMACHINE 0.6047 0.0346 17.4567 0.0000 ***

LNAGING −0.7558 0.0894 −8.4559 0.0000 ***
DOLS

LNMACHINE 0.6971 0.0438 15.9096 0.0000 ***
LNAGING −0.8893 0.1280 −6.9468 0.0000 ***

Note: *** Significant at 1% level.

3.4. Results of ARDL

After ordinary regression analysis, in order to study the long-term effects of aging and
mechanization on agricultural carbon emissions, we use the ARDL model for long-term
and short-term regression. ARDL (1 1, 1, 1, 1) is selected for estimation in this paper
because lower lag order can obtain more reliable results [74]. The results in Table 8 show
that in the long run, mechanization will increase carbon emissions while aging will reduce
carbon emissions, which is similar to the estimated results obtained by the FMOLS and
DOLS methods as mentioned above. At the significance level of 1%, mechanization has a
short-term positive impact on agricultural carbon emissions, while aging has no obvious
impact on carbon emissions in the short term. This shows that it is a long-term process
for the mechanism of aging to reduce carbon emissions, and the use of mechanization can
immediately increase carbon emissions, so reducing the use of mechanization in the short
term can effectively inhibit the increase of agricultural carbon emissions.

Table 8. The results of ARDL.

Variable Coefficient Std. Error t-Statistic Prob.*

Long Run Equation
LNMACHINE 0.4446 0.0291 15.3011 0.0000 ***

LNAGING −0.3578 0.0597 −5.9928 0.0000 ***
Short Run Equation

COINTEQ01 −0.1431 0.0488 −2.9342 0.0035 ***
D(LNMACHINE) 0.3612 0.0725 4.9842 0.0000 ***

D(LNAGING) 0.0623 0.0392 1.5900 0.1126
C −0.1905 0.0618 −3.0842 0.0022 ***

Note: * represents a significant level, *** Significant at 1% level.

3.5. PVAR Robustness Test

In this study, we built a PVAR model of aging, agricultural mechanization and agri-
cultural carbon emissions and got the optimal index when the lag period was 15. In order
to ensure the effectiveness of applying the Granger causality test, impulse response and
variance decomposition based on the PVAR model, we test the robustness of the PVAR
model, that is, whether the modulus of the eigenvalue of the dynamic matrix is less than
1 (in the unit circle). As shown in Figure 2, the ideal result is obtained, and all points of
the inverse root of the AR characteristic polynomial are in the circle. The PVAR model
constructed in this paper is robust.
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Figure 2. The inverse roots of the AR characteristic polynomial. Note: Blue bullet represents unit
root, all blue bullets are inside the unit circle, which means that all unit roots are inside the unit circle.

3.6. Causality Test Results

Cointegration implies Granger causality, but there is no guarantee that the direction of
causality between variables can be identified. Therefore, in order to identify whether there
is Granger causality between variables, we further carried out the Granger causality test.
Table 9 shows the paired causality test results between agricultural carbon emissions, aging
and agricultural mechanization. The original hypothesis shows that there is no Granger
causality between them. We find that there is a two-way causal relationship between
mechanization and carbon emissions at the significance level of 5%. At the significance
level of 10%, there is a two-way causal relationship between aging and carbon emissions.
In addition, aging is the one-way Granger cause of mechanization at the significant level
of 5%.

Table 9. Pairwise Granger causality tests.

Null Hypothesis: F-Statistic Prob.

LNMACHINE does not Granger Cause LNPERCARBON 4.4489 0.0000 ***
LNPERCARBON does not Granger Cause LNMACHINE 2.4414 0.0140 **

LNAGING does not Granger Cause LNPERCARBON 8.2804 0.0000 ***
LNPERCARBON does not Granger Cause LNAGING 1.7365 0.0898 *

LNAGING does not Granger Cause LNMACHINE 2.3651 0.0177 **
LNMACHINE does not Granger Cause LNAGING 1.2932 0.2467

Note: *** Significant at 1% level, ** Significant at 5% level, and * Significant at 10% level.

3.7. Impulse Response and Variance Decomposition Analysis Results

Impulse response function and variance decomposition tools can be used to test the
relationship and influence degree between aging, agricultural mechanization and agricul-
tural carbon emission variables. By observing the impulse response image, we can get
how the variables in the PVAR model react to each impact with time. Variance decom-
position decomposes the fluctuation of endogenous variables into mutually explanatory
components. By analyzing the contribution rate of various structural shocks to endogenous
variables, the relative importance can be evaluated.

In this paper, the reaction time is set to 15 years. In Figure 3, the abscissa indicates
the lag length of the impact, the ordinate indicates the response degree of endogenous
variables to the impact, and the dashed lines on both sides of the solid line are the values
of plus or minus two standard deviations of the impulse response function, indicating
the possible range of impulse response. The response of carbon emissions to its impact
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reached the maximum value in the first period, gradually decreased with time, and reached
the minimum value in the 15th period. Carbon emissions did not respond immediately
to mechanization. The first reaction was 0, then began to fluctuate in a small range near
the 0 axis. The fourth reaction decreased to 0 and then remained in an adverse reaction
state, which tended to be stable for a long time, indicating that mechanization did cause
carbon emissions in a short time. Similarly, the first reaction of carbon emissions to aging
is 0, and then it is stable in a negative reaction state, which shows that aging can reduce
carbon emissions and be effective for a long time. The response of mechanization to carbon
emissions is the largest in the first period, and with the passage of time, it shows a rapid
downward trend, gradually approaching zero, which shows that carbon emissions do not
constitute a permanent state of mechanization. The response to mechanization increased
in the first two periods, reached the maximum value (about 0.9) in the third period, and
then decreased with a relatively gentle trend. Except for zero in the first stage, the response
of mechanization to aging is negative, which shows that aging effectively reduces the use
of mechanization. The response of aging to carbon emissions is negative within 1–15 and
slowly decreases. The response of aging to mechanization is also negative. After the second
period, it decreases to the minimum and then keeps stable at this value, and the impact
effect is basically unchanged. The response of aging to aging is maintained at a positive
and stable level, with a relatively rapid decline from the first to the second stage and a
relatively gentle decline in the later stage.
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Figure 3. Impulse response diagram of three variables. Note: The horizontal axis represents time,
and the vertical axis reflects the impact. The solid blue line in the middle represents the impulse
response function, and the red dotted lines on both sides represent the upper and lower lines of the
95% confidence interval, respectively.

In order to further evaluate the influence degree of the disturbance term of the model
on the impact of endogenous variables and the contribution degree of different structural
impacts during the change of each variable, we further decomposed the variance of the
PVAR model (see Table 10). Let us take Issue 5, Issue 10 and Issue 15 for analysis.
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Table 10. The impulse response and variance decomposition results.

Variance Decomposition of Lnpercarbon:

Period S. E. Lnpercarbon Lnmachine Lnaging

1 0.1466 100.0000 0.0000 0.0000
2 0.1995 99.9509 0.0115 0.0375
3 0.2334 99.9096 0.0085 0.0820
4 0.2574 99.8501 0.0133 0.1366
5 0.2753 99.7666 0.0323 0.2012
6 0.2890 99.6587 0.0666 0.2747
7 0.2996 99.5280 0.1159 0.3561
8 0.3081 99.3768 0.1792 0.4441
9 0.3149 99.2077 0.2549 0.5374
10 0.3204 99.0235 0.3416 0.6348
11 0.3249 98.8272 0.4377 0.7351
12 0.3287 98.6214 0.5415 0.8371
13 0.3318 98.4086 0.6515 0.9399
14 0.3345 98.1914 0.7662 1.0424
15 0.3367 97.9717 0.8843 1.1440

Variance Decomposition of Lnmachine:

1 0.1640 69.9510 30.0490 0.0000
2 0.2253 66.2910 33.5832 0.1257
3 0.2654 64.0385 35.6795 0.2820
4 0.2946 62.2579 37.2564 0.4857
5 0.3169 60.6915 38.5699 0.7386
6 0.3347 59.2530 39.7064 1.0406
7 0.3492 57.9074 40.7023 1.3904
8 0.3613 56.6378 41.5764 1.7858
9 0.3715 55.4353 42.3405 2.2242
10 0.3804 54.2942 43.0035 2.7023
11 0.3882 53.2103 43.5729 3.2167
12 0.3952 52.1803 44.0557 3.7640
13 0.4015 51.2011 44.4584 4.3405
14 0.4072 50.2698 44.7875 4.9427
15 0.4125 49.3837 45.0491 5.5672

Variance Decomposition of Lnaging:

1 0.0673 0.0474 0.0283 99.9243
2 0.0919 0.3305 0.3262 99.3433
3 0.1110 0.5452 0.4449 99.0099
4 0.1270 0.7659 0.5104 98.7237
5 0.1410 0.9931 0.5512 98.4557
6 0.1535 1.2242 0.5785 98.1973
7 0.1649 1.4566 0.5972 97.9463
8 0.1753 1.6877 0.6098 97.7025
9 0.1851 1.9156 0.6181 97.4664
10 0.1942 2.1388 0.6229 97.2384
11 0.2027 2.3561 0.6250 97.0189
12 0.2108 2.5667 0.6250 96.8083
13 0.2185 2.7702 0.6232 96.6066
14 0.2258 2.9661 0.6200 96.4139
15 0.2327 3.1544 0.6156 96.2300

We can conclude that the variance contribution rate of agricultural CO2 emissions
comes almost from itself. Compared with the 5th and 10th periods, the 15th period
decreases, but it still reaches 97.97%. The variance contribution rate of aging and mecha-
nization is 1.14% and 0.88% when it lags behind 15 periods. The variance contribution rate
of mechanization mainly comes from agricultural carbon emissions, followed by itself, and
finally from aging. The variance contribution rate of mechanization to itself is gradually
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increasing, reaching 45.05% when it lags for 15 periods, while the contribution rates of agri-
cultural carbon emissions and aging to mechanization are 49.38% and 5.57%, respectively.
The variance contribution rate of aging is mainly from itself. When it lags for 15 periods,
the contribution rates of itself, agricultural carbon emissions and mechanization to aging
are 96.23%, 3.15% and 0.62%, respectively.

4. Discussion

In the first step of this study, we first tested the cross-sectional correlation of panel
data to ensure that there is a correlation among variables and that we can study their
dynamic relationship. On this basis, we continued the following four types of unit root
tests, including the IPS test, LLC test, Fisher ADF test and Fisher PP test, to analyze the
stationarity of panel data and avoid “false regression”. The test results show that after
the first-order difference, all variables have passed the single root test, and all variables
are a single integer of the first order, which can be tested by the progressive cointegration
test. We use the Kao cointegration test to test that although some of the original core
variables are unstable, in the long run, there is a cointegration relationship among all
variables so that the PVAR model can be established, which lays the foundation for the
follow-up research on the dynamic relationship among them. The corresponding DOLS,
FMOLS and ARDL regression results in Tables 7 and 8 demonstrated the different impacts
of mechanization and aging on agricultural carbon emissions and obtained their respective
impact coefficients. Then, we focus on the Granger causality test, impulse response and
variance decomposition. Granger causality test verifies whether there is causality among
variables. Impulse response analysis is used to measure the impact track of a standard
difference of random disturbance on the current and future values of other variables,
intuitively depict the dynamic interaction and effect among variables, and judge the time
lag relationship among variables from the dynamic response. Variance decomposition can
more accurately measure the degree of interaction and explanation among variables, and
their results are shown in Table 9, Figure 3 and Table 10.

5. Conclusions and Recommendation
5.1. Conclusions

This paper uses the panel data on China’s aging, agricultural mechanization and
carbon emissions from 2000 to 2019, puts the three core variables into the same system,
constructs a research framework to explore the dynamic relationship, and supplements the
existing literature. At first, the panel data were verified, including cross-sectional corre-
lation, unit root test and cointegration test, which proved that there was a cross-sectional
relationship between aging, mechanization and carbon emissions. Then, the PVAR model
was established by using FMOLS and DOLS to regress the long-term equilibrium rela-
tionship, and variance decomposition and impulse response analysis were carried out.
The results show that mechanization increases agricultural carbon emissions, while aging
reduces carbon footprint, which is beneficial to realizing agricultural carbon reduction. In
the short term, aging will weaken the use of machinery. However, in the long term, agricul-
tural production efficiency and economies of scale will still be improved by agricultural
machinery, and technological innovation will be an effective way to reduce mechanized
energy consumption and curb carbon emissions.

5.2. Policy Suggestions

According to the above research conclusions, the following policy implications were
drawn: first of all, correctly understand and pay attention to the aging phenomenon, give
full play to the positive role of the elderly groups in carbon reduction, attach importance to
the favorable changes brought by population changes to society, accelerate the cultivation
of new professional farmers, and improve farmers’ environmental awareness in agricul-
tural production. Secondly, strengthen cooperation with developed countries, actively
introduce advanced agricultural production modes and technologies, at the same time,
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increase financial input and subsidies for scientific research, promote the progress and
renewal of agricultural technologies, improve the efficiency of agricultural machinery, and
encourage the adoption of renewable energy and clean energy to be used as equipment
fuel to reduce the input of pesticides and fertilizers, and reduce the agricultural sector’s
carbon dioxide emissions and energy consumption. Finally, actively promote the agglom-
eration of agricultural land, recycle abandoned land and fragmented land, implement
unified management and guide scale business operation. Improve the application of the
Internet of Things and artificial intelligence in the agricultural field, promote smart agricul-
ture, improve agricultural green total factor productivity, and continue to transform into
green agriculture.

5.3. Future Research Directions

The research topic of this paper focuses on the frontier and fits the latest background
related to population and environmental issues, which are also important in the world in
the future. It is the first time that aging, agricultural mechanization and agricultural carbon
emissions are linked. Based on the data of 30 provinces (cities) in China, it is demonstrated
on a larger scale, and a conclusion is drawn, which has excellent novelty and crucial
practical significance. Future research can be further studied in two aspects: 1. Extending
the research area and scope to the outside world, the actual situation of different countries
may be different, so it is necessary to conduct more studies in other countries and draw
more universal conclusions so that all countries in the world can discuss coping strategies.
2. The DID model can be further used to compare the differences between the control group
and the treatment group before and after implementing the carbon reduction policy, to test
the effect of the policy and improve the scientific and practical effect of the policy.
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44. Akdemir, S.; Kougnigan, E.A.; Keskin, F.; Akçaöz, H.V.; İsmet, B.O.Z.; Kutlar, I.; Miassi, Y.E.; Kusek, G.; Turker, M. Aging
population and agricultural sustainability issues: Case of Turkey. New Medit Mediterr. J. Econ. Agric. Environ. Rev. Méditerranéenne
D’econ. Agric. Environ. 2021, 20, 49–62.

45. Su, S.; Wan, C.; Li, J.; Jin, X.; Pi, J.; Zhang, Q.; Weng, M. Economic benefit and ecological cost of enlarging tea cultivation in
subtropical China: Characterizing the trade-off for policy implications. Land Use Policy 2017, 66, 183–195. [CrossRef]

46. Xu, D.; Guo, S.; Xie, F.; Liu, S.; Cao, S. The impact of rural laborer migration and household structure on household land use
arrangements in mountainous areas of Sichuan Province, China. Habitat Int. 2017, 70, 72–80. [CrossRef]

47. MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Gutierrez Lazpita, J.; Gibon, A. Agricultural
abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69.
[CrossRef]

48. Bell, S.M.; Barriocanal, C.; Terrer, C.; Rosell-Melé, A. Management opportunities for soil carbon sequestration following
agricultural land abandonment. Environ. Sci. Policy 2020, 108, 104–111. [CrossRef]

49. Caulfield, M.; Bouniol, J.; Fonte, S.J.; Kessler, A. How rural out-migrations drive changes to farm and land management: A case
study from the rural Andes. Land Use Policy 2019, 81, 594–603. [CrossRef]

50. Min, S.; Waibel, H.; Huang, J. Smallholder participation in the land rental market in a mountainous region of Southern China:
Impact of population aging, land tenure security and ethnicity. Land Use Policy 2017, 68, 625–637. [CrossRef]

51. Deininger, K.; Jin, S. The potential of land rental markets in the process of economic development: Evidence from China. J. Dev.
Econ. 2005, 78, 241–270. [CrossRef]

52. Wang, X.; Yamauchi, F.; Huang, J.; Rozelle, S. What constrains mechanization in Chinese agriculture? Role of farm size and
fragmentation. China Econ. Rev. 2020, 62, 101221. [CrossRef]

53. Liu, X.; Xu, Y.; Engel, B.A.; Sun, S.; Zhao, X.; Wu, P.; Wang, Y. The impact of urbanization and aging on food security in developing
countries: The view from Northwest China. J. Clean. Prod. 2021, 292, 126067. [CrossRef]

54. Houssou, N.; Chapoto, A. Adoption of farm mechanization, cropland expansion, and intensification in Ghana. In Proceedings of
the International Association of Agricultural Economists (IAAE) 2015 Conference, Milan, Italy, 9–14 August 2015. 1008-2016-80214.

55. Xie, Z.; Wu, R.; Wang, S. How technological progress affects the carbon emission efficiency? Evidence from national panel
quantile regression. J. Clean. Prod. 2021, 307, 127133. [CrossRef]

56. Xu, B.; Chen, W.; Zhang, G.; Wang, J.; Ping, W.; Luo, L.; Chen, J. How to achieve green growth in China’s agricultural sector. J.
Clean. Prod. 2020, 271, 122770. [CrossRef]

57. Jiao, Y.; Su, M.; Ji, C.; Yang, S.; Zhang, P.; Li, C.; Liu, L. Cleaner production instruments assisting sustainable transition at urban
scale: A case study of Dongguan, a typical manufacturing city in China. J. Clean. Prod. 2019, 210, 1449–1461. [CrossRef]

58. Wang, H.; Xu, J.; Sheng, L.; Liu, X.; Lu, Y.; Li, W. A review on bio-hydrogen production technology. Int. J. Energy Res. 2018, 42,
3442–3453. [CrossRef]

59. Altieri, M.A.; Nicholls, C.I. The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Chang.
2013, 140, 33–45. [CrossRef]

60. Cui, H.; Zhao, T.; Shi, H. STIRPAT-Based Driving Factor Decomposition Analysis of Agricultural Carbon Emissions in Hebei,
China. Pol. J. Environ. Stud. 2018, 27, 1449–1461. [CrossRef]

61. West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing
tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [CrossRef]

http://doi.org/10.1073/pnas.1004581107
http://doi.org/10.1016/S0301-4215(03)00210-6
http://doi.org/10.1016/j.ecolecon.2005.09.019
http://doi.org/10.3390/su10103683
http://doi.org/10.1108/JES-04-2013-0046
http://doi.org/10.3390/su11041165
http://doi.org/10.1016/j.still.2018.08.015
http://doi.org/10.1016/j.still.2021.104947
http://doi.org/10.1016/j.landusepol.2019.104152
http://doi.org/10.1016/j.landusepol.2017.04.044
http://doi.org/10.1016/j.habitatint.2017.10.009
http://doi.org/10.1006/jema.1999.0335
http://doi.org/10.1016/j.envsci.2020.03.018
http://doi.org/10.1016/j.landusepol.2018.11.030
http://doi.org/10.1016/j.landusepol.2017.08.033
http://doi.org/10.1016/j.jdeveco.2004.08.002
http://doi.org/10.1016/j.chieco.2018.09.002
http://doi.org/10.1016/j.jclepro.2021.126067
http://doi.org/10.1016/j.jclepro.2021.127133
http://doi.org/10.1016/j.jclepro.2020.122770
http://doi.org/10.1016/j.jclepro.2018.11.016
http://doi.org/10.1002/er.4044
http://doi.org/10.1007/s10584-013-0909-y
http://doi.org/10.15244/pjoes/77610
http://doi.org/10.1016/S0167-8809(01)00233-X


Int. J. Environ. Res. Public Health 2022, 19, 6191 22 of 22

62. Dubey, A.; Lal, R. Carbon Footprint and Sustainability of Agricultural Production Systems in Punjab, India, and Ohio, USA. J.
Crop Improv. 2009, 23, 332–350. [CrossRef]

63. Rahman, M.M.; Nepal, R.; Alam, K. Impacts of human capital, exports, economic growth and energy consumption on CO2
emissions of a cross-sectionally dependent panel: Evidence from the newly industrialized countries (NICs). Environ. Sci. Policy
2021, 121, 24–36. [CrossRef]

64. Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels (IZA Discussion Paper No. 1240); Institute for the Study
of Labor (IZA): Bonn, Germany, 2004.

65. Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 2003, 115, 53–74. [CrossRef]
66. Levin, A.; Lin, C.F.; Chu, C.S.J. Unit Root Tests in Panel Data: Asymptotic and Finite-Sample Properties. J. Econom. 2002, 108,

1–24. [CrossRef]
67. Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econom. 1999, 90, 1–44. [CrossRef]
68. Kao, C.; Chiang, M.H. On the estimation and inference of a cointegrated regression in panel data. In Nonstationary Panels, Panel

Cointegration, and Dynamic Panels; Emerald Group Publishing Limited: Bingley, UK, 2001; Volume 15, pp. 179–222.
69. Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 1969, 37, 424.

[CrossRef]
70. Dumitrescu, E.I.; Hurlin, C. Testing for Granger non-causality in heterogeneous panels. Econ. Model. 2012, 29, 1450–1460.

[CrossRef]
71. Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16,

289–326. [CrossRef]
72. Phillips, P.C.; Hansen, B.E. Statistical inference in instrumental variables regression with I (1) processes. Rev. Econ. Stud. 1990, 57,

99–125. [CrossRef]
73. Holtz-Eakin, D.; Newey, W.; Rosen, H.S. Estimating vector autoregressions with panel data. Econom. J. Econom. Soc. 1988, 66,

1371–1395. [CrossRef]
74. Koyck, M. Distributed Lags and Investment Analysis; North Holland: Amsterdam, The Netherlands, 1958.

http://doi.org/10.1080/15427520902969906
http://doi.org/10.1016/j.envsci.2021.03.017
http://doi.org/10.1016/S0304-4076(03)00092-7
http://doi.org/10.1016/S0304-4076(01)00098-7
http://doi.org/10.1016/S0304-4076(98)00023-2
http://doi.org/10.2307/1912791
http://doi.org/10.1016/j.econmod.2012.02.014
http://doi.org/10.1002/jae.616
http://doi.org/10.2307/2297545
http://doi.org/10.2307/1913103

	Introduction 
	Materials and Methods 
	Data Interpretation and Index Construction 
	Total Agricultural Carbon Emissions 
	The Index of Population Aging and Mechanization 
	Descriptive Statistics Analysis 

	Cross-Sectional Dependence Tests 
	Unit Root Test 
	IPS 
	LLC 
	ADF 
	PP 

	Panel Cointegration Test 
	Causality Test 
	Autoregressive Distributed Lag 
	FMOLS and DOLS 
	PVAR 

	Results 
	Cross-Sectional Dependence and Unit Root Tests Results 
	Panel Cointegration Test Results 
	Results of DOLS and FMOLS 
	Results of ARDL 
	PVAR Robustness Test 
	Causality Test Results 
	Impulse Response and Variance Decomposition Analysis Results 

	Discussion 
	Conclusions and Recommendation 
	Conclusions 
	Policy Suggestions 
	Future Research Directions 

	References

